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Phase advance and £ function measurements using model-independent analysis
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Phase advance and B function are basic lattice functions characterizing the linear properties of an
accelerator lattice. Accurate and efficient measurements of these quantities are important for commis-
sioning and operating a machine. For rings with little coupling, we report a new method to measure
these lattice functions based on the model-independent analysis technique, which uses beam histories
of excited betatron oscillations measured simultaneously at a large number of beam position monitors.
It is simple, fast, accurate, and robust. Measurements done at the storage ring of the Advanced Photon
Source are reported. Comparisons among various methods are made.
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L. INTRODUCTION

Beam orbits in an accelerator are usually dominated by
the linear properties of its lattice. In most lattices, cou-
pling between the two transverse degrees of freedom is
kept at a minimum. In this paper we will ignore trans-
verse coupling. To a good approximation, a transverse
orbit can usually be described by

x(s) = xo(s) + xg(s) + D,(s5)5, (1

where x; is the zeroth order orbit around which occur
small betatron oscillations xz and oscillations coupled
from the energy o oscillation through the dispersion D,.
Here x represents either horizontal or vertical beam posi-
tions. The betatron oscillation can be described by the
well-known expression

xg(s) = /27 B(s) cos[ ¢ + ¥(s)], (2)

where {J, ¢} are the action-angle variables specifying a
specific orbit, B(s) is the beta function, and #(s) is the
phase advance. The lattice functions 8 and ¢ as well as
D, characterize the linear properties of a lattice. It is an
important and routine task to measure these lattice func-
tions. The transverse orbit information is primarily col-
lected from a large number of beam position monitors
(BPMs) along a machine. Many methods have been de-
veloped to derive the lattice functions from BPM mea-
surements [1,2] . Some depend on narrow-band BPMs
that can measure only the closed orbits; others use
broad-band BPMs capable of measuring beam histories
on a turn-by-turn basis.

The most basic techniques to measure 8 function are
based on varying a quadrupole or a dipole corrector and
deducing the B function at the magnets from correspond-
ing tune or closed-orbit changes, respectively. These tech-
niques are simple but slow (especially when a large
number of magnets are used) and require independently
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powered magnets with reliable calibration. A fast tech-
nique based on orbit oscillations measured with broad-
band BPMs was developed and successfully used to mea-
sure the phase advances in LEP (Large Electron Position
Collider at CERN) [3,4]. It determines the betatron phase
at each BPM by computing the sine and cosine coeffi-
cients of a resonantly excited harmonic betatron oscilla-
tion. A similar technique was implemented in the Cornell
Electron/Position Storage Ring, where a signal analyzer
effectively accomplished the harmonic analysis [5].

The above methods measure the phase advance and 8
function directly. There are two methods that fit a ma-
chine model with measurements, and the phase advance
and beta function are by-products of the fitted model. One
of them is the response-matrix method that has been
successfully used on many machines [6—10]. The basic
idea is to minimize the difference between measured and
calculated (from a model) BPM responses to changes in
steering magnet strengths by adjusting various model
parameters such as corrector strengths, quadrupole gra-
dients, and BPM gains. The other one is a new method
developed for PEP-II at SLAC [11-13]. It extracts four
high-quality linearly independent betatron orbits from
simultaneously acquired beam histories at all broad-
band BPMs, then computes the Green’s function elements
of the transfer matrices between BPMs and fits them with
a model. An obvious advantage of using beam histories is
that it takes a much shorter time to acquire the data. If
there is a sufficient number of BPMs and a good model is
available, the model-fitting methods provide systematic
and powerful tools to calibrate model parameters.

In recent years, model-independent analysis (MIA)
emerged as a new approach to study beam dynamics by
analyzing simultaneously recorded beam histories at a
large number of BPMs [14,15]. A basic technique used in
MIA is the spatial-temporal mode analysis via a singular
value decomposition (SVD) of the data matrix containing
beam histories. Similar to the Fourier analysis, SVD
mode analysis decomposes the spatial-temporal varia-
tion of the beam centroid into superposition of various
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orthogonal modes by effectively accomplishing a major
statistical data analysis, namely, the principal component
analysis [16,17]. Let b’} represent the measurement at the
mth monitor for the pth pulse or turn. Then the singular
value decomposition of the beam-history matrix Bpxy =
(b})) gives

B=USV" = > ouu], 3)
modes
where Upyp = [uy, =+, up] and Vs = [v1, -+, vyl

are orthonormal matrices comprising the temporal and
spatial eigenvectors, and Spy,, is a rectangular matrix
with non-negative singular values o; along the upper
diagonal. A pair of spatial and temporal vectors character-
izes an eigenmode and the corresponding singular value
specifies the overall amplitude of the eigenmode. In this
paper, we will show that when beam motion is dominated
by betatron oscillations, there are two orthogonal eigen-
modes corresponding to the normal coordinates that are
normally used to describe the betatron motion. From
these two betatron modes, the phase advance and beta
function can be derived with good accuracy.

In the following, we first describe the simple theory of
our technique by showing that the SVD eigenmodes yield
the betatron modes, from which the lattice functions are
derived. Then we report experiments done at the storage
ring of the Advanced Photon Source (APS). Based on our
experience, we compare our technique with commonly
used ones and argue certain advantages of our technique.

IL MIA TECHNIQUE TO MEASURE LATTICE
FUNCTIONS

A. Betatron modes

Since BPMs measure beam centroid motion, the beam
histories recorded by the BPMs may be quite different
from single-particle motion, even though individual par-
ticles can be described by Eq. (2). To accommodate this
fact, we assume the mth BPM reading for the pth pulse
can be expressed in action-angle variables {J » P p} as

b;:n = \/2Jme COS(¢p + lpm)v (4)

where 3, is the B function at the mth BPM, and ,, is the
phase advance from a starting point to the mth BPM. For
simplicity, BPM noise is ignored here. Note that a sub-
script p is given to the action and angle variables. In a
linac, this accounts for the different initial conditions of
each pulse. In a ring, it accommodates action and angle
variations from turn to turn. For an ideal linear system,
the action is conserved and the angle simply advances by
the tune each turn. However, nonlinear effects and damp-
ing of the beam centroid can lead to much more compli-
cated action-angle variation although they do not deviate
much from single-particle behavior within each turn.
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Now let us compute the eigenmodes analytically. For
convenience, we use B = (b}))/ /P so that the variance-
covariance matrix is simply given by C; = B”B. From
the BPM data given by Eq. (4), the elements of Cp read

1 P
(Calun=5 D U3}
p=1

P
=3 20 B Blcos i, — 1) +eos(2b, +i +i,)]

p=1
:<J>pvﬁmﬁnCOS(¢fm_¢”), )

where <J)p is the ensemble average of the action. The
subscript p is dropped hereafter. The last term involving
¢, averages to zero for sufficiently large P, provided that
the action and angle are independently distributed. From

Eq. (3),
CzV = (USVT(USVT)V = VS2, (6)

thus, the spatial vectors of B are the eigenvectors of Cp
and the singular values are the square roots of the eigen-
values of Cp, i.e., 0 = \/X

To find the eigenvalues and eigenvectors of Cp, we need
to solve the secular equation

Cgv = Av. @)

Since the B matrix is formed by a set of linear betatron
orbits, the eigenvector v must be a betatron orbit as well,

ie., v is of the form v = {/2J8,,cos(dy + ), m =
1,..., M} where ¢, and J are to be determined by the

secular equation and normalization of v, respectively.
From the mth component of the secular equation,

M
/\COS(¢0 + ‘pm) =<J> Z BnCOS(lﬂm - ¢;z)005(¢0 + %)

n=1

M
=) cos( ot thn) 3. Bucos’ (o 1)
n=1

M
£5sin ) > Bsin2(o i) |
n=1

3)
Therefore, we have the condition
M
> Busin2(eo + ,) = 0. ©)
n=1
There are two solutions,
L SBusin2y,
= — —arctan| =—————— 10
$o= Ty a“(zm ) (10

and ¢, + 7, that lead to two different eigenvectors. The
two eigenvalues are
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1 M M
G PY BV CRTA)
=%<J>|:,§1'Bn i\/(%ﬁn cos2¢,,>2+<gﬁn Sin2¢n>2i|.

(11

Note that the leading term is proportional to M(J),{8),
that grows with the number of BPMs used. (It is often
convenient to remove such dependence when using sin-
gular values by normalizing the data matrix.) The nor-
malized eigenvectors are

vy = ﬁ{v<1>ﬁm COS(d’O + 'me)’ m = 1) ) M}:
l v = DB, sin o + ) m =1, MY
(12)

These two vectors are obviously orthogonal according to
Eq. (9). Note that these betatron vectors are independent
single-particle betatron trajectories even though the cent-
roid motion is not. The normalized temporal vectors that
are consistent with the spatial vectors are

{u+ ={ %cos(d)p —¢o).p=1...,P} 13
u_={—\zssin(¢, = o) p=1,..., P}

which clearly relate to the commonly used normal coor-
dinates. Note that the orthogonality of these two vectors
holds for P — oo. In other words, for finite P, these
expressions are only approximate. So is Eq. (5).
Summarizing the above eigenanalysis, the SVD of the
beam-history matrix of the betatron oscillation (without
noise, otherwise more terms are needed) is given by

B= %(b;’,’) =o.u vl +o_u_ v, (14)
where the singular values o = /A, and the spatial and
temporal singular vectors are the column vectors given by
Egs. (12) and (13). Remarkably, the spatial and temporal
vectors yield independent single-particle betatron motion
and the well-known normal coordinates for this 1D dy-
namical system. There are only two terms in the above
decomposition because the betatron motion is in two
dimensional phase space. Note that there is a sign ambi-
guity in the singular vectors. By definition the singular
values are non-negative and the singular vectors are
normalized to one. But for a pair of singular vectors u
and v, their negatives, —u and —uv, can also be chosen as
the singular vectors.

In practice the measured beam histories contain not
only the dominating betatron oscillation but also BPM
noises as well as motions due to other small perturbations.
It is difficult to analytically study the eigenmodes for
more complicated systems. Nonetheless, there is a matrix
theorem that states that O(e) changes in B can alter a
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singular subspace by an amount €/A, where A measures
the separation of the relevant singular values [18]. Thus,
as long as the singular values of the betatron modes are
far from the rest, Eq. (14) should be a good representation
of the measured betatron modes.

B. Determination of phase advance and 8 function

From the betatron vectors, Eq. (12), the phase advances
can be determined as

VES tan“(a’v’ ) (15)

oLV

where the phase ¢ is absorbed by shifting the reference
point of the phase. Since we are interested in only the
phase advance between BPMs, the reference point does
not matter. The B function can be written as

B =T Avr + A_v2). (16)

Note that, except for an overall scaling factor (J) in 3, the
phase advance and 8 function can be computed from the
betatron vectors obtained by an SVD analysis of the
beam-history matrix.

One complication in determining phase advances with
Eq. (15) is the uncertainty due to the inverse trigonomet-
ric function and the sign ambiguity of the betatron vec-
tors. Fortunately, the local phase-advance deviations from
a machine model are generally much less than 7; there-
fore, with estimated phase advances from even a crude
machine model, the phase uncertainty can be resolved.
Furthermore, it is not difficult to see that errors in BPM
gains have no effect on the phase-advance measurement
since they will be canceled in Eq. (15). In short, from the
betatron vectors, the phase advances between BPMs can
be uniquely determined, and the technique is model in-
dependent and robust against BPM calibration errors.

It is difficult to obtain accurate error bounds for the
measurements. However, the absolute errors in phase (in
unit radian) and relative errors in B function can be
estimated by (see Appendix A)

O'(p:—— and O'AB/B=20'¢, (17)
where o is the rms strength of the betatron signal as
measured by the singular values, and o, is the residual
signal and noise that can be estimated by the quadratic
sum of the singular values of nonbetatron signals and
random noise. For pure harmonic oscillations with
random BPM noise, o, is BPM resolution and o, =
A/ V2, where A is the oscillation amplitude; then
Eq. (17) is the same as errors quoted for the harmonic
analysis [4]. The apparent P dependence loses its power
quickly for a pulse signal, whose singular value decreases
with /P for large P. For sufficiently large P, the random
noise becomes a secondary contribution to the error, and
the +/P dependence will not hold any more. o, is difficult
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to estimate. Often the third largest singular value gives a
rough estimate.

It is instructive to see the connection between the
method developed here and the method based on har-
monic analysis of orbit oscillations [4]. For a perfect
linear system without noise, the temporal vectors are
pure harmonics and the spatial vectors are simply the
coefficients of these harmonics. Thus, the two methods
for phase-advance measurement are basically the same,
although one uses harmonic analysis to extract the sine
and cosine coefficients of the betatron oscillation, and the
other uses SVD to obtain the sine and cosine betatron
orbits in Eq. (12). However, the two methods are funda-
mentally different. The harmonic analysis relies on the
temporal signal having a constant amplitude and periodic
phase in Eqgs. (4) and (13) while the new method does not
rely on the temporal vectors at all. Therefore, the new
method is more robust in terms of tolerating all sorts of
beam excitations as shown below and has wider applica-
bility in the sense that it can be used under conditions not
suitable for harmonic analysis.

Computing S function with Eq. (16), rather than sim-
ply using the amplitude of individual BPMs, has the
advantage that the extracted betatron modes are cleaner
since nonbetatron motion and noise have been excluded
via mode analysis. However, one obvious limitation is
that it depends on BPM gain calibration. Unfortunately,
there is no simple way around this except fitting with
machine models.

IIL. MEASUREMENTS DONE AT THE APS

To test the new method, experiments have been done at
the APS storage ring using beam-history measurements
at 360 broad-band BPMs with various kinds of beam
excitations. Comparisons with the response-matrix and
harmonic-analysis methods have been made. Good agree-
ments were reached.

A. Obtaining the betatron modes

With reliable measurements of beam histories, it is
straightforward to extract the betatron modes as in
Eq. (14) via SVD mode analysis. Unfortunately, the
beam-history modules of the current BPM system at the
APS have various problems [19]. We will not discuss the
details of confronting these problems with MIA. After
identifying and removing the malfunctioning and noisy
BPMs, about 3/4 of the 360 BPMs were used for the
phase-advance and B function measurements. Another
major obstacle is that these beam histories are not syn-
chronized to the same turn. There is uncertainty about a
couple of turns. It turns out that phase-advance measure-
ment is an effective technique to detect the synchroniza-
tion problem. For each turn offset at a BPM, the phase
advance is changed according to the tune. In order to
avoid integer and half-integer resonances, the fractional
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tune is usually much larger than the phase errors of the
optics. Thus, by comparing the measured and designed
phase advances, we are able to detect the out-of-sync
beam histories and synchronize them by simply shifting
the histories relative to each other (works for turn-by-turn
but not for every-other-turn histories). The measured
beam histories are further corrected with BPM gains
obtained with the response-matrix method [10], which
is necessary for the 8 function measurement. After the
beam histories are cleaned, gain corrected, and synchro-
nized, a final SVD mode analysis is performed to extract
the betatron modes—the first two eigenmodes that domi-
nate the beam motion. Fourier analysis of the temporal
patterns of the betatron modes is performed to confirm
that the betatron modes are well separated from other
modes due to synchrotron oscillation, transverse cou-
pling, nonlinear effects in optics and BPMs, and so on.
Here we will not report the details of all the modes we
observed, although they are very informative [20].

B. Horizontal measurements with Kick excitation

For the horizontal plane, an injection kicker is used to
kick a stored bunch to a desired amplitude, and the
resulting betatron oscillation is recorded. Mode analysis
yields about ten modes above the noise floor: the two
largest modes are the betatron modes, the third one is the
synchrotron mode due to residual energy oscillation in
the ring, and so on. As examples, the first and the third
modes are shown in Figs. 1 and 2. The second betatron
mode is similar to the first one.

In Fig. 1, the spatial vector of the betatron mode is a
betatron orbit. Because of the unusable BPMs (shown as
red dots), the orbit is broken into pieces and looks irregu-
lar. The temporal vector clearly shows a beam that is
kicked at about the 100th turn, then decohered and
damped. By construct, both spatial and temporal vectors
are normalized to one. The mode number and its singular
value (in a unit of BPM count that is about 7 wm) are
shown on the left-hand-side label. The Fourier spectrum
of the temporal vector shows the betatron frequency with
a broadened peak due to decoherence. Note that the
synchrotron and vertical tunes as well as other nonlinear
resonance frequencies are invisible, even though they do
exist and show up in other modes [20]. This confirms the
quality of the betatron modes. In Fig. 2, the spatial vector
of the synchrotron mode (the third largest mode) corre-
sponds to the dispersion. Again, the unusable BPMs broke
the regular pattern. The temporal vector yields the resid-
ual energy oscillation in the ring, which is barely per-
turbed by the kick. The corresponding spectrum contains
a clear synchrotron tune and various harmonics of the
power line frequency.

The synchrotron mode and the noise floor are deter-
mined by the machine condition and BPM system, but
independent of the kick strength. Increasing the kick
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strength improves the signal-to-noise ratio. However, due
to decoherence, the oscillation is significantly damped in
tens of turns, and the larger the kick amplitude the
quicker it damps; thus the overall signal strength is lim-
ited.

Using the spatial vectors of the two betatron modes and
the procedure described in the last section, we obtained
the phase advances and B function for the horizontal
plane as shown in Fig. 3. MIA measurement results are
shown as solid dots. For comparison, corresponding
model values are shown as diamonds. Instead of using a
designed model, a fitted model with measured response
matrix is used here. The standard deviations between
these two are less than 4% for the beta function and
0.6° for the phase advances. These standard deviations
contain measurement errors as well as actual differences
in machine conditions for the measurements. Repeated
MIA measurements yield repeatability about 0.7% for the
B function and 0.33° for phase advances, which reflect
the random errors of MIA measurements. In addition to
the phase advances between BPMs, the cumulative phase
is also examined for phase variation along the ring. The
repeatability for the cumulative phase is 0.24°. The phase
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FIG. 1. (Color) The first horizontal mode with kick excitation.
Blue dots are measured values and joined for consecutive
BPMs. Red dots are bad BPMs. The temporal vector shows
time evolution of the beam. The singular value is given after
the mode number on the left labels. The spatial and temporal
vectors are dimensionless and normalized to one.
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FIG. 2. (Color) The third horizontal mode: a synchrotron
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FIG. 3. (Color) Horizontal B function and phase advances
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Figures in the third row are blowups of the above figures for
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advance between two BPMs is the difference of two
cumulative phases, thus its error is +/2 larger. These errors
depend on excitation amplitudes and are limited by the
maximum signal achievable in the presence of strong
decoherence. Furthermore, at this level, the measure-
ments become sensitive to slight changes in machine
conditions from one measurement to another. For ex-
ample, the machine tunes are stable only to the level of
1073, which is 0.36° in phase.

C. Vertical measurements with resonant excitation

For the vertical plane, we use a pinger to excite beta-
tron oscillation. The pinger can be operated with either a
high-voltage pulse drive or a low-voltage cw drive. Thus
we can either kick the beam or resonantly excite the
beam. With kick excitation, it is similar to the horizontal
plane. Because of decoherence, it turns out that resonant
excitation offers a stronger signal. Figure 4 shows the first
betatron mode of a resonantly excited beam. As in Fig. 1,
the spatial vector gives a vertical betatron orbit. The
temporal vector shows a continuously excited beam, and
its Fourier spectrum shows a much narrower peak at the
betatron frequency. For various reasons, it is not easy to
excite a pure harmonic oscillation in the APS ring when
the data were taken. Thus the oscillation amplitude has
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significant variation, and the spectrum shows noticeable
noise around the peak. Instead of choosing a better data
set, we use this one to show that our method is rather
robust and works under less perfect conditions. A major
difference between the horizontal and vertical planes is
that there is no synchrotron mode in the vertical plane due
to minute vertical dispersion.

The results for vertical 8 function and phase advance
are shown in Fig. 5. See the description of Fig. 3 for an
explanation of the figure. In this vertical case, the stan-
dard deviations between model and measurements are
less than 3% for the B function and 0.5° for the phase
advances. Repeatability is better than 0.6% for 8 func-
tion, 0.21° for phase advances between BPMs, and 0.15°
for the cumulative phase (0.08° has been reached with
more coherent oscillation). Occasionally, there are signifi-
cant differences at a few BPMs such as those marked in
the figure. BPM gains are suspected, but we have not
tracked down the exact cause. Since the response-matrix
measurement and the MIA measurement are carried out
on different days, unexpected optics changes might also
cause the differences.

For resonantly excited coherent oscillations, the har-
monic-analysis method can be used to determine the
phase advances. For comparison, we did such an exercise
and found that the standard deviation in phase advances
between the harmonic analysis and MIA methods is less
than 0.2°. The repeatability of the harmonic analysis with
carefully determined tune is about 0.2° for the cumulative
phase, slightly worse than the MIA method. Thus, the
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FIG. 5. (Color) Vertical 8 function and phase advance. See
caption of Fig. 3 for more description. The red diamond in-
dicates those with deviations larger than 3.
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MIA method rivals the harmonic-analysis method in
accuracy.

D. Measurement with excitation from instability

We showed measurements done with commonly used
kick excitation and resonant excitation. In the APS stor-
age ring, a single-bunch beam instability leads to a well-
behaved bursting mode that has large periodic centroid
oscillation [21]. Such a self-excited horizontal oscillation
is also tested for measuring lattice functions. The first
eigenmode is shown in Fig. 6.

The temporal vector shows three periods of the self-
excited oscillation. The Fourier spectrum shows sharp
clean betatron oscillation with two barely noticeable syn-
chrotron sidebands. A detailed examination shows the
betatron peak is heavily modulated at the bursting fre-
quency. Again, using the spatial vector of this betatron
mode, we calculated the phase advances and B function.
The results agree well with the results from kick excita-
tion shown in Fig. 3. In fact, the signal is stronger than
that from the kick excitation. Comparing the results from
two different bursts yields repeatability of 0.7% for the 8
function, 0.24° for phase advances between BPMs, and
0.18° for the cumulative phase. These are a little better
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FIG. 6. (Color) Horizontal betatron mode due to instability.
See caption of Fig. 1 for more description. Inset is a blowup.
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This example also demonstrates one more potential
benefit of our method: it is possible to extract lattice
functions from beam histories taken for another purpose,
e.g., instability study. Such simultaneously obtained lat-
tice functions could help reduce uncertainty about
machine conditions for the intended study, which is im-
portant especially when lattice stability is a concern.

E. Effects due to gradient error, energy offset,
and wakefield

We have demonstrated a robust and accurate MIA
technique to measure phase advances in a ring. It is
well known that phase advance (and betatron tune of
course) is sensitive to various physical effects and thus
its accurate measurement provides valuable information
on those effects. Here we show a few such examples to
demonstrate that MIA phase-advance measurements can
indeed be used to measure the local effects due to quadru-
pole gradient error, beam energy offset, and even wake-
field. However, no detailed analysis will be given since it
is not the focus of this paper.

Figure 7 shows the difference of two sets of horizontal
phases measured under the same condition except that a
quadrupole is changed by 0.5%. We see a clear 2° phase
jump at the quadrupole location. Phase beating before and
after the jump is also evident. The phase accuracy of this
measurement is about 0.3° in rms.

Figure 8 shows a horizontal phase difference due to a
100-Hz rf frequency shift (about 0.1% relative energy
offset). A more or less linear increase of the phase differ-
ence shows chromatic effects. The total deviation gives a
good measurement of chromatic tune shift. The local
chromatic phase shift could provide information on the
source of the chromatic effect.

Figure 9 shows the vertical phase differences for mea-
surements done with two different single-bunch currents
at 1.1 and 4.9 mA. The total deviation measures the
current detuning parameter often used for instability
studies. Interesting local structures clearly exist. This
is because the vertical gaps of the vacuum chambers
vary significantly for different insertion devices. From
the local phase-advance change with current, one can

phase change (deg)

50 100 150 200 250 300 350
BPM index

FIG. 7. (Color) Phase changes due to a 0.5% quadrupole
change near the 56th BPM. The 2° phase jump and beating
pattern are evident. Again the circles indicate unusable BPMs.
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150
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FIG. 8. (Color) Phase changes due to a 0.1% energy decrease.

estimate the local reactive impedance along the ring as
done at LEP [22]. We also checked the horizontal current-
dependent phase difference, which shows a much weaker
wakefield effect and little structure other than a more or
less linear decrease. This is because the horizontal aper-
ture is much larger than the vertical one, and there is also
not much variation along the ring.

To study the local effects in detail, it is desirable to
further improve the accuracy of the phase measurement.
Our measurements are limited by the achievable signal
strength. In the horizontal plane, the kick excitation is
limited by decoherence that damps the signal within
100 turns. In the vertical plane, the resonant excitation
amplitude is currently limited to about 300 um at low-
beta BPMs and 1.2 mm at high-beta locations. In addition
to improving signal strength, significant improvement
may also be achieved by averaging over repeated mea-
surements, provided that the data acquisition is fast and
the machine is sufficiently stable. A preliminary test
using four sets of data shows that further averaging
does work. However, since our beam-history system is
rather slow, we did not explore further.

F. Remarks

As discussed before, the phase-advance measurement is
independent of machine model and BPM calibrations.
The good agreement in phase advance supports both
MIA and response-matrix measurements at the APS. On
the other hand, BPM gains from response-matrix fitting
are used for the B function calculation, and a fitting to the
model B function is used to determine the overall scaling

—
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FIG. 9. (Color) Phase changes
wakefield.

due to current-dependent
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factor. Furthermore, our orbit response measurements
and beam-history measurements use different electronic
systems; thus the BPM gain calibration for one system
could be different for the other. Despite these limitations
in B function measurement, the result on the 8 function
further confirms MIA analysis.

It is desirable to be able to determine BPM gains from
beam histories. Model calibration using beam histories is
a promising method for determining BPM gains and
transverse coupling using the same beam-history mea-
surements. However, we have not experimentally pursued
this method because the large number of malfunctioning
beam histories at APS makes it rather difficult if not
impossible. Because of the BPM electronic systems,
APS has about twice as many BPMs good for response-
matrix measurements as BPMs usable for beam-history
measurements.

Dispersion is usually easy to measure from closed-orbit
change with respect to rf frequency shift. Thus we
have not pursued dispersion measurement using MIA.
Nonetheless, a synchrotron mode such as shown in
Fig. 2 can be used to measure dispersion function. For
accurate measurement, one may want to resonantly excite
significant synchrotron oscillations by modulating rf
phase at the synchrotron frequency, for example.

The results shown in Figs. 3 and 5 have used thousands
of turns of beam history. In the horizontal case, it is
actually unnecessary to use this many turns, although it
helps in observing low frequency modes. The betatron
signal in Fig. 1 decoheres significantly in less than
100 turns. Thus using only a couple hundred turns gives
equally good results.

We have used a few hundred BPMs in our measure-
ments. However, our method works even if only a fraction
of those BPMs is used. The measurement accuracy deter-
mined by repeatability tests showed no obvious M de-
pendence for the vertical measurement. Nonetheless, for
understanding a lattice, it is important to have a suffi-
ciently large number of BPMs to determine the 8 function
and phase advances.

IV. CONCLUSION

We have developed and experimentally demonstrated
(even with a problematic broad-band BPM system) a new
MIA technique to measure the phase advances of a stor-
age ring with little coupling. Given well-calibrated
BPMs, B function can be measured as well. Compared
to methods based on closed-orbit measurements, our
method uses beam oscillation histories that require little
machine time to collect and can yield results in minutes
or less, provided that a suitable broad-band BPM system
is available. Compared to the harmonic analysis of orbit
oscillations, which works well only for resonantly excited
clean harmonic oscillations, our method applies to vari-
ous types of beam excitations. Compared to model
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calibration methods, our method works even when suc-
cessful model calibration is prevented by an insufficient
number of BPMs or lack of a good machine model. The
accuracy of our method rivals other techniques. However,
even though the phase-advance measurement is immune
from BPM gain errors, the 8 function measurement does
require good BPM calibration, which is a major limita-
tion (a shortcoming compared to model calibration meth-
ods). Furthermore, while our method has yet to be
extended to handle linear coupling, some of the methods
mentioned above already can. Since phase advances are
sensitive to various physical phenomena (we demon-
strated a few of them), our simple, fast, robust, accurate,
and model-independent measurement technique should
be valuable to commissioning, operating, and understand-
ing a ring. In principle this method can be adapted to
linacs (by taking into account the acceleration, etc.),
especially long linacs with a large number of BPMs,
such as the proposed next-generation linear colliders.
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APPENDIX A

From Eq. (11) we know that the two betatron modes
have approximately the same magnitudes with singular
values o+ = o, = /(J)B)/2. Assume as well that the
errors in £+ = o.v. are random and uncorrelated with
about the same rms o . Then from Egs. (15) and (16) we
have

o G T - TG
W f‘ff—\@—— R

Here o, is the residual signal and noise magnitude, which
is difficult to estimate and roughly given by the singular
values beyond the betatron modes. Similarly,

ore G Vo GE V=28
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