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An analytical formalism for the solution of cumulative beam breakup in linear accelerators with
arbitrary time dependence of beam current is presented, and a closed-form expression for the time and
position dependence of the transverse displacement is obtained. It is applied to the behavior of a single
bunch and to the steady-state and transient behavior of dc beams and beams composed of pointlike and
finite-length bunches. This formalism is also applied to the problem of cumulative beam breakup in the
presence of random displacement of cavities and focusing elements, and a general solution is presented.
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Source, is to be operated at 60 Hz and 7% duty cycle [15]. the head of the beam at location �; F��� � I���=I, the
I. INTRODUCTION

The cumulative beam breakup instability (BBU) in
linear accelerators results when a beam is injected into
an accelerator with a lateral offset or an angular diver-
gence and couples to the dipole modes of the accelerating
structures [1]. The dipole modes that are excited in a
cavity by the previous bunches can further deflect the
following bunches and thereby increase the excitation of
the dipole modes in the downstream cavities. In this
process the transverse displacement can be amplified
and lead to a degradation of beam quality and possibly
beam loss. This instability is cumulative since the trans-
verse deflection of a particular bunch or particle results
from the additive contributions from all the previous
bunches.

Cumulative BBU has been studied in the past mostly in
the context of high energy electron accelerators where the
beam current profiles were comprised of periodic trains
of pointlike bunches [2–8] or for high-current quasi-dc
beams [9–13]. Growing interest in high-current super-
conducting ion accelerators for spallation sources, where
the bunches have a finite length, motivated an investiga-
tion of cumulative BBU in linear accelerators with peri-
odic beam current profile [14]. The formalism that was
developed was found to be applicable to a wide range of
problems and could be used to unify and expand previous
work on cumulative BBU of continuous beams and beams
comprised of pointlike bunches, both in the steady-state
and transient regime. With respect to beams with finite-
length bunches, which was the original motivation for
that work, that formalism was able to investigate their
BBU behavior in the steady-state regime. Since all high-
current ion accelerators that were under consideration at
the time were to operate cw, the steady-state regime was
of most interest.

Since then the focus has shifted toward pulsed opera-
tion and the first such accelerator, the Spallation Neutron
address: delayen@jlab.org
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This has motivated a reexamination of BBU for finite-
length bunched beams begun in Ref. [14] and its exten-
sion to the transient regime in accelerators with pulsed
beams. During the course of this work, a formalism
leading to a general expression for cumulative BBU
with arbitrary time dependence of the beam current
was found. This formalism and the application of the
results to various beam and accelerator configurations
(single short bunch, steady-state and transient behavior
of continuous beams and of beams composed of pointlike
and finite-length bunches) are presented here.

This formalism can also lead to a general expression for
the transient behavior in the presence of BBU and random
displacement of cavities and focusing elements. The gen-
eral results will be presented, but their development and
application to more specific situations will be presented in
another paper.

II. EQUATION OF TRANSVERSE MOTION AND
GENERAL SOLUTION

In a continuum approximation, the transverse motion
of a beam in a misaligned accelerator under the combined
influence of focusing and coupling to dipole modes can be
modeled by [12,16]
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x��; ��
�
��2�x��; �� � df����

� "���
Z �

�1
w�� � �1�F��1��x��; �1� � dc����d�1:

(1)

In this expression � and � are the usual velocity and
energy parameters; � � s=L is the distance from the
entrance of the accelerator normalized to the accelerator
length L; � is the normalized focusing wave number;
� � !�t�

R
ds=�c� is the time made dimensionless by

an angular frequency! and measured after the arrival of

current form factor, is the instantaneous current divided
by the average current; w��� is the wake function of the
dipole modes; " is the coupling strength between the
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beam and the dipole modes; df��� and dc��� are
the lateral displacement of the focusing elements and
cavities, respectively, as a function of location along
the accelerator.

The continuum model implied in Eq. (1) relies on a
certain number of approximations. The cavities that com-
pose the accelerator are assumed to have negligible length
and to be electromagnetically decoupled from each other.
This implies that the deflecting fields are localized, i.e.,
they do not propagate along the accelerator. Thus, regen-
erative and coupled-cavity BBU are outside the scope of
this work. The continuum approximation also assumes
that the external focusing fields provided by the focusing
elements are uniformly smooth along the accelerator.
Although only an approximation, this model should be
quite accurate when the characteristic length for the
transverse dynamics of the beam (BBU-modified beta-
tron period or BBU growth length) is significantly larger
than the cavity spacing.

In some high-current, low-energy accelerators [17,18]
the BBU growth length is comparable to the cavity spac-
ing. In those cases the continuum model would not be
valid and the discreteness of the accelerator needs to be
taken into account; thus they fall outside the scope of this
work. Nevertheless, even in those cases, the continuum
model gives reasonable results when the cavity spacing
is not too close to a multiple of a half-betatron wave-
length [17].

In what follows we will assume that the dipole deflect-
ing modes, and thereby the wake functions, are constant
along the accelerator. It is then natural to choose !, the
normalizing frequency used in the definition of � , as the
representative frequency in the wake function. In
the special case of a single mode, the wake function is
then

w��� � u��� sin�e��=2Q; (2)

where u��� is the Heaviside unit step function, and Q is
the quality factor of the deflecting mode. The implica-
tions of a distribution of deflecting mode frequencies have
been investigated in Refs. [14,19,20].

The dimensionless BBU coupling strength " is a prod-
uct of quantities representative of the beam, cavities, and
linac configuration, respectively, and is given by

"��� �
� �IIZe
2��mc

��
�?

!

��
L

L

�
; (3)

with

�? �
2

�0!

�������RL=2�L=2 e
�i!z=�c @Ez�0;0;z�

@z dz

�������2

R
V E

2�x�dx
; (4)

the transverse shunt impedance of a cavity of length L.
In this paper a number of transforms on functions of

distance � and time � will be applied. The following
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notations for Laplace transform with respect to distance,
and for Fourier, Laplace, and z transforms with respect to
time will be used:

fy�p; �� � L��f� �
Z 1

0
f��; ��e�p�d�; (5a)

~ff��;Z� � F� �f� �
Z 1

�1
f��; ��e�iZ�d�; (5b)

f̂f��; q� � L� �f� �
Z 1

0
f��; ��e�q�d�; (5c)

�ff��; z� � Z� �f� �
X1
k�0

f��; k�z�k: (5d)

For the main sections of this paper we will assume a
coasting beam in a uniform accelerator, i.e., we will
assume that ��, �, ", and w��� are independent of �.
This is not unduly restrictive since, as shown in
Appendix A, under some realistic assumptions, variable
and coordinate transformations can be found that reduce
an accelerated beam to an equivalent coasting beam in a
uniform accelerator.

Under these assumptions the equation of motion be-
comes

@2

@�2
x��; �� � �2�x��; �� � df����

� "
Z �

�1
w�� � �1�F��1��x��; �1� � dc����d�1: (6)

As shown in Appendix B, upon introduction of the
Laplace transform with respect to the location � to the
transverse displacement x��; ��, the general solution for
xy�p; �� is

xy�p; �� �
X1
n�0

"n

�p2 � �2�n�1 �x0phn��� � x00gn����

� dyc �p�
X1
n�0

"n�1

�p2 � �2�n�1 fn�1���

� �2dyf �p�
X1
n�0

"n

�p2 � �2�n�1 fn���: (7)

The functions fn���, gn���, and hn��� are defined by the
recursion relations

fn�1��� �
Z �

�1
fn��1�F��1�w�� � �1�d�1; (8a)

gn�1��� �
Z �

�1
gn��1�F��1�w�� � �1�d�1; (8b)

hn�1��� �
Z �

�1
hn��1�F��1�w�� � �1�d�1; (8c)

with
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f0��� � 1; x00g0��� � x00��� �
@
@�

x��; ��

���������0
;

x0h0��� � x0��� � x�� � 0; ��:
(9)

x0��� and x00��� are the lateral displacement and angular
divergence, respectively, of the beam at the entrance of
the accelerator. The normalizing constants x0 and x00 are
introduced to make the functions h0��� and g0��� dimen-
sionless.

Applying the inverse Laplace transform to Eq. (7) gives
the general solution of Eq. (6):

x��;���
X1
n�0

"n�x0hn���jn��;���x00gn���in��;���

�
X1
n�0

"n�1fn�1���
Z �

0
in��;u�dc���u�du

��2
X1
n�0

"nfn���
Z �

0
in��;u�df���u�du; (10)

where in��;�� and jn��;�� are defined in terms of Bessel
functions of order integer plus one-half and contain only
powers and circular functions,

in��;�� � L�1
�

�
1

�p2 � �2�n�1

�

�
1

n!

�
�
2�

�
n1

�

											
'��
2

r
Jn��1=2�����; (11a)

jn��;�� � L�1
�

�
p

�p2 � �2�n�1

�
�

d
d�

in��;��

�
1

n!

�
�
2�

�
n

											
'��
2

r
Jn��1=2����� �

�
2n
in�1��;��:

(11b)
Equation (10) gives the transverse displacement, at
location � and time � , of a beam of arbitrary current
profile F���, entering the accelerator with lateral offset
x0��� and angular divergence x00���, experiencing trans-
verse forces due to a wake field "w��� and focusing �, and
with displacement along the accelerator dc��� of the
cavities and df��� of the focusing elements.

In this paper we are concerned with the effects of the
lateral offset and angular divergence of the beam at the
entrance of a perfectly aligned accelerator; therefore, for
the remainder of this paper, we will assume df��� �
dc��� � 0, and the equations for xy�p; �� and x��; �� are

xy�p; �� �
X1
n�0

"n

�p2 � �2�n�1 �px0hn��� � x00gn����; (12)

x��; �� �
X1
n�0

1

n!

�
"�
2�

�
n

											
'��
2

r
�x0hn���Jn��1=2�����

� x00
gn���
�

Jn��1=2������:

(13)
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The effects of the misalignment of the focusing elements
and cavities will be addressed in another paper.

It can be seen from Eq. (13) that the dependence of the
lateral displacement on location �, focusing strength �,
and coupling strength between the current and the dipole
modes ", is governed by elementary functions. The only
functions that need to be computed for a particular ac-
celerator are the functions fn���, gn���, and hn��� that
depend only on the beam current profile (not on its
magnitude which is included in "), the initial conditions
at the accelerator entrance, and the wake function. Thus
they need to be calculated only infrequently and then
applied to a wide range of accelerator configurations
where the BBU behavior can be determined rapidly at
an arbitrary time and location through Eq. (13).

If the lateral displacement x0��� and angular diver-
gence x00��� at the entrance of the accelerator have the
same time dependence so that they are equal to within a
multiplying constant, the same will be true for all hn���
and gn���. We see from Eqs. (12) and (13) that, in that
case, the transverse displacement at location� and time �
induced by x0��� is the derivative with respect to � of the
transverse displacement induced by x00���. Additionally, if
the lateral displacement x0��� and angular divergence
x00��� at the entrance of the accelerator are constant,
then the only functions that need to be determined are
the fn���.

Equation (13) gives the transverse displacement as a
series expansion in powers of "=� and thus is more
appropriate to the case of weak BBU-strong focusing,
which is the most common. Another expression, valid
for the strong BBU-weak focusing case, can also be
derived from this formalism. From Eq. (12), xy�p; �� is
seen to be of the form xy1 �

																	
p2 � �2

p
� � pxy2 �

																	
p2 � �2

p
�.

The Laplace transform has the property, shown in
Appendix C, that, if

f��� � L�1�fy�p��; (14)

then

f��� � �
Z �

0
f0�u�

J1��
																	
�2 � u2

p
�																	

�2 � u2
p u du

� L�1�fy�
																	
p2 � �2

q
��; (15a)

f0��� � ��
Z �

0
f00�u�

J1��
																	
�2 � u2

p
�																	

�2 � u2
p du� f�0�)���

� L�1�pfy�
																	
p2 � �2

q
��: (15b)

Thus, if an expression for the transverse displacement
is obtained in the absence of focusing, Eqs. (15a) and
(15b) can be used to give the transverse displacement in
the presence of focusing. This will be applied in Sec. III.
From the expansion of the Bessel function J1�� in powers
of its argument one can obtain a series expansion of the
084402-3
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transverse displacement in powers of the focusing
strength �.

III. SINGLE VERY SHORT BUNCH

The case of a single very short bunch entering an
accelerator with a lateral offset was one of the first to
be studied [16]; the formalism described above can be
applied directly to that case. By short bunch we imply a
bunch much shorter than the wavelength of the deflecting
mode, so the wake function can be assumed to be linear:
w��� � � . For the sake of simplicity we assume that the
lateral offset x0 and angular divergence x00 are time inde-
pendent and that the bunch has a constant current distri-
bution �F��� � 1�. With those assumptions the functions
gn��� and hn��� are easily calculated from Eq. (8):

gn��� � hn��� �
�2n

�2n�!
; (16)

and the transverse displacement at an arbitrary location�
in the accelerator and distance � from the front of the
bunch is given by

x��;�� �
X1
n�0

1

�2n�!n!

�
"�2�
2�

�
n

											
'��
2

r �
x0Jn��1=2�����

�
x00
�
Jn��1=2�����

�
:

(17)

For large �� the asymptotic expression for the Bessel
functions can be used to give

x��;���
X1
n�0

1

�2n�!n!

�
"�2�
2�

�
n
�
x0 cos

�
���

n'
2

�

�
x00
�
sin

�
���

n'
2

��
; (18)

a result first obtained in Ref. [16]. It should be noted that
the asymptotic expression for the Bessel function is valid
for n2 � 2��, so that �� needs to be large for Eq. (18) to
be valid.

Similar results can be obtained in the case of a tilted
bunch moving parallel to the axis at the accelerator
entrance: x0��� � x0�1� *��, x00��� � 0. The functions
hn��� are easily calculated:

hn��� �
�2n

�2n�!
� *

�2n�1

�2n� 1�!
: (19)

In this case the transverse displacement at location �
and time � from the front of the bunch is given by

x��; �� � x0
X1
n�0

1

�2n�!n!

�
"�2�
2�

�
n
�
1� *

�
2n� 1

�

�

											
'��
2

r
Jn��1=2�����: (20)
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The previous expressions for x��; �� are series expan-
sions in powers of "=� and thus are most useful in the
case of weak BBU where only a few terms need to be
retained. In the case of strong BBU-weak focusing the
method described in Sec. II can be applied to the case of
the single short bunch. Going back to Eq. (12) for xy�p; ��
with focusing we see that

xy��p; �� � �px0 � x00�
X1
n�0

1

�2n�!
�"�2�n

�p2 � �2�n�1

�
px0 � x00
p2 � �2

cosh

� 																	
"�2

p2 � �2

s �
; (21)

so that, in the absence of focusing,

xy��0�p; �� �
�
x0
p
�
x00
p2

�
cosh

�
"1=2�
p

�
: (22)

Since

L�1

�
ek=p

p+

�
�

�
t
k

�
�+�1�=2

I+�1�2
					
k t

p
�; (23a)

L�1

�
e�k=p

p+

�
�

�
t
k

�
�+�1�=2

J+�1�2
					
k t

p
�; (23b)

the displacement without focusing is

x��0��; �� �
x0
2
fJ0�2�"1=2���1=2� � I0�2�"1=2���1=2�g

�
x00�
2

�
1

"1=2��

�
1=2

fJ1�2�"1=2���1=2�

� I1�2�"1=2���1=2�g;

(24)

and the displacement with focusing is obtained from
Eqs. (15a) and (15b),

x���;��� x0,0����x00,�����
Z �

0
�x0�,0�u�

�x00u,�u��
J1��

																
�2�u2

p
�																

�2�u2
p du; (25)

with

,0�u� �
1

2
�J0�au1=2� � I0�au1=2��;

,�u� �
u1=2

a
�J1�au

1=2� � I1�au
1=2��;

a � 2�1=2"1=4: (26)

Equation (25) can also be written as a series expansion
in powers of the focusing strength �
084402-4
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x���; �� � x0,0��� � x00,���

�
�2

2

X1
k�0

�
�
2

�
2 ��1�k

k!�k� 1�!

�
Z �

0
du��2 � u2�k�x0�,

0�u� � x00u,�u��:

(27)

IV. STEADY-STATE PERIODIC BEAM

The current form factor F��� of a purely periodic beam
and its Fourier transform ~FF�Z� are given by

F��� �
X1

k��1

Fke
i�2'=!.�k� ; (28)

~FF�Z� � 2'
X1

k��1

Fk)
�
Z�

2'
!.

k
�
; (29)

where . is the laboratory-frame period of the longitudinal
beam modulation.
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Since F��� is the form factor of the current, i.e., the
instantaneous current divided by the average current, we
have F0 � 1 irrespective of the shape of the bunches.

If we assume time-independent initial conditions
at the entrance of the accelerator—x0��� � x0 and
x00��� � x00—we see from Eq. (8) that gn��� � hn��� �
fn��� so it will be sufficient to determine the functions
fn���.

From the recursion relation for fn�1���

fn�1��� �
Z �

�1
d�1fn��1�F��1�w�� � �1�; (30)

we obtain the recursion relation for ~ff�Z� � F�f����, the
Fourier transform of f���:

~ff n�1�Z� � ~ww�Z�F�fn���F����

� ~ww�Z�
X
k

Fk ~ffn

�
Z�

2'
!.

k
�
; (31)

where ~ww�Z� is the Fourier transform of the wake function
w���, i.e., the impedance.

From Eq. (31), together with ~ff0�Z� � 2')�Z�, we ob-
tain the functions ~ffn�Z� and fn���
~ff n�Z� � 2' ~ww�Z�
X
k1

Fk1 ~ww
�
Z�

2'
!.

k1

�
  

X
kn�1

Fkn�1
~ww
�
Z�

2'
!.

�k1 �    � kn�1�

�X
kn

Fkn

�
Z�

2'
!.

�k1 �    � kn�
�
;

(32)

and

fn��� �
X
kn

  
X
k1

Fkn   Fk1 ~wwkn��k1    ~wwkn�kn�1
~wwkn exp

�
i
2'
!.

�kn �    � k1��
�

(33)

�
X
k1

exp

�
i
2'
!.

k1�
�
~wwk1

X
k2

~wwk2Fk1�k2
X
k3

  
X
kn�1

~wwkn�1
Fkn�2�kn�1

X
kn

~wwknFkn�1�knFkn ; (34)
where ~wwk � ~ww��2'=!.�k�. Equation (34) is the expres-
sion for the Fourier series expansion of fn���.

Equation (34) can also be written as

fn��� �
X
k

exp

�
i
2'
!.

k�
�
fn;k; (35)

with the following recursion relation resulting from
Eq. (31):

f0;k � )0;k; (36a)

fn�1;k � ~wwk
X
k1

Fk1fn;k�k1 : (36b)

Thus, the transverse steady-state displacement for an
arbitrary periodic beam with time-independent initial
conditions is
x��; �� �
X1
n�0

1

n!

�
"�
2�

�
n

											
'��
2

r �
x0Jn��1=2�����

�
x00
�
Jn��1=2�����

�
fn���;

(37)

where fn��� is given by Eqs. (35) and (36).
The same problem was analyzed in Ref. [14] by a

different method, but a complete closed-form solution
was not found. What was found was a recursion solution
for a series expansion in powers of � valid close to the
accelerator entrance. Keeping only the first two terms in
Eq. (37) we obtain (assuming x00 � 0)

x��;��’x0

�
cos�����

"�
2�

sin����
X
k

Fk ~wwkexp
�
i
2'
!.

k�
��
:

(38)

This expression is valid from the entrance (� � 0) to the
084402-5
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exit (� � 1) of the accelerator; it assumes that "=� is
sufficiently small and that there are no strong resonances
between the beam and the deflecting modes. For ��� 1
Eq. (38) reduces to Eq. (5.17) of Ref. [14].

As an example, we apply Eq. (38) to a beam composed
of bunches of constant current density, separated by !.,
of length/!., and entering the accelerator parallel to but
displaced from the axis. The parameter / allows a con-
tinuous transition from a dc beam (/ � 1) to a beam
composed of delta-function bunches separated by !.
(/ � 0). Choosing � � 0 as being in the middle of a
bunch, the Fourier coefficients of the current form factor
are Fk � �sin�k/'�=k/'�. If we also assume a single
deflecting mode where the wake function w��� is given
by Eq. (2) we have

~ww�Z� �
1

2

�
1

1� Z� i
2Q

�
1

1� Z� i
2Q

�

�

�
1� Z2 �

1

4Q2 � i
Z
Q

�
�1
; (39)
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~ww k � ~ww
�
2'
!.

k
�
�

1

�1� k2�2'!.�
2 � 1

4Q2� �
i
Q

2'
!. k

: (40)

Rewriting Eq. (38) as

x��; �� ’ x0

�
cos���� �

"�
2�

sin����h1���
�
; (41)

we have

h1��� �
!.
4'

X1
k��1

sink'/
k'/

��
�

exp�i 2'!. k��

k� !.
2' �

i
2Q� 1�

�
exp�i 2'!. k��

k� !.
2' �

i
2Q� 1�

��
: (42)

Using the identity
X1
k��1

sinkx
k�k� a�

eiky �
'

a sin'a
fsin'a� eia�q'�y� sin�af�p� 1�'� xg�g �

p'
a
; (43)

where

2m'< x� y < 2�m� 1�'; 2n' < x� y < 2�n� 1�'; p � m� n; q � m� n;

we obtain

h1��� �
1

2/�1� i
2Q�

�
1� e���1=2Q��i����q�!.=2��

sin�!.2 �1� i
2Q��p� 1� /��

sin�!.2 �1� i
2Q��

� p
�
� c:c:; (44)
where p and q take on different values whether � is
located inside or outside the bunch

p � �1; q � �1 for �!.=2 � � � �/!.=2;

p � 0; q � 0 for � /!.=2 � � � /!.=2;

p � �1; q � 1 for /!.=2 � � � !.=2:

This together with Eq. (41) gives, to first order in ", the
steady-state displacement and shape distortion of the
bunches. Equation (44) gives the displacement, not only
inside the bunch, but also for particles located outside the
bunch, i.e., for a diffuse longitudinal halo that does not
contribute to the wake field but experiences it.

As an example Fig. 1 shows the steady-state shape of a
train of bunches with / � 0:1, Q � 103, � � 100:5',
" � 0:2, and � � 1. Figure 1(a) assumes !. � 4:005',
and Fig. 1(a) assumes !. � 4:001'. Inside the bunch is
shown in red while the outside is shown in blue. In this
example and others following, the assumed value for �
implies that, at � � 1, we have cos�� � 0, and Eq. (41)
shows that the bunch displacement and distortion are due
entirely to the coupling to the deflecting mode. Figure 2
assumes the same parameters as in Fig. 1 but with
Q � 104. It can be seen from Figs. 1(a) and 2(a), where
!. � 4:005, that, if the deflecting mode frequency is
sufficiently far from a harmonic of the bunch
frequency, then the Q of the deflecting mode has little

impact on the transverse steady-state behavior of the
beam. On the other hand, Figs. 1(b) and 2(b) show that,
in the case of a close resonance, theQ can have a dramatic
impact.

Other examples are shown in Figs. 3 and 4. Figure 3
shows the evolution of a beam during the last betatron
period of an accelerator whose parameters are / � 0:1,
Q � 103, � � 100', " � 100, and!. � 5:25'. In Fig. 4
the parameters are / � 0:1, Q � 103, � � 100', " �
0:2, and !. � 4:001'.

The steady-state behavior of a dc or )-function beam
that was analyzed in Ref. [14] can also be obtained
directly from this formalism.

For a dc beam we have from Eqs. (28), (31), and (34)

Fk � )0k; (45a)

~ffn�Z� � 2'� ~ww�Z��n)�Z�; (45b)

fn��� � ~wwn0 ; (45c)
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FIG. 2. (Color) Same parameters as in Fig. 1 but with Q � 104.FIG. 1. (Color) Steady-state displacement and shape of an
infinite train of finite bunches with / � 0:1, Q � 103, � �
100:5', " � 0:2, and � � 1. (a) assumes !. � 4:005', and (b)
assumes !. � 4:001'. Particles inside the bunch are shown in
red while those outside are shown in blue.
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and the steady-state solution is

x��; �� �

											
'��
2

r X1
n�0

1

n!

�
"� ~ww0

2�

�
n

�

�
x0Jn��1=2����� �

x00
�
Jn��1=2�����

�
: (46)

Using the identityX1
k�0

tk

k!
Jk�2�z� � z2=2�z� 2t��2=2J2�

																		
z2 � 2tz

p
�; (47)

we obtain

x��; �� � x0 cos��
																				
�2 � " ~ww0

q
� � x00

sin��
																				
�2 � " ~ww0

p
�																				

�2 � " ~ww0

p ;

(48)
which is Eq. (3.10) of [14].

In the case of a beam comprised of )-function bunches
we have from Eqs. (28), (31), and (34)

Fk � 1; (49)

~ff n�Z� �
�
2')�Z� n� 0 ;
2' ~ww�Z�� ~WW�Z��n�1

P
1
k��1)�Z� 2'

!.k� n� 1;

(50)
084402-7
fn��� �
�
1 n � 0;
~WWn�1
0

P
1
k��1 ~wwk exp�i

2'
!. k�� n � 1;

(51)

where we have defined

~WW�Z� �
X1

k��1

~ww
�
Z�

2'
!.

k
�
� !.

X1
k�0

w�k!.�e�ik!.Z;

(52)

and

~WW0 � ~WW�0� �
X1

k��1

~wwk � !.
X1
k�0

w�k!.�: (53)

For a single mode we have

~WW�Z� �
!.
2

sin!.

cosh�!.� 1
2Q� iZ�� � cos!.

; (54)

and ~WW0 is the well-known resonance function.
The steady-state solution for an infinite train of point-

like bunches is then
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FIG. 4. (Color) Steady-state evolution of an infinite bunch train with / � 0:1, Q � 103, � � 100', " � 0:2, and !. � 4:001'
during the last betatron period of the accelerator.

FIG. 3. (Color) Steady-state evolution of an infinite bunch train with / � 0:1, Q � 103, � � 100', " � 100, and !. � 5:25'
during the last betatron period of the accelerator.
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x��; �� � x0 cos���
x00
�
sin���

1
~WW0

" X1
k��1

~wwk exp
�
i
2'
!.

k�
�#

�

( 											
'��
2

r X1
n�0

1

n!

�
"� ~WWn

0

2�

�"
x0Jn��1=2����� �

x00
�
Jn��1=2�����

#
�x0 cos���

x00
�
sin��

)
; (55)

and, using the same identity as above, it can be written as

x��; �� � x0 cos���
x00
�
sin���

1
~WW0

" X1
k��1

~wwk exp
�
i
2'
!.

k�
�#

�

"
x0fcos��

																					
�2 � " ~WW0

q
� � cos��g � x00

(
sin��

																					
�2 � " ~WW0

q
�																					

�2 � " ~WW0

q �
sin��
�

)#
; (56)
which is Eq. (4.11) of Ref. [14].
Note that Eq. (56) is valid for all values of � and is not

limited to � � M!.. In particular, it gives the transverse
displacement of particles that may be located outside the
bunches. Such particles do not contribute to the transverse
fields generated by the bunches but are deflected by them.

For � � M!., i.e., for bunch M, we have fn�M!.� �
~WW0

n, exp�i�2'=!.�k�� � 1, and the displacement be-
comes

x��;M!.� � x0 cos��
																					
�2 � " ~WW0

q
�

� x00
sin��

																					
�2 � " ~WW0

q
�																					

�2 � " ~WW0

q ; (57)

which is identical to that of a dc beam but with ~ww0

replaced by ~WW0.

V. TRANSIENT PERIODIC BEAM

In this section we will analyze the BBU behavior of a
periodic beam that was turned on at � � 0. For the sake
of simplicity we will assume that x0��� � x0 and x00��� �
0.

The general solution is still given by

x��; �� � x0
X1
n�0

1

n!

�
��
2�

�
n

											
'��
2

r
Jn��1=2�����hn���;

(58)

where now

h0��� � u���; (59a)

hn�1��� �
Z �

0
hn��1�F��1�w�� � �1�d�1: (59b)

As in the steady-state case there are three main beams
of interest that will be analyzed in this section: the dc
beam, the beam comprised of pointlike bunches (delta-
function beam), and the beam comprised of bunches of
finite length.
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A. dc beam

A dc beam turned on at � � 0 is represented by the
current form factor F��� � u���, and the functions hn���
are now

h0��� � u���; (60a)

hn�1��� �
Z �

0
w�� � �1�hn��1�d�1: (60b)

Since w�� < 0� � 0 the integrals can be extended to �1
and the functions hn��� can be defined more simply
through their Laplace transform with respect to � ,

L � �hn� � ĥhn�q� �
Z 1

0
hn���e�q�d�; (61a)

L � �w� � ŵw�q� �
Z 1

0
w���e�q�d�: (61b)

From Eq. (60) we then obtain

ĥhn�q� �
1

q
�ŵw�q��n: (62)

In the case of a single mode we have

w��� � e���=2Q� sin�; (63a)

ŵw�q� �
1

�q� 1
2Q�

2 � 1
; (63b)

which yields

hn����

(
u��� n�0;

1
�n�1�!

R�
0d�1e

���1=2Q���12 �
n�1

						
'�1
2

q
Jn��1=2���1� n>0:

(64)

This together with Eq. (58) defines completely the
transverse displacement at an arbitrary location � and
time � . The functions hn��� can, in principle, be calcu-
lated to arbitrary n, and h1��� and h2��� are

h1��� �
1

1� 1
4Q2

�
1� e���=2Q�

�
cos� �

1

2Q
sin�

��
; (65)
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h2��� �
�

1

1� 1
4Q2

�
2
�
1� e���=2Q�

�
cos�

�
1�

�
4Q

�
1�

1

4Q2

��
� sin�

�
1

4Q

�
3�

1

4Q2

�
�
�
2

�
1�

1

4Q2

����
: (66)
It can be noted that, from Eq. (64), hn�� � 1� �
��2n=�2n�!�, which is what was obtained in Eq. (16) for
the single very short bunch and that, from Eq. (62),
lim�!1hn��� � limq!0qĥhn�q� � �ŵw�0��n � ~wwn0 , which is
what was obtained in Eq. (45) for the steady state.

B. Delta-function beam

In the case of a beam comprised of pointlike bunches
turned on at � � 0 we will consider only the displacement
of the bunches themselves, and bunch M will correspond
to � � M!..

In this case the current form factor is

F��� � !.
X��=!.�
k�0

)�� � k!.�; (67)

where ��=!.� is the largest integer less than or equal to
�=!., and the recursion relations (59) then become

h0�M!.� � 1; (68a)

hn�1�M!.� � !.
XM
k�0

hn�k!.�w��M� k�!.�: (68b)

The displacement of bunch M at location � is given by

xM��� � x0
X1
n�0

1

n!

�
"�
2�

�
n

											
'��
2

r
hn�M!.�Jn��1=2�����:

(69)

Since the wake functions under consideration satisfy
w�0� � 0, the recursion relations (68) imply that
fn�M!.� � 0 for n > M. As a consequence, the infinite
sum in (69) reduces to a finite sum

P
M
n�0 .

The functions hn�M!.� can also be defined through the
use of the z transform:

Z �f� � �ff�z� �
X1
k�0

f�k�z�k: (70)
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The z transform of the wake function w��� is then

Z �w� � �ww�z� �
X1
k�0

z�kw�k!.�; (71)

and the recursion relation (68) for hn�M!.� leads to the
following recursion relations for �hhn�z�:

�hhn�1�z� � !. �hhn�z� �ww�z�; (72)

with

�hh0�z� �
X1
k�0

z�1 �
z

z� 1
; (73)

so that

�hhn�z� �
z

z� 1
�!. �ww�z��n: (74)

The functions hn�M!.� can, in principle, be obtained
by applying the inverse z transform.

hn�M!.� � Z�1� �hhn�z�� �
1

2'i

I
dz zM�1 �hhn�z�: (75)

In the case of a single deflecting mode where the wake
function is w��� � u���e���=2Q� sin� , its z transform is

�ww�z� �
sin!.

ze�!.=2Q� � 2 cos!.� z�1e��!.=2Q�
: (76)

There is no simple unique closed-form representation for
the functions hn�M!.�, but they can be obtained to
arbitrary order n using symbolic manipulation software
to calculate the inverse z transform. For example,
h1�M!.� and h2�M!.� are
h1�M!.� �
!. sin!.

2�cosh!.2Q� cos!.�

�
1� e�M�!.=2Q� sin�M� 1�!.

sin!.
� e��M�1��!.=2Q� sinM!.

sin!.

�
; (77)

h2�M!.� �
�!.�2

4�cosh!.2Q� cos!.�

�
�sin!.�2

cosh!.2Q� cos!.
� e�M�!.=2Q�

�
sin!. sin�M� 1�!.
cosh!.2Q� cos!.

�M cos�M� 1�!.�
sinM!.
sin!.

�

� e��M�1��!.=2Q�

�
sin!. sinM!.
cosh!.2Q� cos!.

� �M� 1� cosM!.�
sin�M� 1�!.

sin!.

��
: (78)

Taking the limits !. ! 0 and M!. ! � we recover h1��� and h2��� for the dc beam given by Eqs. (65) and (66). In
the case of more complicated wake functions, the functions hn�M!.� can be tabulated using Eq. (68).
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FIG. 5. (Color) Normalized lateral displacement of a finite
train of pointlike bunches at the exit of a representative linear
collider. See Table I for the choice of parameters.

TABLE I. Nominal top-level linear-collider design parame-
ters [21,22].

Parameter Value

Total initial energy ��0�mc2 10 GeV
Total final energy ��1�mc2 1 TeV
Linac Length L 10 km
Number of betatron periods 100
Bunch charge 1 nC
Number of bunches in train M 90
Bunch spacing . 2.8 ns
Deflecting-wake frequency !=2' 14.95 GHz
Deflecting-wake quality factor Q 1

Deflecting-wake amplitude w0 1015 VC�1 m�2

PRST-AB 6 J. R. DELAYEN 084402 (2003)
Equation (69) allows direct calculation of the lateral
displacement of an arbitrary bunch M at an arbitrary
location �. As an example we will apply these analytical
results to a beam representative of a linear collider.
For comparison we will use the same parameters as
those used in [21,22], and which are listed in Table I.
Since this is an accelerated beam, the transformations
described in Appendix A, and, in particular, Eqs. (A10)
and (A11), will be used. Converting the parameters
in Table I to those used in this paper we have "�0� �
�w0qeL2=��0�mc2!.� � 38:02, ��0� � 1100', and
!. � 263:014. The validity of the assumption (A7) is
easily verified since, in this example, �2

r ’ 1:2� 107

while �� 00=4� � � 02=16 � varies from 613 at the en-
trance of the accelerator to 6.13 at the exit.

The transverse displacements of the bunches at the exit
of the accelerator are shown in Fig. 5. Note that the
084402-11
normalized displacement of the first, and all subsequent,
bunches is reduced due to adiabatic damping. These re-
sults, which we obtained analytically, are identical to
those shown in Fig. 1 of [22] which were obtained by
tracking successive bunches along the accelerator. The
only difference is that, in [22], the steady-state displace-
ment was subtracted.

C. Finite train of finite bunches

In the case of a beam composed of finite but identical
bunches turned on at � � 0, the beam current form factor
is

F��� � u���
X1

k��1

Fk exp
�
i
2'
!.

k�
�
; (79)

so that
h1��� �
Z �

�1
u��1�F��1�w�� � �1�d�1 �

Z �

0
F�� � �1�w��1�d�1

�
X
k

Fk ~wwk exp
�
i
2'
!.

k�
�
�
X
k

Fk exp
�
i
2'
!.

k�
�Z 1

�
exp

�
�i

2'
!.

k�1

�
w��1�d�1: (80)

The first term in Eq. (80) is simply the steady state that was obtained in Eq. (38) while the second is the transient that
decays when � ! �1.

In the case of a single deflecting mode we obtain

h1��� �
!.
4'

X
k

Fk

��
�

exp�i 2'!. k��

k� !.
2' �

i
2Q� 1�

�
exp�i 2'!. k��

k� !.
2' �

i
2Q� 1�

�
�e���=2Q�

�
ei�

k� !.
2' �

i
2Q� 1�

�
e�i�

k� !.
2' �

i
2Q� 1�

��

�
X
k

Fk
�1� k2�2'!.�

2 � 1
4Q2� �

i
Q

2'
!. k

�
exp

�
i
2'
!.

k�
�
�e���=2Q�

��
1

2Q
� i

2'
!.

k
�
sin� � cos�

��
: (81)
As an example we will use the same beam profile first
used in Sec. IV for the steady state, i.e., a beam composed
of bunches of constant density, separated by !., and of
length /!.. In this case, however, since the beam was
turned on at � � 0, we will assume that � � 0 is the front
of the first bunch, and the Fourier coefficients of the
current form factor are
Fk � e�ik'/
sink'/
k'/

: (82)

We will look for the transverse displacement of a
particle located within bunch M and a (normalized)
time /!.8 behind the head of that bunch so that
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� � !.�M� /8�. The variable 8 will represent the location of the particle within the bunch, with 8 � 0 being the
head of the bunch while 8 � 1 will be the tail. With these assumptions we have

h1��� �
!.
4'

X1
k��1

e�ik'/
sink'/
k'/

��
�

ei2'k/8

k� !.
2' �

i
2Q� 1�

�
ei2'k/8

k� !.
2' �

i
2Q� 1�

�

� e���=2Q�

�
ei�

k� !.
2' �

i
2Q� 1�

�
e�i�

k� !.
2' �

i
2Q� 1�

��
: (83)

Using the identity (43) we obtain

h1��� �
1

2/�1� i
2Q�

�
1� e!./�8��1=2�����1=2Q��i�

sin�!.2 �1� i
2Q��1� /��

sin�!.2 �1� i
2Q��

� e����1=2Q��i�

�
1� e��!./=2����1=2Q��i�

sin�!.2 �1� i
2Q��1� /��

sin�!.2 �1� i
2Q��

��
�c:c: (84)

Again, the first term in the bracket is the steady state,
FIG. 6. (Color) Normalized displacement of a train of finite-
length bunches with / � 0:1, Q � 104, � � 100:5', " � 0:2,
!. � 4:005', and � � 1. The upper, middle, and lower figures
are for the front, middle, and tail of the bunches, respectively.
while the second is the transient that decays when � !
�1.

Setting / � 1 in Eq. (84) we recover h1��� given in
Eq. (65) for the dc beam, and, taking the limit /! 0
with � � M!., we recover h1�M!.� given in Eq. (77) for
the delta-function beam. As before the displacement and
shape of the bunches, to first order in ", are given by

x��; �� ’ x0

�
cos���� �

"�
2�

sin����h1���
�
; (85)

where now h1��� is given by Eq. (84).
Examples are shown in Figs. 6–9. Figures 6 and 7 are

examples of a beam with weak coupling to the dipole
mode (" � 0:2� but with the beam frequency in close
resonance to a high-Q dipole mode (!. � 4:005', Q �
104). As in previous examples, we chose � � 100:5' so
that, at the accelerator exit (� � 1), the bunch displace-
ment and shape distortion are due exclusively to the
coupling to the dipole mode. Figure 6 show the displace-
ment of the front, middle, and tail of the bunch train.
Figure 7 shows the evolution of the shape of the bunches
as the bunch number increases. The steady-state behavior
(M ! 1) is shown in Fig. 2(a).

Figures 8 and 9 are similar to Figs. 6 and 7, but are
examples of bunches that are more strongly coupled to a
lower-Q dipole mode in almost antiresonance (" � 100,
!. � 3:01', Q � 2� 103). The effect of the antireso-
nance is clearly seen in the shape of successive bunches.
For example, the tail of bunch M � 1 is not deflected
since the wake field generated by the preceding particles
in the same bunch M � 1 cancel almost exactly the wake
field generated by the preceding bunch M � 0.

VI. DISCUSSION

This paper presents a formalism to address analytically
cumulative beam breakup in linear accelerators under
fairly general conditions. It allows, in principle, direct
calculation, at any time and location, of the transverse
084402-12
displacement of beams of arbitrary current distribution
in the transient and steady-state regime. When applied
to finite-length bunched beams it reveals the transverse
084402-12



FIG. 7. (Color) Bunch shapes in a train of finite-length bunches. The parameters are the same as in Fig. 6.

PRST-AB 6 J. R. DELAYEN 084402 (2003)
distortion of the bunches. When applied to a colliderlike
accelerator, the analytical results reproduce exactly nu-
merical simulations that were done previously.

While this paper has concentrated on cumulative beam
breakup, the same formalism and analytical results can
be applied directly to other types of instabilities, such as
resistive wall instabilities, by an appropriate choice of the
wake functions.

The influence of displacement of the cavities and fo-
cusing elements are incorporated in these results but were
addressed only briefly. This will be the subject of a
follow-on communication.

While the analytical results presented in this paper
assume time-independent focusing and coupling to the
dipole modes, the same formalism can be extended to
include such time dependence and the results will be
presented in another paper.
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APPENDIX A: ACCELERATED BEAM

In the main sections of this paper we assume a coasting
beam where ��, �, and " are independent of �. However,
under realistic assumptions, the results can be straight-
forwardly applied to the case of an accelerated beam.

The full equation of motion for an accelerated beam is

1

��
@
@�

�
��

@
@�

x��; ��
�
��2�x��; �� � df����

� "
Z �

�1
w�� � �1�F��1��x��; �1� � dc����d�1; (A1)

where now ��, �, and " can vary with �.
From the definition of " given in Eq. (3) we see that "

has an explicit dependence on ��. It also has an implicit
dependence on � through the shunt impedance �? and
the cavity length L, but this would occur only for non-
relativistic beams, and, even in that case, one may assume
that the shunt impedance per unit length is constant.
Thus, it is reasonable to assume " / �����1. Similarly,
we can assume that � / �����1=2.
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FIG. 8. (Color) Normalized displacement of a train of finite-
length bunches with / � 0:1, Q � 2� 103, � � 100:5', " �
100, !. � 3:01', and � � 1. The upper, middle, and lower
figures are for the front, middle, and tail of the bunches,
respectively.
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Defining �r, �r, "r, and �r as the values of ����, ����,
"���, and ���� at an arbitrary reference location�r in the
accelerator, and  ��� as

 ��� �
��������
�r�r

; (A2)

we have "��� � "r= ��� and ���� � �r= 
1=2���. We

now introduce new variables 9, )f, and )c for the trans-
verse displacements

x��; �� � 9��; ��� ����+; (A3a)

df��; �� � )f��; ��� ����
+; (A3b)

dc��; �� � )c��; ��� ����+; (A3c)
084402-14
and & for the longitudinal location along the linac

& �
Z �

0
� ����2d�: (A4)

With these new variables the equation of motion becomes

 22�1 @
2

@&2
9�&; �� � �2+� 2� 1� 0 2 @

@&
9�&; ��

� �+ 00 �+2 02 �1 � �2
r�9�&; �� � �2

r)f�&; ��

� "r
Z �

�1
w�� � �1�F��1��9�&; �1� � )c�&; �1��d�1:

(A5)

If we choose 2 � �1=2 and + � �1=4 then

@2

@&2
9�&; �� �

�
�
 00

4
�
 02

16 
� �2r

�
9�&; �� � �2

r)f�&; ��

� "r
Z �

�1
w�� � �1�F��1��9�&; �1� � )c�&; �1��d�1:

(A6)

Since in most applications we have

�
 00

4
�
 02

16 
� �2r ; (A7)

the equation of motion for 9�&; �� in the accelerated case
is identical to that for x��; �� in the coasting case.

Thus, with the assumptions made above, the results
obtained for a coasting beam are directly applicable to
an accelerated beam after the appropriate change of
variables and coordinates, and the general solution for
9�&; �� is given by

9�&; �� �
X1
n�0

"nr �90hn���jn��r; &� � 900gnin��r; &�����

�
X1
n�0

"n�1
r fn�1���

Z &

0
in��r; u�)c�&� u�du

� �2
r

X1
n�0

"nrfn���
Z &

0
in��r; u�)f�&� u�du:

(A8)

The functions hn��� and gn��� obey the same recursion
relations as hn��� and gn��� but we now have
90 h0��� � 90��� � x0���� �0��1=4 � x0 h0���� �0��1=4 ; (A9a)

900g0��� �
d
d&
9�&; ��j&�0 �

�
x00��� �

1

4

 0�0�

 �0�
x0���

�
� �0��3=4 �

�
x00g0��� �

1

4

 0�0�

 �0�
x0h0���

�
� �0��3=4 (A9b)
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FIG. 9. (Color) Bunch shapes in a train of finite-length bunches. The parameters are the same as in Fig. 8.
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As an example we consider a relativistic uniformly accelerated beam and we ignore the transverse displacements of
cavities and focusing elements. Although the expression for 9�&; �� in Eq. (A8) includes �r and "r—values of ���� and
"��� at � � �r —the actual value of 9�&; �� ought to be, and is, as confirmed by algebra, independent of the choice of
�r. For this reason, in the definition of  ���, we will choose �r � 0. With these assumptions we have

x��; �� � �1� ������1=4
X1
n�0

"n0

�
x0hn���jn��0; &� �

�
x00gn��� � x0

���
4
hn���

�
in��0; &�

�
; (A10)

with

���� � �0�1� �����; (A11a)

& �
Z �

0
du�1� ���u���1=2� �

2�

�1� �����1=2 � 1
; (A11b)

x00g0��� � x00���; gn�1��� �
Z �

�1
gn��1�F��1�w�� � �1�d�1; (A11c)

x0h0��� � x0���; hn�1��� �
Z �

�1
hn��1�F��1�w�� � �1�d�1: (A11d)

APPENDIX B: LAPLACE-TRANSFORMED EQUATION OF MOTION

The transverse equation of motion for a coasting beam is

@2

@�2
x��; �� � �2�x��; �� � df���� � "

Z �

�1
w�� � �1�F��1��x��; �1� � dc����d�1: (B1)

Applying the Laplace transform with respect to � to the transverse displacements
084402-15 084402-15
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xy�p; �� � L��x��; ���; dyf �p; �� � L��df��; ���; dyc �p; �� � L��dc��; ���; (B2)

and defining x0��� � x0h0��� � x�� � 0; �� and x00��� � x00g0��� � �@=@��x��; ��j��0 as the lateral displacement and
angular divergence of the beam at the entrance of the accelerator, the equation for xy�p; �� is, from Eq. (B1),

xy�p; �� �
px0

p2 � �2
h0��� �

x00
p2 � �2 g0��� � �2

dyf �p�

p2 � �2
� "

dyc �p�

p2 � �2

Z �

�1
w�� � �1�F��1�d�1

� "
1

p2 � �2

Z �

�1
w�� � �1�F��1�xy�p; �1�d�1: (B3)

The variables x0 and x00 are normalizing constants that establish the scale of the lateral displacement and angular
divergence so that the time dependencies h0��� and g0��� are dimensionless. If the initial conditions are time
independent we then have h0��� � g0��� � 1.

Using the right-hand side of Eq. (B3) to replace xy�p; �1� in the last integral in Eq. (B3) and assuming that � and " do
not depend on � we obtain

xy�p; �� �
px0

p2 � �2

�
h0��� �

"

p2 � �2

Z �

�1
w�� � �1�F��1�h0��1�d�1

�

�
x00

p2 � �2

�
g0��� �

"

p2 � �2

Z �

�1
w�� � �1�F��1�g0��1�d�1

�

� �2
dyf �p�

p2 � �2

�
1�

"

p2 � �2

Z �

�1
w�� � �1�F��1�d�1

�

� "
dyc �p�

p2 � �2

�Z �

�1
w�� � �1�F��1�d�1 �

"

p2 � �2

Z �

�1
w�� � �1�F��1�d�1

Z �1

�1
w��1 � �2�F��2�d�2

�

�
"2

p2 � �2

Z �

�1
d�1w�� � �1�F��1�

Z �1

�1
w��1 � �2�F��2�x

y�p; �2�d�2: (B4)
Again, the right-hand side of Eq. (B3) can be used to
replace xy�p; �2� in the last integral in Eq. (B4) and the
process can be repeated indefinitely; Eq. (7) then follows
directly.

Note that Eq. (B3) makes no assumption on the �
dependence of � and ", while the next steps to Eq. (B4)
and ultimately Eq. (7) assume that � and " are indepen-
dent of � . The extension of this formalism to time-
dependent focusing [����] or coupling to the wake field
["���], such that may result from the presence of rf
focusing or an energy chirp imposed on the beam, will
be addressed in another paper.

APPENDIX C: A PROPERTY OF LAPLACE
TRANSFORMS

In this appendix we find a relationship between the
function fk��� of Laplace transform fy�

																	
p2 � �2

p
� and

the function fk�0��� of Laplace transform fy�p�. This
can be used to obtain the transverse displacement in the
presence of focusing from the expression for the trans-
verse displacement in the absence of focusing.

Assuming that the function f��0��� can be expanded
in a power series

f��0��� �
X1
k�0

ak�k; (C1)
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we have

fy�p� � L�f��0���� �
X1
k�0

ak
��k� 1�

pk�1
: (C2)
The function fy�
																	
p2 � �2

p
� is then

fy�
																	
p2 � �2

q
� �

X1
k�0

ak
��k� 1�

�p2 � �2��k�1�=2
; (C3)
and its inverse Laplace transform is

f���� � L�1�fy�
																	
p2 � �2

q
��

�
X1
k�0

ak�
�
k
2
� 1

��
2�
�

�
k=2
J�k=2�����: (C4)

In order to relate f���� to f��0��� we need to find a
linear relationship between �k and ��k=2� 1� �
�2�=��k=2 J�k=2����� that is independent of k. This is
provided by Eq. (2.12.4.5) of Ref. [23]
084402-16
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Z a

0
x1�n�a2 � x2���1Jn�cx�dx

� ��1�n2��1����
a��n

c�

�
J��n�ac�

�
Xn�1

k�0

��1�k�a c=2���n�2k

k!���� n� k� 1�

�
:

(C5)

With the appropriate assignment to the parameters we
obtain

�

�
k
2
� 1

��
2�
�

�
k=2
J�k=2�����

� �k � �
Z �

0
��2 � x2�k=2J1��x�dx: (C6)

After a change of variable in the integral in Eq. (C6),
Eq. (15a) follows directly, and Eq. (15b) is obtained from
the formula for the Laplace transform of a derivative.
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