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Measurement and analysis of thermal photoemission from a dispenser cathode
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Photocathodes for free electron lasers (FELs) are required to produce nano-Coulomb pulses in
picosecond time scales with demonstrable reliability, lifetime, and efficiency. Dispenser cathodes,
traditionally a rugged and long-lived thermionic source, are under investigation to determine their
utility as a photocathode and have shown promise. The present study describes theoretical models under
development to analyze experimental data from dispenser cathodes and to create predictive time-
dependent models to predict their performance as an FEL source. Here, a steady-state model of a
dispenser cathode with partial coverage of a low work function coating and surface nonuniformity is
developed. Quantitative agreement is found for experimental data, especially with regard to tempera-
ture, field, laser intensity, and quantum efficiency versus laser wavelength dependence. In particular, for
long wavelength incident lasers of sufficient intensity, the majority of the absorbed energy heats the
electron gas and background lattice, and photoemission from the heated electron distribution constitutes
the emitted current.
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the harmonic number (4 for 266 nm), and such fluctua-
tions appear in the resulting electron pulses, resulting in a

extrapolate the performance of such cathodes in an FEL
rf gun environment, where the laser intensities are orders
I. INTRODUCTION

Photoemission sources for free electron lasers [1] under
development for a variety of scientific and industrial
applications face unprecedented operational demands.
Free electron lasers (FELs) need photocathodes to be
long lived, reliable, capable of producing nano-Coulomb
electron bunches in picosecond time scales, and illumi-
nated by drive lasers using the longest wavelength
permissible (preferably 532 nm or longer). Such require-
ments are often conflicting. Low work function coatings
on semiconductor photocathodes, produced by empirical
techniques, have excellent quantum efficiency (QE), but
suffer and degrade prematurely under vacuums character-
istic of rf photoinjector guns and generally have response
times [2,3] that are too great. Metal photocathodes are
rugged, long lived, and prompt emitters, but they gener-
ally have low QE and require ultraviolet (UV) drive lasers
at 266 nm [4,5]. The wavelength of a drive laser is
obtained by nonlinear conversion crystals which reduce
a 1064 nm laser by doubled (512 nm), tripled (355 nm), or
quadrupled (266 nm) Nd:YAG conversion, with conver-
sion efficiencies of approximately 50%, 30%, or 10%,
respectively. For the UV case, therefore, a great deal
of waste heat will be dumped into the crystals, altering
their operation and leading to nonlinear performance.
Moreover, the nonlinear conversion process introduces
fluctuations that scale as �laser intensity�n, where n is
partment of Electrical and Computer Engineer-
rsity of Maryland, College Park, MD, USA.
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degraded FEL operation. Regardless, photocathodes re-
main the only viable option for high power FELs: while
thermionic sources have been used in the past for FELs,
they cannot be switched on the picosecond time scale, and
the resultant emittance of the electron beam is too large
to allow for lasing at desired wavelengths.

The thermal dispenser cathode has recently been pro-
posed and investigated as a potential photocathode can-
didate [6]. It is the traditional electron source of rf
vacuum electronics devices such as traveling wave tubes
and klystrons used in radar, communications, and a vari-
ety of other commercial and military devices and systems
for which ruggedness and reliability are paramount. The
low work function coating on a dispenser cathode is
maintained by the diffusion of, e.g., barium, to the sur-
face of the cathode, replacing that which is lost due to
desorption, evaporation, and sputtering [7], and such
cathodes can be rehabilitated even when operating in
nonideal conditions [8]. Compared to the work function
of bare metals such as tungsten (4.63 eV for the 100
plane), the work function of a barium dispenser cathode
is on the order of 2 eV, and scandate cathodes have shown
an even lower work function of 1.8 eV [9]. An experi-
mental program at the University of Maryland is
investigating the performance of these cathodes as photo-
emitters. Here, theoretical models are developed and
applied to experimental results previously reported [10].
The purpose of the models is, ultimately, to predict and

of magnitude higher, the pulse lengths orders of magni-
tude shorter, and the applied fields larger, than are found
in the present experimental arrangement.
2003 The American Physical Society 083501-1
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Previously reported multiphoton emission experiments
[11–18] have been on metals with work functions of
4–5 eV and for laser pulse lengths of 100– 450 fs. In
most of these studies, the incident lasers generated UV
photons with energies greater than the work functions of
the metals. Most of the previous studies reported only on
the dependence of electron emission on incident laser
intensity and were often primarily concerned with ques-
tions of either electron-electron and electron-lattice re-
laxation or direct photoemission. The present study
addresses electron emission from a dispenser (low work
function) cathode in which the incident photo energy is
insufficient to produce direct photoemission until the
electron gas is heated by the absorbed laser energy.

II. THEORETICAL MODEL

A. Laser heating of electron gas

A dispenser cathode consists of a matrix of micron-
scale tungsten particles in a background of material con-
taining a low work function impregnant such as barium
which, under the application of heat, diffuses to and
across the surface as a monolayer thick coating, and
is subject to sputtering, desorption, and evaporation
TABLE I. Symb

Symbol Definition

� Laser wavelength �

T0 Bulk tempera
� Inverse electron tempera
� Ce coefficient 
 ��2

k Wave number � �2
I0 Laser intens
t0 Laser pulse center
� Effective barrier height �

TABLE II. Param

Symbol Definition

� Dispenser cathode work func
! Coverage factor
R Reflectivity
� Chemical potential
# Photon penetration depth for tu
Q Image charge factor e2=16�"0 �

A0 Electron-electron relaxation time p
�0 Electron-phonon relaxation time p
� Tungsten thermal mass fact
�t Laser pulse width paramet
� Laser wavelength � 2�!=
(0 (Number) density of tungst
vs Sound velocity in tungsten
g Thermal energy transfer fac
� Specific heat coefficient at room te
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[19–21]. The majority of the cathode is therefore tung-
sten, and the surface layer can be initially disregarded in
the estimation of the heating of the electron gas by the
incident laser. The coupled differential equations relating
the electron temperature Te to the lattice temperature Ti
are given by [17]

Ce
@
@t
Te �

@
@z

�

�Te; Ti�

@
@z
Te

�
�g�Te � Ti� �G�z; t�;

Ci
@
@t
Ti � g�Te � Ti�; (1)

where G is the incident laser term, Ce and Ci are the
electron and lattice heat capacities, g relates the energy
per unit volume transferred by electrons to the lattice,
and 
 is the electron thermal conductivity. Other symbols
are enumerated in Tables I and II. The specific heat
capacity for electrons in a metal is given by (see, e.g.,
Ref. [22])

Ce�T� �
�
�kB�

2 @
@�

�Z 1

0
�E���D�E�

� �1 � e��E���	�1dE; (2)

where � � 1=kBT and D�E� � �mk�E�=�� �h�2 is the
ols and units.

Value or unit

2�!=c nm
ture Kelvin
ture � 1=kBTe 1=eV
=3�k2

BD��� J=K2 m3

mE�1=2= �h 1=nm
ity MW=cm2

parameter ns
� �

��������������
�4QF�

p
eV

eters and values.

Value

tion 1.8 eV
0.1278–0.3085

50%
18 eV

ngsten 10.1 nm
%Fs �hc=4 0.36 eVnm
arameter 32.0514
arameter 0.024 31
or 1.203 76
er 2.7 ns
c 1064 nm
en �19:3 g=cm3�=�183:84 g=mol�

5220 m=s
tor 285:1 GW=Kcm3

mperature 0:136 48 mJ=K2 cm3
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FIG. 1. Temperature dependence of the electron-electron and
electron-phonon relaxation times, as per Eq. (6). The total
relaxation time / is obtained via Matthiessen’s rule.
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density of states for unit volume, �hk�E� is momentum,
and the product �m is the ‘‘thermal mass’’ of the electron.
For simple metals, � is of order unity, but for transi-
tion metals, the d electrons contribute so that � can be
larger; for tungsten �exp � Ce�T�=T � 136:48 J=K2 m3

[23], so that � � �exp=�theory � 1:20376, where �theory �
mk2

BkF=�3 �h2�. For present parameters, ��� 1, and so

Ce�T� 

kB
�

Z ��

0

y2

�ey � 1��e�y � 1�

�
D
�
��

y
�

�

�D
�
��

y
�

��
dy

�
1
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�2D���

�
1 �
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�
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�
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�

155

896

�
�
��

�
4
�
; (3)

where the second line results from Taylor expanding
D�E�, and invoking the W��n;��� approximation for
��� 1 in Appendix A. Likewise, for the lattice,

Ci�T� � 9(0kB

�
T
TD

�
3
W�

�
4;
T
TD

�
; (4)

where (0 is the (number) density of the metal, TD �
� �hvs=kB���2r(0	

1=3 is the Debye temperature (400 K for
tungsten [24], implying r � 0:269701), and W��n; x� is
defined in Appendix A. The thermal conductivity is given
by


�Te; Ti� �
2�
3m

/�Te; Ti�Ce�Te�;
1

/
�

1

/ee
�

1

/ph
; (5)

where the form for / is due to Matthiessen’s rule. The
electron-electron and electron-phonon relaxation times
are given by

/ee�Te� �
�h�
A0

�
1

kBTe

�
2
�
Aee
T2
e
;

/ph�Ti� �
�h

2��0

�
1

kBTi

�
�
Bep
Ti

; (6)

where A0 and �0 are dimensionless constants dictated by
tungsten’s bulk properties [17], in terms of which

g �
�
9 �h
�0mv

2
skBk

3
F: (7)

The behavior of the relaxation times is shown in Fig. 1.
For steady-state conditions it follows that Te � Ti, and so


 �
2��
3m

�Bep � AeeTe�
�1: (8)

The term G�z; t� constitutes the amount of energy ab-
sorbed by the lattice. It will be the product of several
terms, namely, a factor related to the proportion of the
laser reflected, the laser intensity, a factor governing the
depth to which the incident photons are absorbed, and
finally, a factor accounting for the fraction of photons not
directly leading to photoemission, and is therefore given
by
083501-3
G�z; t� � �1 � R�I��t�
�
e�z=#

#

��
1 �

U��� �h!���	
U���	

�
;

I��t� � I0e
���t�t0�=�t	2 ; (9)

where the U�x� function and approximations to it are
defined in Appendix B, R is the proportion of light
reflected; t0 is the center of the laser pulse; �t is the laser
time scale [i.e., 2�ln�2�	1=2�t is the full width at half
maximum (FWHM) of the laser pulse]; # is the penetra-
tion depth of the incident photons of energy �h!; � �
1=kBTe; � is the barrier height above the Fermi level and
is given by � � � � �4QF�1=2, �4QF�1=2 is the Schottky
barrier lowering due to the image charge, and F (eV=nm)
is the product of electric field and electron charge (and is
therefore a force), other terms are defined in Tables I and
II, and common symbols have their usual meanings (the
methodology follows Ref. [25]). The quantity ���� �h!�
is generally significant: at 300 K and no field for � �
1:8 eV and � � 1064 nm, it is equal to 24.6. The form of
Eq. (9) is based on a thermalized Fermi-Dirac (FD)
supply function (i.e., the FD distribution with momentum
components parallel to the surface integrated out [25]).
The square brackets containing the U�x� terms acts as an
‘‘absorption factor,’’ and its behavior is shown in Fig. 2 as
a function of temperature for various wavelengths.

At present, Eq. (9) implicitly uses the Richardson
approximation for the transmission probability, i.e., the
electron is only transmitted, with unit probability, if its
energy exceeds the surface barrier height ���; the
inclusion of quantum mechanical tunneling via a modi-
fied transmission probability calculation [26] will be
deferred to a future work. It is assumed further that if
an electron absorbs a photon such that its final kinetic
energy exceeds the barrier height, it is emitted (analogous
083501-3
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FIG. 2. Fraction of photons absorbed and leading to electron
gas and lattice heating, corresponding to the term in square
brackets of Eq. (9) for various wavelengths. For � � 1064 nm,
an electron at the Fermi level cannot surmount the barrier after
photoabsorption. The decrease at higher temperatures is due to
thermal spreading of the electron distribution. The temperature
dependence of � has not been taken into account.
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to the approximations enumerated by DuBridge [27], and
used, e.g., by Hernandez-Garcia and Brau [18]). For pho-
ton energies in excess of the work function, and using the
asymptotic forms in Eq. (B5) of Appendix B, U��� �h!�
��	 / � �h!���2, as found by Fowler [Eq. (7) of Ref. [34]]
and commonly used [5]. Here, however, circumstances
are different, in that the photon energy is less than the
barrier height: as indicated by Fig. 2, the absorption
factor is essentially unity over the fields and temperatures
encountered for in the experimental conditions described
below.

Other approximations are convenient. First, the time
scale characteristic of the experimental laser pulse is 1 ns,
but electron-electron and electron-phonon relaxation
times are several orders of magnitude smaller so that
the electron and lattice temperatures are in equilibrium,
i.e., the steady-state approximation to Eq. (1) can be
invoked which implies the electron and lattice tempera-
tures are equal. Second, temperature decline into the bulk
is governed by an exponential of the form

Te�z� � T0 � �Te�0� � T0	 exp

�
�
z
L

�
; (10)

where T0 is the bulk temperature, and henceforth, Te �
Te�0� unless otherwise noted. The length scale is L �
n� �hkF=m�/, where kF is the Fermi momentum, and the
factor n—given that electron scattering will mimic a
random walk—should be on the order of the square
root of the ratio of the laser pulse time scale with the
scattering time scale, or n � �1 ns=0:1 ps�1=2 
 100.
Equation (10), though reasonable, is nevertheless provi-
083501-4
sional: for shorter time scales, the actual spatial variation
of the temperature should be found through a solution of
the time-dependent Eq. (1) . Third, given that the cathode
is predominantly tungsten grains, the heating of the elec-
tron gas by the laser can be approximated using bulk
tungsten parameters. Invoking these approximations in-
dicates that the electron temperature for ns-scale laser
pulses is the solution of


/�Te � T0�

�
T0

/ph
�
Te
/ee

�
�TeL2G0�t� � 0; (11)

where G0�t�  G�0; t�, and henceforth Te  Te�0�, (i.e.,
Te refers to the temperature at the surface). It follows that
the (surface) electron temperature at time t is the root of
the equation

T2
e �Te � T0� �

3n2

�

�
G0�t�

Bep � AeeT0

�
; (12)

where � � Ce�Te�=Te, and is, to a good approximation,
constant.WhenG0�t� is weakly dependent on temperature
(as is true for experimental parameters considered
herein), then Te is the real root of a cubic equation and
thereby easily determined. Observe, first, that Eq. (12)
forces the electron temperature to have the same time
dependence as the laser pulse, and second, that the simple
form is a consequence of the approximation that the laser
pulse time scale is much longer than the scattering re-
laxation times so that the lattice and electron tempera-
tures are equivalent (a steady-state approximation). As a
result, the equation will have to be modified when pico-
second-length pulses are considered, a derivation de-
ferred to a future work.

B. Photocurrent

The estimation of emitted current over the cathode
contains several complications. Broadly, they are (i) non-
uniform laser illumination resulting in a nonuniform
temperature distribution across the surface, (ii) surface
roughness inducing field enhancement, that is, the ratio of
the field at the emission site to the macroscopic field is
some factor greater than unity, and (iii) nonuniform cov-
erage by the low work function coating. These complica-
tions are dealt with as follows. First, the actual laser
profile is Gaussian in the cylindrical coordinate (; that
is, I��(� � I��0� exp���(=(0�

2	, so that an ‘‘effective’’
emission area must be defined. Second, a surface analysis
of the cathode revealed a lumpy surface with micron-
feature sizes: a simple model of a nanoprotrusion on
a bump easily generates enhancement factors �a �
Fsite=Fmacro (where the subscript a on �a is to distinguish
it from the inverse temperature term, Fsite is the field at
the emission site, and Fmacro � F is the macroscopic field)
on the order of 5 [25]. Finally, while models exist to
predict work functions for partially covered surfaces,
we shall opt to assume that a fraction ! of the cathode
083501-4



0

0.1

0.2

0.3

0.4

10 15 20 25 30 35

I(A)(12kV)
12kV fit
I(A)(6kV)
6 kV fit

C
ur

re
nt

 [
A

m
ps

]

Time [ns]

T
o
 = 516 K

∆E = 22 mJ

FIG. 3. Representative electron emission measurements for
an incident laser striking a scandate dispenser cathode held
at 516 K. Total time-integrated energy deposited is 22 mJ. The
time scale of the Gaussian laser pulse is 2.7 ns. Anode potential
was held at 12 kV (white dots) and 6 kV (black dots). The time
scales of the Gaussian fits to the emission data are 2.52 and
2.57 ns, respectively.

PRST-AB 6 KEVIN L. JENSEN et al. 083501 (2003)
is covered with a low work function coating, and a frac-
tion (1 � !) is bare metal (here, the work function of the
bare metal is assumed constant and uniform, even though
the variation of the work function with the crystal plane is
a notoriously complicated affair: see Ref. [28]). For a new
dispenser cathode at sufficiently high temperature, ! can
approach unity, but as the coverage depends on tempera-
ture and operational history, effects of environmental
degradation, and so on, for a mature cathode, it is smaller
[7]. The emitted charge �Q from the cathode is then

�Q � ��r20�
Z 1

�1
�!J��Te�t�;��

� �1 � !�J��Te�t�;�W�	dt; (13)

where �W � the work function of tungsten. The electron
transmission probability for an incident energy E is a
complex function [26], but if it is evaluated using the
Richardson approximation, then the evaluation of Eq. (13)
is considerably simplified. We find

J��T;�� � q�1 � R�
I��t�
�h!

�
U��� �h!���	

U���	

�
� JRLD�T;��;

JRLD�T;�� � ARLDT2 exp����	; (14)

where q is the electron charge, ARLD � 120 A=cm2,
� � � �

��������������
�4QF�

p
, and JRLD is the Richardson-

Laue-Dushman (RLD) equation [29]. Observe that � is
time dependent because Te depends on the laser intensity.

C. Quantum efficiency

The metric adopted for quantum efficiency herein is the
ratio of the number of emitted electrons to the number of
incident photons and is therefore given by QE �
���Q=q�=��E= �h!�	. Reflectivity of the surface, spatial
variation of the incident laser, and other mitigating fac-
tors are therefore implicit. �Q is obtained from the time-
integrated current, and �E from the time-integrated laser
intensity. If both are Gaussian, then

QE1D �
�h!
q

�
J��Tmax�

I��0�

�
�te
�t�

; (15)
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where Tmax � T�t � t0�, and �te and �t� are the
Gaussian width parameters of the emitted electron (e)
and incident laser (�) pulses, respectively. For the laser,
�t� � 2:7 ns, the corresponding current parameter,
though smaller and variable from measurement to
measurement, is comparable, as shown in the typical
example in Fig. 3, for which �te is 93.2% and 95.5% of
�t� for the 12 and 6 kV curves, respectively. Henceforth,
therefore, the ratio �te=�t� shall be approximated by
unity.

Unless the laser intensity is low, the thermal current
JRLD in Eq. (14) is negligible. Moreover, even at tempera-
tures considered high from an operational standpoint, the
quantities �� and ���� �h!� are relatively large so that
the asymptotic limits of Eq. (14) dominate, e.g., for T �
2000 K, F � 2:55 MeV=m, � � 1:8 eV, and � �
1064 nm, then �� and ���� �h!� are 33.95 and 3.331,
respectively. It follows that
lim
���� �h!� ! 1

��! 1

J��T;�� ) �1 � R�
�2� �h�2

m!�2 I��t�JRLD�T;�� �h!�: (16)

Consequently, the total emitted charge will be dominated by the maximum temperature region occurring near t � t0. It
is therefore reasonable to expect that the total emitted charge �Q will be approximately linear on a Richardson plot in
which ln��Q=T2

max	 is plotted as a function of 1=Tmax, where Tmax � Te�t0�. Conversely, when the wavelength is small,
then the photon energy exceeds the barrier height, that is, �h! > � and so

lim
�� �h!��� ! 1

��! 1

J��T;�� )
q
�h!

�1 � R�I��t�
�

�h!��
�

�
2
: (17)
083501-5
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Equation (14) suggests that the time-dependent quantum efficiency QE�t� is given by the ratio of the U functions.
Using the asymptotic expressions in Eqs. (14) and (17) gives (surface coverage factors not included)

QE1D 


(
2�1 � R��kBT� �2 exp����� �h!�=�kBT�	 ��� �h!��� ) �1	;

�1 � R�� �h!��
� �2 ��� �h!��� ) 1	;

(18)
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FIG. 4. Experimental total emitted charge versus applied
field for various bulk temperatures and deposited energy val-
ues. Small symbol to large symbol referred to 12, 16, and 22 mJ,
respectively, of deposited laser energy. Circles, squares, and
triangles referred to 516, 618, and 713 K bulk temperature
values, respectively. The general trend is greater emitted charge
for increasing applied field, temperature, and laser intensity, as
expected.
with the proviso that when the difference between the
photon energy and the barrier height exceeds the chemi-
cal potential, QE1D is unity. Note that T � T�t� and
depends on the laser pulse profile. The average quantum
efficiency will then be a fraction of the maximum QE. It
is important to emphasize that QE1D for arbitrary wave-
length must be evaluated using Eq. (B5) to evaluate the U
ratios, especially when there is spatial and/or temporal
variation of the incident laser as well as nonuniformity of
the emitting surface. In such cases, the average quantum
efficiency is evaluated using ratios of the spatiotemporal
averaged values of J�=q and I�= �h!, and is taken up
below.

D. Relation of theory to experiment

The (dimensionless) independent parameters that gov-
ern the agreement with experimental data using Eq. (13),
and their anticipated magnitudes, are (i) the factor n �
O�100� in the temperature variation length scale parame-
ter L, (ii) the field enhancement factor �a � O�5�, and
(iii) the surface coverage factor ! � O�0:1�. The experi-
mental parameters that are varied and which therefore
determine these quantities are the laser intensity I0
(MW=cm2), the macroscopic field F=q (MV=m), and
the bulk temperature T0 (K). The quantum efficiency of
various metals reported in the literature serve as an
independent confirmation of the values identified herein.
Parameters which are unknown or in principle unknow-
able, such as the exact value of the reflectivity R and the
work function � at the emission sites, the proportion of
the emission sites participating in the emission process,
the thermal factors associated with the impregnates be-
tween the tungsten grains in the dispenser cathode, and
the like, generally appear in conjunction with the chosen
independent parameters. We therefore choose appropriate
generic parameters for these quantities, as in the case of
R � 50% and � � 1:8 eV, or treat the adjustables as
effective parameters, as in the case of �a and !.

III. EXPERIMENTAL AND SIMULATION
RESULTS

A. Experimental procedure

Scandate cathodes fabricated by Spectra-Mat Inc.
[30] were illuminated by a Q-switched Nd:YAG laser
generating Gaussian pulses with FWHM equal to
2�ln�2�	1=2�t� � 4:5 ns. The field between the cathode
and anode was varied from 0 to 2:5 MV=m. The laser
was focused to a circular spot on the cathode with a
FWHM area of approximately 0:3 cm2. The photon en-
083501-6
ergies/wavelengths of the 2nd, 3rd, and 4th harmonics of
the Nd:YAG laser are 2.33 eV=532 nm, 3.50 eV=355 nm,
and 4.66 eV=266 nm, respectively. The corresponding QE
were found to be 6:5 � 10�5, 2 � 10�4, and 8 � 10�4.
The electron emission exhibited ‘‘normal’’ photoemission
characteristics; that is, the emission was proportional to
the incident laser intensity and independent of the low
electric field gradients (0.1 to 2:0 MV=m).

As reported earlier, a very different behavior was ob-
served when the Nd:YAG fundamental (1.165 eV, 1064 nm)
was used [10]. The electron emission was highly non-
linear with respect to illumination intensity and strongly
dependent on both the electric field gradient and the
temperature of the substrate lattice. Figure 3 shows rep-
resentative behavior of experimental data readings: the
symbols correspond to the experimental data points,
whereas the lines correspond to a curve fit of the form

Iq�t� � I0q expf���t� t0�=�t	2g � Ibase; (19)

where Iq is a current, not a laser intensity, Ibase is
a background current, and the oscillations after the
pulse are artifacts of the circuit used to measure
the emitted charge. The emitted charge is then approxi-
mated by �Q � �1=2I0q�t. Figure 4 shows several such
083501-6



FIG. 5. Photograph of the scandate dispenser cathode sur-
face. Concentric rings are evident from machining. The white
square in the lower left corner corresponds to a 0:1 mm �
0:1 mm area.
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FIG. 6. A surface height plot of the scandate cathode shown
in Fig. 5 as a function of the radial coordinate. The radial
‘‘origin’’ does not correspond to the center of the cathode.
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measurements taken over the course of weeks, for tem-
peratures of 516, 618, and 713 K (circle, square, and
triangle, respectively) for deposited laser energies of 12,
16, and 22 mJ (small to large symbol, respectively) over a
range of fields. In the course of obtaining measurements,
the cathode was continually refurbished on a daily basis,
and it appears likely that the cathode did not return to the
same condition over time, e.g., the degree of coverage
might have evolved or alignment of the laser spot on the
cathode might occur on a different region of the surface.
Some degradation in performance was generally observed
following conditioning. It is therefore quite unlikely that
a single set of theoretical parameters will suffice to model
the experimental data sets in toto. Nevertheless, the de-
gree to which these parameters do vary can serve to assess
how well the model is performing.

B. Measurement considerations

Other complications which impact the one-
dimensional theoretical model presented above are (i)
laser intensity variation, (ii) macroscopic field varia-
tion, and (iii) subsequent temperature variation across
the surface. Regarding the laser intensity I�(� �
I0 exp���(=(0�

2	, simulation took as the emission area
the disk defined by �(=(0�

2 � 2 so that for a FWHM
illumination radius corresponding to an area equal to
0:3 cm2, (0 � 0:354 cm, implying the simulation radius
is 0.5249 cm. If a smaller simulation radius were chosen,
e.g., (0 itself or

���
2

p
(0, the estimates for ! would be

increased, and a slight decrease in the value of L�n� would
also result. Regarding field variation, the cathode was a
1.27 cm diameter rod. The anode was a tube with a 1.27 cm
inner diameter and a 2.54 cm outer diameter. The edges of
the anode facing the cathode were rounded and sat inside
a dielectric tube with an inner diameter of 3.175 cm. The
anonde-cathode separation was approximately 0.4 cm.
The electrostatic program POISSON was used to calculate
the fields when no current was drawn. With a 1 kVanode
potential, the tangential and perpendicular fields were, at
the center, 0 and 0:17 MV=m, respectively, while at the
edge (where the laser illumination was weak), they were
0.2 and 0:45 MV=m, respectively. Finally, the electron
temperature is the greatest where the laser intensity is
strongest (near the center of the beam spot): for the 1D
theory results, the effective coverage factor ! will there-
fore be lower than the actual.

C. Comparison of theory to experiment

Experimental parameters are such that initially,
no significant photoemission occurs when the 1064 nm
laser light is incident on the cathode, as the barrier height
exceeds the photon energy for all electron energies appre-
ciably present in the electron distribution: that is, � �
�4QbaF�1=2 � �h! 
 0:5135 eV for F=q�2:55MV=m�
2:55�10�3 V=nm and a field enhancement of �a � 4.
083501-7
The reasonableness of the field enhancement factor se-
lected is indicated in Fig. 5, which shows an image of the
surface (the white square representing an area 100 �m on
a side), cross-section profilimetry plots in Figs. 6 and 7 at
two radial length scales, and the observation that the field
enhancement factor for a simple hemisphere is 3.0.

Measurements of emitted charge were taken as a func-
tion of the total deposited energy �E, macroscopic field,
and bulk temperature. Typical experimental results are
shown in Figs. 8–10. In Fig. 8, the variation of current
(related to �Q) with incident laser power (related to �E)
at a field of 1:7 MV=m and lattice temperature of 300 K is
shown (the black dot corresponds to the 1064 nm data
point in Fig. 13). The current shown is an ‘‘average’’
083501-7
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FIG. 9. Same as Fig. 8, but as a function of macroscopic field
due to changes in anode potential for two cases: 22 mJ of laser
energy for a bulk temperature of 713 K, and 12 mJ of laser
energy for a bulk temperature of 633 K. Note that the surface
coverage factor ! changes.
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FIG. 7. Same as Fig. 6, but showing greater detail in the
radial direction. Note the presence of nanoprotrusions which
provide field enhancement apart from the larger scale features.
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current density, given by the ratio of the total emitted
charge to the FWHM time and area factors (4.5 ns and
0:3 cm2, respectively). In Fig. 9, �Q is shown as a func-
tion of the electric field gradient variation for a laser
intensity of 15 MW=cm2 and bulk temperature of 713 K
for two different intensities; for the lower intensity (de-
noted by �E � 12 mJ), the values have been scaled by a
factor of 10 to render them discernible. Finally, Fig. 10
shows the variation with temperature for a field of
1:7 MV=m and laser intensity of 6 MW=cm2. By using
the 2nd harmonic light, it was determined that these
measurements were not field limited, as the subsequent
photoemission was not a function of field gradient.

All parameters used in the theoretical model are based
on bulk tungsten except for the effective work function �,
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FIG. 8. Comparison of experimental data with simulation for
emitted charge versus incident laser energy for Table II pa-
rameters and values shown. Laser wavelength was 1064 nm.
The black dot corresponds to the dot indicated in Fig. 13.
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field enhancement factor �a (dimensionless), the length
scale L�n�, and the surface coverage factor ! (dimension-
less). The theoretical estimate of �Q for Fig. 8 was
satisfied by the parameters �a � 4:0, n � 26:81, and ! �
0:3085. For Fig. 9, because the cathode performance
changes with time (the cathode was continually ‘‘refur-
bished’’ by heating over the course of the experiments so
that the same surface coverage factor did not necessarily
obtain from figure to figure), only ! was allowed to
change, as it is unlikely that �a and n would (see the
quantum efficiency and bare metal results below). The
theory assumed that ! degraded from 0.3085 to 0.1589
and 0.1278 for �E � 22 mJ and 12 mJ, respectively. For
Fig. 10, no further adjustments were made, so that the
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FIG. 10. Same as Fig. 8, but as a function of bulk temperature
for a fixed laser intensity and applied field. The same coverage
factor as in the 12 mJ case of Fig. 9 was used.
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TABLE III. Material parameters.

Symbol Tungsten Gold

� 18.08 eV 5.51 eV
A0 32.0514 4.8839
�0 0.024 313 0.121 57
T0 300 K 300 K
F=q 0:0 MV=m 0:0 MV=m

PRST-AB 6 KEVIN L. JENSEN et al. 083501 (2003)
value of ! was taken from the 12 mJ case of Fig. 2 (8 mJ
being closer to 12 mJ than 22 mJ). In Fig. 11, �Q is shown
on a Richardson plot vs 1=kBTmax, for Fig. 8 parameters:
While some convexity is apparent, the resulting plot is
predominantly linear, reflecting the expectation gener-
ated by Eq. (16). The convexity is likely due to nonline-
arities in T��E� with temporal and spatial variations in
the incident laser intensity.
# 10.1 nm 25.7 nm
� 1.203 76 1.0

�E 0.001 mJ 0.001 mJ
! 1.0 1.0
R 50% 50%
� 266 nm 266 nm
n 26.809 26.809

-2.0
D. Quantum efficiency revisited

Two issues immediately present themselves: first is the
reasonableness of the n factor, which contributes to the
value of L�n� and which can be assessed from quantum
efficiency estimates; and second is the extension of the
QE1D formula to a situation in which the incident laser
is spatially and temporally varying (e.g., a Gaussian in
( and t).

Regarding the n factor, the formula for QE1D can be
used to ‘‘predict’’ the work function of bare metals, once
the quantum efficiency of those metals is established. We
consider two cases: first, bare tungsten, as tungsten con-
stitutes the ‘‘bulk’’ material in the simulation of the
dispenser cathode discussed above, and second, gold, as
that metal is ‘‘simple’’ in that thermal mass effects do not
arise in the evaluation of Ce�T�. QE estimates can be
deduced from the slope of the N � 1 in the photoelectron
current density plots (‘‘Au’’ and ‘‘W’’ of Fig. 1 of
Papadogiannis et al. in Ref. [17]), from which we deduce
that QE�W� � 3:49 � 10�5 and QE�Au� � 7:54 � 10�6

(comparable to the findings of Logothetis and Hartman
[11]). Simulations were run with the parameters given in
Table III for a range of work functions. The resulting
quantum efficiency was deduced from
-11
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FIG. 11. Same as Fig. 8, but on a Richardson plot in which
lnQ=T2 is plotted versus 1=Tmax, where Tmax is evaluated
via Eq. (12), showing approximate linearity and indicating
thermal-emission-like behavior.
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QE �
�h!
q

�
�Q
�E

�
� 1:2398 � 10�3

�
�Q�nC	

��nm	�E�mJ	

�
:

(20)

The results of the simulation are shown in Fig. 12. The
parameters followed the dispenser cathode simulations
except the laser intensity was reduced to eliminate a
thermal emission component of the current, the applied
field was eliminated to avoid complications due to
Schottky factors, and the wavelength was taken to be
UV. It is seen that the ‘‘predicted’’ work function values
��W� � 4:52 eV and ��Au� � 4:69 eV based on the
quantum efficiency estimates for n fall close to photo-
electric work function values generally attributed to tung-
sten and gold [31], as shown in the Table inset of Fig. 12.
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FIG. 12. ‘‘Predicted’’ work functions for bare metals tungsten
and gold based on Table III parameters. The simulation code
developed to treat the dispenser cathode can be used to predict
work function based on quantum efficiency once an estimate of
L�n� is available. The agreement between theory and experi-
ment for several materials suggests the value of n is reasonably
generic.
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Consequently, though n was chosen to provide a corre-
spondence with the dispenser cathode simulations, its
value was independently shown to be appropriate for
bare metal simulations and is therefore reasonable.

Regarding the laser spot, due to the exponential rela-
tionship between T and JRLD, only a portion of the illu-
minated region shall be emitting to any significant extent,
and as a consequence of the temporal variation of
the laser pulse, it shall emit only for a finite time.
Consequently, for the 2D problem characterizing the
laser-cathode interaction, the analog of the 1D quantum
efficiency estimate, codified in Eq. (18), requires modifi-
cation to account for the spatiotemporal nature of the
illumination. The appropriate generalization to QE1D is

QE2D � !�1 � R�
1
q

R
1
�1 dt

R
1
0 2�(d(J��t; (; T�t; (�	

1
�h!

R
1
�1 dt

R
1
0 2�(d(I��t; (�

;

(21)
083501-10
where the explicit dependence of the temperature on time
and position (as a consequence of changes in laser inten-
sity) is shown. Asymptotic limits can be obtained using
the limits of QE1D. Recall that the laser variation is
Gaussian in both time t and axial coordinate ( with
corresponding scale parameters �t and (0, respectively.
The independence of QE1D� �h!� �� from t and ( fol-
lows from its lack of temperature variation, so that
lim
�� �h!���!1

QE2D � !�1 � R�
�

�h!��
�

�
2
: (22)
The case ( �h!<�) is more difficult because of the de-
pendence on bulk temperature. Using the dimensionless
parameters x � �(=(0� and s � �t� t0�=�t, it follows
that
lim
���� �h!�!1

QE2D � !�1 � R�QE1D�Tmax�

R
1
�1 ds

R
1
0 xdx exp���w� 1��s2 � x2�	R

1
�1 ds

R
1
0 xdx exp��� s2 � x2�	

� !�1 � R�
QE1D�Tmax�

�w� 1�3=2
; (23)

where w is determined from the spatial and temporal variation of the temperature T and the approximation
ln�JRLD�T�=JRLD�Tmax�	 
 �w�s2 � x2�. To leading order

w 

1

3

�
1 �

T0

Tmax

��
2 �

��� �h!�
kBTmax

�
; (24)
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FIG. 13. Measured quantum efficiencies compared to the
asymptotic formulas of Eq. (18). Dot indicated by arrow cor-
responds to the black dot in Fig. 8.
where the (1=3) coefficient nominally accounts for
Eq. (12). The performances of Eqs. (22) and (23) are
shown in Fig. 13 compared to experimental findings,
including the quantum efficiency value for the shorter
wavelength. The � � 1064 nm case depends on the laser
intensity and the bulk temperature, and consequently
depends on initial conditions, whereas the shorter wave-
length cases are asymptotically independent of the inten-
sity and bulk temperature.

The quantum efficiencies shown in Fig. 13 for present
experimental conditions are not sufficient to generate
interest, a consequence of the diminutive laser intensity:
sufficient electron temperatures are not generated to pro-
duce interesting emission levels. In device application,
however, laser intensities will be much higher. It is there-
fore germane to investigate the consequences of higher
intensities (achieved in the simulation by considering
shorter 2.7 ps pulses for a given �E, which is still suffi-
ciently long in comparison to the total relaxation time).
Two cases are considered: a simple extrapolation of the
cathode described above and a hypothetical cathode
whose surface has been planarized (no field enhancement
effects, �a � 1:0) but which has an effective surface
coverage comparable to standard mature thermionic dis-
penser cathodes (i.e., ! � 0:60 and a uniform laser illu-
mination) at the same macroscopic field of 2:55 MV=m.
The results are shown in Fig. 14, where the laser intensity
is constrained such that the electron/lattice temperature
remains approximately 300 K below the melting point
of tungsten (3683 K). Quantum efficiencies between
0.83% (�a � 4:0, ! � 0:3085) and 1.3% (�a � 1:0, ! �
0:6) are found for the highest laser intensity considered
(white dot, white square, respectively). Continuing,
we consider wavelengths characteristic of a Ti:sapphire
laser, i.e., � � 800 nm (black dot) at the same field of
083501-10
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2:55 MV=m, but also higher fields characteristic of Naval
and accelerator applications (10 MV=m—black square,
and 100 MV=m—black diamond, respectively), where
the impact of Schottky barrier lowering becomes increas-
ingly evident (the barrier lowering is 0.038 eV for a field
of 1 MV=m). The corresponding increase in current (and
hence, QE), as per the RLD equation, scales by a factor
of exp��

��������������
�4QF�

p
	: for temperatures of 1000, 2000, and

3000 K, such factors are (for 10 MV=m) 4.02, 2.00, and
1.59 for 10 MV=m and (for 100 MV=m) 81.7, 9.04,
and 4.34, respectively. It is clear that QE’s of technologi-
cal interest are indicated.

E. Thermal and field-assisted photoemission

A short, intense pulse at UV on a bare metal such as
gold or tungsten will have a different signature than a
long pulse on a low work function dispenser cathode, as
a consequence of Eq. (13). Consider �E � 1 mJ for a
� � 266 nm laser incident on gold, with a pulse width
of �t � 2:7 ps corresponding to a laser intensity of
0:116 GW=cm2 for the spot size considered. A fraction
of the emitted electrons will be due to direct photoemis-
sion, and a fraction due to thermal emission from the
heated electron gas (recall that the bulk of the laser
energy is absorbed and dissipated into heat), as per
Eq. (14). For bare metals, the work function is sufficiently
high that no appreciable thermal component contributes,
and the photon energy is so large that the electron pulse
closely follows the laser pulse in shape, as in Fig. 15. Two
differences arise for low work function/long wavelength
cases, depending on whether the pulse is long or short, for
a given deposited �E. If the pulse is long (ns scale), then
the electron temperature remains such that the thermal
emission component is not appreciable, and the bulk of
the emitted current is due to photoemission from a hot
083501-11
electron distribution, as in Fig. 16. If the pulse is short (ps
scale), then the electron temperature can markedly rise,
indicating that the thermal component can become sub-
stantial and constitute the bulk of the emitted current, as
a consequence of the low work function, as in Fig. 17. In
both cases, note that the width of the electron pulse is
shorter than that of the laser pulse, due to the steep
temperature dependence of the emitted current. For a
given �E, the quantum efficiency of a dispenser
photocathode is, therefore, substantially enhanced by
the thermal current component for short (intense) pulses
in distinction to what would be extrapolated from effi-
ciency estimates based on longer (less intense) laser
pulses producing electron emission dominated by the
083501-11
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photoemission from a heated electron gas. Moreover, the
Schottky factor induced by the applied field contributes
significantly. At very high laser intensities, nonlinear
effects come into play (see the N � 2 regions of Fig. 1
in Ref. [17]) and complicate this description.

IV. CONCLUSION

We have provided a model for the interpretation
of experimental data of electron emission from a laser-
illuminated dispenser cathode. Issues were identified in
the relation between the theoretical model and its appli-
cation to the experimental data. First, surface roughness
always exists, so some field enhancement is always
present and will make the emission higher. Second, the
exact degree of surface coverage will depend on environ-
ment, contaminants, temperature, and surface conditions,
and is therefore difficult to surmise without reference to
experimental data. Third, invoking a steady-state ap-
proximation to model electron heating by the laser is
tantamount to keeping the electron and lattice tempera-
ture in equilibrium throughout the pulse: for pulses in
which the pulse length is comparable to the relaxation
time, decoupling will occur, and the electron temperature
will be higher than the lattice, increasing the emission.
Fourth, for such low work functions, some quantum
mechanical tunneling current will be present, and the
thermionic current at the barrier maximum will be over-
estimated. Fifth, for short pulses, heat propagation into
the bulk will differ from the exponential decay used
herein: presumably, the electron temperature will there-
fore be larger near the surface. Sixth, the dispenser cath-
ode barrier has been treated as an image-charge lowered
standard metal-like barrier, whereas in fact barrier low-
ering is accomplished by the influence of dipoles at the
surface: it is unclear at the present stage of development
083501-12
what impact a proper account of the barrier will have on
the estimation of emitted current. An accurate account of
these six issues necessitates a time-dependent simulation
code to monitor heat propagation into the bulk, the effi-
ciency of energy transfer from electrons to lattice, and a
proper account of the emission barrier. We are presently
undertaking the development of this model and its nu-
merical implementation and seeking to validate it by
comparing its predictions to other dispenser cathode
technologies.

In summary, we have shown that the theoretical model
of a laser-heated electron gas giving rise to photothermal
emission is consistent with experimental findings of in-
frared laser illumination of a scandate dispenser cathode.
The surprisingly good quantitative agreement between
experiment and simulation bodes well for theoretical
extrapolation to parameters not achieved experimentally
but nevertheless representative of future devices. Based
on findings herein, the dispenser cathode technology
appears to offer promise as a phototocathode candidate.
The temporal characteristics of the laser and the limita-
tions of the test cell in the present study constrain the
power density and electric fields achieved to well below
those characteristic of an rf photoinjector. Even though
the laser time scale was in the nanosecond regime, the
relevant relaxation times which equilibrate the electron
and lattice temperatures are in the subpicosecond regime
for metals [13], and so the modeling of the experimental
data may proceed using a steady-state formulation.
Significantly, however, picosecond and femtosecond
pulses allow much higher laser intensity damage thresh-
olds, and those times are in the range of electron-phonon
relaxation times. To obtain information relevant to de-
vices, the theory will be extended to the short pulse time-
dependent regime, and experiments will be carried out
using shorter pulse lasers. Finally, extrapolations based on
the present study clearly indicate that dispenser cathodes
function as a promising photoemitter source.
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APPENDIX A: APPROXIMATION TO FERMI-
DIRAC AND BOSE-EINSTEIN INTEGRALS

The evaluation of the specific heat capacity expressions
results in an encounter with integrals of the form

W��n; x� �
Z x

0

yn

�ey � 1���e�y � 1�
dy; (A1)

where W� corresponds to electrons and W� to phonons,
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reflecting the difference between Fermi-Dirac and Bose-Einstein statistics. From the general result [32]

Z 1

0

�ln�x�	n

1 � 2x cos�t� � x2 dx �
n!

sin�t�

Xn
k�1

��1�n�k�1 sin�kt�

kn�1 (A2)

and the special cases

W��n;1� � n!;��n�; (A3)
where ;��n� � �1 � 21�n�;�n� is the Riemann zeta function [33]; it follows that adequate approximations for
numerical work, valid for n � 2, are available from the first few terms in the series expansion given by

W��n; x� �

8>><
>>:
�
n!;��n� � xn

ex�1 � n!
Pn
h�1

P
1
j�1

��1�j�1e�jxxn�h

�n�h�!jh

�
x > 1;�

xn�1

4�n�1�

�
1 � �n�1�

4�n�3� x
2 � �n�1�

24�n�5� x
4

��
x < 1;

(A4)

and

W��n; x� �

8>><
>>:
n!;�n� �

�
xn
ex�1 � n!

P
n
h�1

P
1
j�1

e�jxxn�h

�n�h�!jh

�
x > 1;�

xn�1

�n�1�

�
1 � �n�1�

12�n�1� x
2 � �n�1�

240�n�3� x
4

��
x < 1:

(A5)
The Riemann zeta functions may be evaluated from

;�2n� �
�2��2n

2�2n�!
jB2nj; (A6)

where the B2n are Bernoulli numbers of even order, e.g.,
B2 � 1=6, B4 � 1=30, B6 � 1=42, B8 � 1=30, and so on.
For large n, the approximation ;�n� 2� 
 �;�n� � 3�=4
is useful.

APPENDIX B: APPROXIMATION TO
LOGARITHMIC INTEGRAL

Consider the function defined by

U�x� �
Z x

�1
ln�1 � ey�dy: (B1)

The special value U�0� � ;��2� � �2=12. Here, conve-
nient approximations are developed which are accurate to
within 1% for all x. Consider first arguments of U less
than 0, for which the integrand may be Taylor expanded in
ey and integrated term by term. We have

U��x� �
X1
j�1

��1�j�1

j2
exp��jx�: (B2)

Let U�x < 0� be parametrically approximated by U�x� 

ex�1 � beax	, where a and b are determined from Eq. (B2)
and its first derivative evaluated at x � 0. It follows that a
and b so defined are

a � 12

�
�2 � 12 ln�2�

12 � �2

�
; b � 1 �

�2

12
; (B3)

and are numerically equal to a � 0:728 43 and b �
0:177 53. From the definition of U�x�, it follows that
083501-13
U�x� �
1

2
x2 � 2U�0� �U��x�: (B4)

The approximation for U�x�, accurate to better than 1%
for all x, is then

U�x� �
�
ex�1 � beax� x � 0;
�12 x

2 � 1
6�

2 � e�x�1 � be�ax�	 x > 0:
(B5)

Equation (B5) is analogous to the ‘‘Fowler function’’
[Eq. (9) of Ref. [34]] and is more amenable to numerical
work than forms given by either Fowler or DuBridge.
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