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A numerical algorithm for simulating electron beam shot noise in free electron lasers (FELs) is
presented. Shot noise is a source of spontaneous emission that may be amplified in the self-amplified
spontaneous emission regime of operation. This regime is of great importance to XUVand x-ray FELs
where the spontaneous emission is currently the only effective source available for amplification. The
algorithm uses a quasiuniform phase-space distribution of appropriately charge weighted macro-
particles. The statistical properties of the macroparticles are derived directly from the temporal
Poisson statistical properties of the real electron distribution. Unlike previous algorithms, ours does
not rely upon any averaging over a resonant radiation period time scale and so more correctly describes
the underlying physics. The algorithm also allows shot noise to be modeled self-consistently in
unaveraged FEL models which are able to describe subwavelength phenomena such as coherent
spontaneous emission (CSE). The algorithm is used in the unaveraged 1D FEL numerical simulation
code FEMFEL and demonstrates spontaneous emission due to shot noise and CSE in both rectangular and
Gaussian electron pulse current profiles. The preliminary results show good qualitative and quantitative
agreement with theory.
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the basis of their macroparticle loading algorithm to
describe shot noise. The algorithm has been adapted and

the bunching and did not attempt to describe a macro-
particle model. The work presented here derives such a
I. INTRODUCTION

The free electron laser (FEL) is an important source of
high power tunable radiation that spans a wide range of
the electromagnetic spectrum from the microwave to
VUV and potentially beyond. In the XUV and x-ray
regions there are currently few or no effective sources
available for amplification by an FEL amplifier and the
FEL must start up from noise, operating in the self-
amplified spontaneous emission (SASE) regime [1]. The
source of spontaneous radiation is the electron beam
‘‘shot noise’’ arising from the random distribution of
electron arrival times at the beginning of the FEL inter-
action region. In the SASE regime this radiation is ex-
ponentially amplified as it copropagates with the electron
beam through the FEL interaction region. Any computer
code that attempts to model the SASE FEL must therefore
have a valid numerical model of the electron beam shot
noise to be able to simulate the radiation amplification
process.

Current computer memory and CPU limitations make
it impractical for FEL computer simulation codes to
follow the evolution of each individual electron in a
beam. The electron distribution is therefore replaced by
a distribution of ‘‘macroparticles’’ designed to simulate
the real electron distribution. In order to model shot noise,
the macroparticle distribution should therefore simulate
the statistical properties of the real electron distribution.
Many, if not most simulation codes such as GINGER [2]
and GENESIS 1.3 [3] currently use the algorithm of [4] as
1098-4402=03=6(7)=070701(10)$20.00 
extended in ingenious ways to include higher dimensions
of electron phase space and harmonics of the radiation
field (see, e.g., [5] for a recent discussion).

However, the algorithm of [4], although effective, has
been derived directly from the statistical properties of an
averaged quantity, b, the bunching parameter [1]. This
averaging occurs over a resonant radiation period. There
has not been, to the authors’ knowledge, a contiguous
derivation from the statistical properties of the individual
electrons in an electron beam to the algorithm of [4].
Given the large resources that are being devoted to the
design and construction of new short wavelength SASE
FELs such as that at the TESLA facility in Germany [6],
the proposed LCLS facility at SLAC [7] in the U.S., and
the U.K. 4GLS project [8], it would seem timely and
prudent to derive a particle loading algorithm from first
principles that may be traced directly back to the physics
of the individual electrons.

Such a model would also allow the introduction of shot
noise into FEL models that have not been averaged over a
radiation period in a consistent way. Although the method
of [4] has been used in unaveraged models such as [9] it
cannot be considered consistent to use methods developed
from averaged equations in an unaveraged model.

Some previous work was carried out to model distri-
butions of electrons which begins with the assumption
that electron arrival at the beginning of the interaction
region of a FEL is a Poisson process [10]. However, this
work was concerned with deriving averaged quantities of
2003 The American Physical Society 070701-1
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macroparticle model directly from a Poisson statistical
electron distribution and demonstrates its use in a one
dimensional finite element code FEMFEL currently under
development.

II. THE SHOT-NOISE MODEL

The arrival of electrons at the beginning of an inter-
action region, z � 0, is assumed to be a Poisson process.
We first discretize time into small intervals of uniform
duration �t so that tn � n�t, where n � 0;�1;�2; . . . .
In the notation hereafter subscript n always refers to these
discrete times. It will be seen that the time interval �t is
the mean interval between macroparticles introduced to
model the real electron distribution. Furthermore, �t is
small with respect to any radiation period to be subse-
quently modeled, i.e., �t � 2�=!max.

Consider the arrival of electrons over one such time
interval tn � t < tn�1. The mean rate of the Poisson
process is the rate of electron arrival 
n � I�tn�=e which
is assumed constant over the interval �t. The electron
arrival times obey Poisson statistics and the number of
electrons, Nn, arriving within the interval �t is a statis-
tical variable determined by the Poisson distribution:

P�Nn� �
	NNNn
n e� 	NNn

Nn!
; (1)

where 	NNn � 
n�t, is the expectation for the number of
electrons in the interval �t. It can be shown [11] that the
ordered arrival times of the electrons have identical sta-
tistical properties to those with unordered arrival times
each of which have been distributed within the interval
�t with an identical uniform probability density pn �

n= 	NNn � 1=�t. The statistics of variables distributed
with uniform probability density over a finite interval
are well known [12] from which we obtain the mean
and variance of each of the unordered electron arrival
times tj, j � 1; . . . ; Nn to be

�n � tn ��t=2; �2
n � �t2=12; (2)

respectively.
For a total of Nn electrons the mean arrival time is

given by

	ttn �
1

Nn

XNn

j�1

tj

with expectation and variance of 	ttn easily shown to be

E�	ttn� � 	��n � �n; V�	ttn� � 	��2
n �

�2
n

Nn
�

�t2

12Nn
; (3)

respectively.
The distribution of the Nn electrons within the interval

tn � �t � tn�1 may now be modeled by replacing the
distribution with a single macroparticle whose statistical
properties of charge and temporal distribution equal those
070701-2
of the Nn electrons. This is the physical basis of the model
presented here.

The statistical properties of the macroparticle charge
are given simply by the Poisson distribution (1). When
loading the macroparticles in a numerical simulation
code each would be assigned a charge weight of Qn �
Nne where e is the charge of an electron and Nn, the
macroparticle electron number, would be generated by a
Poisson random deviate generator of mean 	NNn.

The statistical properties of the macroparticle arrival
time may be found by first placing the macroparticle at the
mean electron distribution arrival time 	��n. This mean
arrival time then has added to it an independent random
variable � with uniform probability distribution over the
interval 	��t=2; �t=2
. The interval �t is chosen so that
the variance in the macroparticle arrival time is equal to
that of the real electron distribution (3). Similarly to
relation (2) the variance for the macroparticle arrival
time is �t2=12. Equating this macroparticle variance to
that of the real electron distribution (3) the following
relation for �t is obtained:

�t �
�t������
Nn

p �
�t�������
	NNn

p ; (4)

where the latter approximation may be used when
	NNn  1.

Another method of determining the statistics of the
macroparticle arrival time makes use of the central limit
theorem [12]. In the limit Nn ! 1 this theorem allows
the real distribution of electrons to be replaced by a single
macroparticle with an arrival time described by a random
Gaussian deviate with mean 	��n and standard deviation
	��n. However, practical experience has shown that the
uniform deviate method leading to (4) works equally
well if not better than the central limit theorem method,
and this is the method used hereafter.

An electron pulse defined by a mean current I�z; t� may
be modeled to include the effects of shot noise by assign-
ing macroparticles, with charge and arrival time as de-
scribed above, over many such consecutive time intervals
defined by tn. The macroparticle arrival times describing
the complete electron pulse may then be written as

tj � 	ttj � �j; j � 1; . . . ; Nm; (5)

where Nm is the total number of macroparticles and the
j � 1 macroparticle arrives in the nth time interval so
that 	ttj � tn � �j� 1=2��t. For consistency, the Poisson
variate Nn, the electron number for the jth macroparticle,
is now written as Nj.

It is important to note that the electron distribution and
its statistics have been modeled by the macroparticles
without reference to any external lengths or time scales
such as a resonant radiation frequency or its harmonics.
In this sense this analysis is self-consistent.
070701-2
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III. BUNCHING STATISTICS IN 1D

The following scaled form of the 1D wave equation
describing the FEL interaction may be derived:
�
@
@ 	zz

�
@
@ 	zz1

�
A�	zz; 	zz1� �

1

	nnpk

XN
j�1

exp

�
�i

	zz1
2�

�
��	zz1 � 	zz1j�:

(6)

The magnetic undulator field and the electric field of the
fundamental radiation frequency used in the derivation of
(6) are, respectively,

B w�z� �
Bw���
2

p �êee�ikwz � c:c:�; (7)

E �z; t� � �
1���
2

p 	êeE�z; t�ei�kz�!t� � c:c:
; (8)

where êe � �x̂x� iŷy�=
���
2

p
. The scaling of the field used in

deriving (6) is given by [1,13]

A �z; t� �
eE�z; t�

mc!p
�������
"�

p ; (9)

	zz � 2kw�z; (10)

	zz 1 �
2kw�

1� 	##z
�z� c 	##zt�: (11)

It is important to note that no slowly varying approxima-
tions have been made regarding the scaled complex field
envelope A�z; t�. All frequency components must be mod-
eled by the envelope A�z; t�, which, when containing
components that differ significantly from the fundamen-
tal frequency, may result in relatively rapid modulations
of the envelope over a fundamental optical period.
Analysis of specific frequencies, or frequency ranges,
therefore requires a Fourier analysis of the field (9).

The right-hand side of the wave equation is written in
terms of the real electron distribution, where N is the total
number of electrons in the electron pulse and at the
beginning of the interaction region, z � 0, so that 	zz1 �
�2�!t. Note that the total number of electrons in the
electron pulse, N, is itself a Poisson variate of mean 	NN,
the expectation value of the total electron number given
by

	NN �
Z 1

�1

I�t�
e

dt: (12)

The Dirac delta function transforms to real units as

��	zz1 � 	zz1j� �
��!t�!tj�

2�
; (13)

and the electron distribution may be replaced by a macro-
particle distribution as described in the previous section
to give the right-hand side of the wave equation (6) in
070701-3
terms of the macroparticle distribution

2�
Nm%

XNm

j�1

Nj

	NNpk
ei!t��!t�!tj�; (14)

where Nm% � 2�=!�t is the number of macroparticles
within one radiation period and 	NNpk � Ipk�t=e is the
expectation of the macroparticle electron number at the
peak of the electron pulse current, Ipk.

When averaged over a radiation period the right-hand
side of the wave equation yields a quantity known as the
‘‘bunching parameter’’ [1]. If the macroparticle model is
valid then the statistics of the bunching parameter must
be the same for the macroparticle distribution as for a real
electron distribution, and we now test for this.

Averaging (14) by integrating over one radiation period
centered at time t yields an expression for the localized
macroparticle bunching parameter:

b�t� �
1

Nm%

XNm%

j�1

Nj

	NNpk
ei!�jei!	ttj : (15)

The delta function has extracted those macroparticles
within the interval (we retain j as the index for simplic-
ity) and we have used relation (5).

The expectation of the bunching parameter (15) is then
given as

E�b� �
1

Nm%

XNm%

j�1

ENj

�
Nj

	NNpk
ENjj�j�e

i!�j�

�
ei!	ttj ; (16)

where ENj
�� � �� signifies the expectation value with re-

spect to the macroparticle electron number Nj, and
ENjj�j�� � �� signifies the expectation value with respect
to the randomness of the macroparticle arrival time �j
for a given value Nj. The latter expectation is obtained by
averaging in �j over the interval 	��t=2; �t=2
 from
which, using relation (4), the following result is obtained:

E�jjNj
�ei!�j� �

������
Nj

p
Nm%

�
sin

�
�������

Nj
p

Nm%

�
: (17)

Substituting for (17) into (16), using the result that for a
Poisson distribution ENj

�Nj� � 	NNj, and assuming the
usually easily satisfied condition

������
Nj

p
Nm%  1 so that

sin

�
�������

Nj
p

Nm%

�
�

�������
Nj

p
Nm%

;

the expression for the expectation of the bunching is

E�b� �
1

Nm%

XNm%

j�1

	NNj

	NNpk
ei!	ttj : (18)

A similar but more lengthy analysis for the expectation
of jbj2 may also be carried out to obtain
070701-3
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E�jbj2� �
1

N2
m%

	NN2
pk

XNm%

j�1

	NNj � jE�b�j2 (19)

from which an expression for the variance of the bunch-
ing, V�b� � E�jbj2� � jE�b�j2, is obtained.

It can be seen from (18) for the expression for E�b� that
if the current is not uniform over the radiation period, i.e.,
	NNj � const 8 j, then E�b� will be nonzero. Such non-

zero bunching is caused by a current gradient and is the
source of coherent spontaneous emission (CSE) [13].

In the limit of a uniform current beam we may set 	NNj �
	NNpk 8 j, E�b� � 0, and there is no CSE. In this case
	NNm%

	NNpk � 	NN%, the expectation of the total number of
electrons in the radiation period, and we obtain from
(19) the result that E�jbj2� � 1= 	NN%, which for the single
radiation period under consideration here, is in agreement
with the previous analysis of averaged Poisson statistical
models [10].

IV. HIGHER PHASE-SPACE DIMENSIONS

In the above analysis, electron beam properties such as
energy and transverse momentum spread were neglected.
In order to describe these effects and include the effects
of shot noise, the above model must be extended to a
multidimensional electron phase space.

Phase space is first discretized into elemental ‘‘vol-
umes’’ by discretizing along each phase-space ordinate
in a method similar to that carried out for time in the
previous section. The populating by electrons of each
phase-space ‘‘volume element’’ at z � 0 is then assumed
to be a Poisson process with each element being populated
at a local Poisson rate given by


��; t� �
I�t�
e

f���; (20)

where � is a generalized phase-space coordinate [e.g.,
� � �r?;p�, the transverse coordinate and the momen-
tum, respectively] and f��� is a normalized distribution
function. Note that, in general, the distribution function
itself may have a temporal dependence via �.

The same algorithm as was used for allocating the
temporal noise of the previous section is now used for
each phase-space coordinate of the macroparticles. The
macroparticles are placed at the ‘‘center’’ of each phase-
space volume element and have added to each of their
phase-space coordinates an independent random variable
of uniform probability distribution. This random variable
is equivalent to the �j of the previous section and, for a
generalized ordinate 'k, will have a range

�
�

�'k

2
������
	NNj

q ;
�'k

2
������
	NNj

q
	
; (21)

where �'k is the discretization interval and from (20)
070701-4
	NN j � 
��; t��V'�t �
I�t�
e

f����V'�t; (22)

where �V' �
Q

k��'k� is the elemental phase-space vol-
ume. Each macroparticle will also have assigned to it a
Poisson random variate electron number of mean 	NNj.

Numerical example

We now demonstrate the use of the macroparticle
model above by considering the bunching in a uniform
current electron beam of 1 kA with a uniformly distrib-
uted relative energy spread of half width �"=" � �=2 at
a radiation wavelength of 10 nm and with a FEL parame-
ter of � � 10�3. These parameters are typical of a
Compton regime SASE FEL operating in the XUV. In
the notation of [13] the energy spread above may be
described as a spread in the scaled energy parameter p
as �p � 1=2.

With these parameters then in one radiation period
approximately 	NN% � 2� 105 electrons are distributed
with a uniform random distribution over phase space
defined by the limits 0< 	zz1 < 4�� and ��p < p<�p.
The normalized distribution function f�p� � 1=2�p � 1
over this latter interval and is zero elsewhere. The area so
defined is discretized uniformly in 	zz1 and p to form a
10� 10 grid with �	zz1 � 4��=10 and �p � 2�p=10.
Each macroparticle will have assigned to it a Poisson
variate electron number of mean 	NNj � 2� 103 8 j
and will be placed at the mean position (center) of each
grid element about which it will have a uniform deviate of
range defined by (21) added to this mean position. In 	zz1
the range is over ���=5

������
	NNj

q
� �1:4� 10�5, and in p

the range is over ��p=10
������
	NNj

q
� �1:1� 10�3.

The bunching statistics of an ensemble of 105 such
macroparticle distributions are now compared with those
statistics expected from the real electron distribution of
2� 105 electrons.

The bunching parameter b as defined by (15) was
calculated for each independent distribution of the en-
semble and the bunching statistics calculated. The proba-
bility distribution of jbj and jbj2 of the ensemble was
collated and plotted as histograms in Figs. 1 and 2,
respectively. The probability distribution of jbj for a real
distribution of electrons has previously been shown to be
the Rayleigh distribution, and that of jbj2 the negative
exponential distribution [14]. These distribution func-
tions are plotted for comparison in Figs. 1 and 2 as solid
lines and show that the probability distributions of the
macroparticle bunching statistics are in good agreement
with those of a real electron distribution.

The above probability distribution functions yield the
following relations for an ensemble of real electron dis-
tributions [5]: brms �

������������
hjbj2i

p
� 1=

�������
	NN%

p
; 	bb � hjbji ����������������

�=4 	NN%

p
, and �jbj �

���������������������
h�b� 	bb�2i

p
�

������������������
1� �=4

p
=

�������
	NN%

p
,

where, as previously, 	NN% is the expectation of the number
070701-4



0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

|b|/<|b|>

P
(|

b
|)

FIG. 1. (Color) The probability distribution P�jbj� for the
ensemble of 105 macroparticle distributions as a histogram.
The solid line is the Rayleigh distribution function of mean
equal to 1.
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of electrons in the radiation period. These quantities were
calculated numerically from the ensemble of macropar-
ticle distributions and compared with the results above for
the real electron distribution with 	NN% � 2� 105 which
are given in brackets: brms � 2:27� 10�3 �2:24� 10�3�;
	bb � 2:01� 10�3 �1:98� 10�3�; �jbj � 1:05� 10�3

�1:04� 10�3�.
Therefore, it can be concluded that the macroparticle

distribution gives a good approximation to the bunching
statistics of the real electron distribution.

An investigation of the statistics of a macroparticle
distribution has also been performed for the case of a
drifting electron beam by loading the macroparticles as
0 1 2 3 4 5
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0.8

1

|b|2/<|b|2>

P
(|

b
|2 )

FIG. 2. (Color) The probability distribution P�jbj2� for the
ensemble of 105 macroparticle distributions as a histogram.
The solid line is the negative exponential distribution function
of mean equal to 1.
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above and integrating the FEL equations [13] in the
absence of any radiation field. Identical parameters as
above were used to simulate shot noise in a section of a
constant current electron beam and the beam was allowed
to drift a scaled distance of 	zz � 1. Because of the spread
�p in the scaled energy parameter p, the macroparticles
also drift with respect to each other in phase 	zz1. They also
drift across the boundaries of the interval �	zz1 � 4��
over which the bunching parameter b is calculated, and
as the beam is of constant current the average flow of
macroparticles into this interval is equal to the average
flow out of it. For such a region, no perceptible change in
the bunching statistics, as demonstrated by Figs. 1 and 2
above, has been observed as a function of the drift
position 	zz. This demonstrates that there are no correla-
tions of the ensemble average bunching statistics with
drift position.

V. THE ALGORITHM IN USE

The above noise algorithm is now applied in an un-
averaged 1D FEL simulation code currently under devel-
opment to describe the effects of shot noise, CSE, and
energy spread. This code, which we call FEMFEL, has
been developed from previous codes describing the ef-
fects of CSE [9,13,15] by using the finite element method
(FEM) to numerically solve the wave equation. The out-
put data of this code are in SDDS format [16] and post-
processing and plotting has been carried out using the
SDDS tool kit [17].

The code was used to model a Compton regime FEL
over the first five gain lengths of the interaction region
which in the variables used here [13] gives a scaled
interaction length of 	zz � 5. The fundamental FEL pa-
rameter � � 0:1=4� � 7:96� 10�3 so that there are ten
ponderomotive periods per unit 	zz1. The electron pulse
current is assumed to be a rectangular, or ‘‘top hat,’’
function of total charge Q � 1 nC and of scaled duration
in 	zz1 of 	lle � 6. A Gaussian energy spread distribution is
used with �p � 0:5 over a full range �3�p < p< 3�p.
Electron phase space was discretized into a uniform
40� 21 grid in �	zz1; p� per ponderomotive period
giving a total of 840 macroparticles per period and there-
fore a total of 50 400 macroparticles in the 60 period
pulse. The average macroparticle therefore represents
� 1:25� 105 electrons.

For this rectangular profile pulse, the scaled linear
density in the wave equation (6) may be written as 	nnpk �
	NN=	lle, where, as previously, 	NN is the expectation of the

total number of electrons in the pulse, allowing the wave
equation to be written

�
@
@	zz

�
@
@	zz1

�
A�	zz; 	zz1� � 	lle

XNm

j�1

Nj

	NN
exp

�
�i

	zz1
2�

�
��	zz1 � 	zz1j�:

(23)
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The streamline method of finite element analysis [18] was
used to model the evolution of the radiation pulse in 	zz1,
with iteration forward in 	zz being governed by a Crank-
Nicolson scheme [19].

The macroparticles are assigned to the phase-space
grid as described in the previous section. This is shown
schematically in Fig. 3.

Each macroparticle has assigned to it a Poisson random
variate Nj of mean 	NNj obtained from Eq. (22) which for
the rectangular profile pulse used here is given by

	NN j �
	NN
	lle

1�������
2�

p
�p

exp

�
�

p2
gj

2�2
p

�
�p�	zz1; (24)

where pgj refers to the mean grid position of the jth
macroparticle. This randomness in the number of elec-
trons each macroparticle represents is demonstrated sche-
matically by the differing sizes of the macroparticles
in Fig. 3.

The macroparticles are placed at the center of each grid
cell �	zz1gj; pgj� and then have a uniform random variate
determined by Eq. (21) added to this mean coordinate,
i.e.,

�	zz1j; pj� � �	zz1gj; pgj� � �Uz1 ; Up�; (25)

where Uz1 and Up are uniform random variates over the
intervals
∆z1
∆p

(z1gj,pgj)

FIG. 3. Schematic of macroparticle loading algorithm. The
bottom left three grid boxes show the notation used for the grid
dimensions and center. The randomness in the macroparticle
charge via the Poisson random variate Nj is demonstrated via
their different relative sizes. The noise due to the random
positioning is demonstrated via the variation about the grid
centers.
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�
�

�	zz1

2
������
	NNj

q ;
�	zz1

2
������
	NNj

q
	

and �
�

�p

2
������
	NNj

q ;
�p

2
������
	NNj

q
	
;

respectively. The randomness in the macroparticle phase-
space distribution is demonstrated schematically in Fig. 3
by the random deviation of the particle positions from the
grid centers.

The equations of motion for the j � 1; . . . ; Nm macro-
particles in the radiation field are those of Ref. [13]:

d	zz1j
d 	zz

� 2�pj; (26)

dpj

d 	zz
� �

�
A�	zz; 	zz1j� exp

�
	zz1j
2�

�
�c:c:

	
: (27)

Figure 4 shows the scaled ‘‘intensity’’ jAj2 and power
spectral density P that results from a run of the code
FEMFEL for the above parameters and macroparticle load-
ing algorithm, and plotted using the SDDS tool kit pack-
age [17]. Strictly, jAj2, as defined here, is the scaled
magnitude of the z component of the Poynting vector,
whereas intensity is normally defined as the time-
averaged magnitude of the Poynting vector. For brevity,
we use intensity here in the former, unaveraged, sense.
The scaled power spectral density, P, is the summation of
the PSDs of the scaled field components Ax and Ay, as
obtained from the field definitions (8) and (9). The fre-
quency, f, is scaled with respect to the fundamental
FIG. 4. Top panel: The scaled intensity, jAj2, as a function of
scaled pulse position 	zz1 for a scaled distance through the
interaction region of 	zz � 5 and a rectangular profile electron
pulse duration of 	lle � 6 between 0< 	zz1 < 6. The slippage
region is 0< 	zz1 < 5; the steady-state region is 5< 	zz1 < 6; the
vacuum region is 	zz1 > 6. Bottom panel: The scaled PSD, P, of
the radiation as a function of the scaled frequency f.
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FIG. 5. Top panel: The filtered, scaled intensity, jAj2, as a
function of scaled pulse position 	zz1 for a scaled distance
through the interaction region of 	zz � 5 and a rectangular
profile electron pulse duration of 	lle � 6 between 0< 	zz1 < 6 .
The slippage region is 0< 	zz1 < 5; the steady-state region is 5<
	zz1 < 6; the vacuum region is 	zz1 > 6. Bottom panel: The filtered
scaled PSD, P, of the radiation as a function of the scaled
frequency f.

FIG. 6. The filtered scaled average radiation intensity hjAj2i
(�) and modulus of the bunching parameter jbj (+) over the
single period interval 2:5< 	zz1 < 2:6 of a rectangular profile
electron pulse of 	lle � 6. For 	zz < 2:5 the interval is in the
steady-state region, and for 	zz > 2:5 the slippage region.
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resonant FEL frequency. These PSDs were generated by
the SDDS tool kit function SDDSFFT [17].

The dominant features of the radiation evolution are
essentially those of self-amplified coherent spontaneous
emission (SACSE) in the presence of electron energy
spread [15], although it will be seen that self-amplified
spontaneous emission (SASE) [1] is also present.

The radiation may be split into three different regions
of 	zz1:

(i) The slippage region 0< 	zz1 < 	zz.
(ii) The steady-state, or cw region 	zz < 	zz1 < 	lle.
(iii) The vacuum region 	zz1 > 	lle.
In the slippage region (0< 	zz1 < 5) CSE from the trail-

ing edge of the electron pulse is amplified as it propagates
forward through the electron pulse. Here the rectangular
edge of the electron pulse at 	zz � 0 generates intense CSE
that may act as a strong seed field which when amplified
via SACSE, as here, dominates any SASE process.

The steady-state region (5< 	zz1 < 6) has effectively
only evolved from shot noise as CSE pulse effects, arising
from the sharp current gradient at 	zz1 � 0, have not yet
propagated into this region. It is worth noting that the
CSE mechanism does induce an oscillatory amplitude in
jAj2 � 16�2 [13]. This oscillation, uniform throughout
the steady-state region, has the same period as that of
the undulator which, in the scaled variables used here,
corresponds to a period in 	zz of 4��. The oscillation arises
from the successive constructive then destructive inter-
ference of the field in the steady-state region over the
undulator period. Because there is no current gradient the
constructive/destructive interference cycle is almost per-
fect and there is no net amplification. Therefore, the only
field available for amplification is that arising from shot
noise and leads to only SASE in the steady-state region.

In the vacuum region 	zz1 * 6 there are no electrons and
the radiation propagates in vacuum without further inter-
action except for the small region around 	zz1 � 6, where
electrons propagate due to the spread in p. The effect of
this spread smears out the initially sharp current gradient
at 	zz1 � 6 as the electron pulse propagates in 	zz. This
smearing of the electron pulse edge consequently reduces
the CSE emitted into vacuum as the electron pulse prop-
agates through the interaction region. This effect can be
seen from the higher CSE intensities emitted into vacuum
at the earlier stages (larger values of 	zz1) of the interaction.

The main features of the PSD are the radiation emis-
sion at the fundamental resonant frequency (f � 1) with
no resonant interaction at the harmonics as expected for a
helical undulator, and the significant contributions at low
frequencies, f & 0:25. This low frequency emission has
also been observed in simulations of the planar undulator
[9] and where resonant emission at harmonics is observed.
The radiation pulse intensity can be observed in the
absence of lower frequency fields by Fourier filtering
the fields Ax and Ay before calculating jAj2 � A2

x � A2
y.

The SDDS tool kit function SDDSFDFILTER was used to
070701-7
perform a high pass filter operation on the data Ax and Ay.
A linear transition from zero pass at f � 0:2 to full pass
at f � 0:3 was used. The filtered scaled pulse intensity
and PSD are shown in Fig. 5. Comparison of the unfiltered
Fig. 4 and the filtered Fig. 5 shows the modulation of the
resonant field intensity envelope in Fig. 4 is caused by the
low frequency contribution to the field.While we consider
these effects worthy of further investigation we will not
do so here.

Figure 6 plots both the filtered scaled average radia-
tion intensity hjAj2i and the modulus of the bunching
070701-7
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parameter jbj calculated over the single ponderomotive
period in the interval 2:5< 	zz1 < 2:6 as a function of 	zz.
The filtered data of Fig. 5 were used, so that scaled
frequencies f < 0:2 are not present. From the above defi-
nitions of the three regions of evolution it is seen that this
region in 	zz1 of the electron pulse will evolve as the steady
state (SASE) for 0< 	zz < 2:5 and as a slippage region
(SASE and SACSE) for 	zz > 2:5. The transition between
these two regimes is clearly visible in Fig. 6 from both the
radiation and electron properties at 	zz � 2:5.

For the 60 radiation period length rectangular electron
pulse of 1 nC used here, the number of electrons per
period 	NN% � 1:04� 108 which, from the previous sec-
tion, gives an expectation of the mean bunching due to
shot noise of 	bb �

���������������
�=4 	NN%

p
� 8:7� 10�5. This is seen to

be in reasonable agreement with the bunching in the
steady-state regime of Fig. 6. Notice that in the steady
state up to 	zz � 1:5 bunching does not significantly evolve
about this mean value and that the radiation intensity has
significant fluctuations. This is consistent with the elec-
trons emitting spontaneous radiation in the absence of any
FEL instability. The lack of the FEL instability in this
steady-state region up to 	zz � 1:5 can be attributed to
lethargy in the presence of the relatively large electron
energy spread parameter �p � 0:5. In the scaled variables
used here the radiation intensity due to shot noise can be
estimated as [14]

hjA0j
2i �

6
����
�

p
�

	NN%

��������������������
ln� 	NN%=��

p ; (28)
FIG. 7. Top panel: The scaled intensity, jAj2, as a function of
scaled pulse position 	zz1 for a scaled distance through the
interaction region of 	zz � 2 and a Gaussian profile electron
pulse of total duration 	lle � 18 and �e � 3. Bottom panel:
The scaled PSD, P, of the radiation as a function of the scaled
frequency f.
which for the parameters of Fig. 6 gives hjA0j
2i � 1:7�

10�10, in reasonable agreement with the numerical simu-
lation values at the beginning of the interaction 	zz * 0.

For 	zz * 1:5 gain of the radiation field is apparent in the
transition to 	zz � 2:5 and it can be seen that both electron
bunching and radiation appear less noisy. This is thought
to be, in part, due to the onset of the FEL instability.

For 	zz > 2:5 the electrons experience CSE radiation
from the slippage region and enter the SACSE regime
of evolution [13,15]. Following a transition region 2:5<
	zz < 3:5 both the electron bunching and the radiation in-
tensity are seen to interact collectively with both experi-
encing nonlinear gain.

A similar FEMFEL run to the above has also been
carried out for an electron pulse with a Gaussian current
profile of scaled width in 	zz1 of �z1 � 3, of total length
	lle � 6�z1 � 18 centered at 	zz1 � 	zz1c � 9. The Gaussian
energy spread and � parameter are as for the rectangular
case above.

It is easily shown that the wave equation is that of (23)
but with the normalization factor 	lle on the right-hand side
replaced by

�������
2�

p
�z1, and the equivalent expression for 	NNj

(24) is
070701-8
	NNj �
	NN�������

2�
p

�z1

exp

�
�
� 	zz1j � 	zz1c�2

2�2
z1

�
1�������

2�
p

�p

� exp

�
�

p2
gj

2�2
p

�
�p�	zz1: (29)

The same type of grid in �	zz1; p� as was used for the
rectangular pulse was loaded with macroparticles using
this Gaussian profile relation for 	NNj.

The scaled radiation intensity and PSD from the
Gaussian pulse is shown in Fig. 7 for a scaled interaction
distance through the interaction region of 	zz � 2. In con-
trast to the previous rectangular electron pulse profile,
there is no steady-state region of evolution. The region that
nearest approaches steady state is that around the peak of
the electron current at 	zz1 � 9 where the current gradient
is smallest. As with the rectangular electron pulse profile,
the PSD indicates the presence of significant lower fre-
quency emission for f < 1, in particular, for f * 0. The
same Fourier domain filtering as for the rectangular
profile was applied and the result plotted in Fig. 8. It is
seen that the presence of lower frequencies appear to have
a more profound effect on jAj2 for the Gaussian pulse
profile than for a rectangular. The regions 0< 	zz1 < 2 and
18< 	zz1 < 20 are the CSE resulting from a truncation of
the Gaussian electron pulse. This truncation causes dis-
continuities in the electron pulse current that drive CSE.
The region 2< 	zz1 < 18 has evolved in the presence of
both CSE and shot noise. It can be seen that the noisy
nature of the emission indicates that the spontaneous
shot-noise radiation dominates that of CSE. This is con-
sistent with previous works (e.g., [10,14]) which require
jE�b�j2 > 1= 	NN for CSE to dominate shot noise. For the
Gaussian case it is easy to show that this requires �z1 <
070701-8



FIG. 8. Top panel: The filtered scaled intensity, jAj2, as a
function of scaled pulse position 	zz1 for a scaled distance
through the interaction region of 	zz � 2 and a Gaussian profile
electron pulse of total duration 	lle � 18 and �e � 3. Bottom
panel: The filtered scaled PSD, P, of the radiation as a function
of the scaled frequency f.
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2�
������������
ln� 	NN�

p
for the resonant frequency. For the parameters

used here �z1 � 3 and 2�
������������
ln� 	NN�

p
� 7:6� 10�2 so that the

shot noise should dominate CSE as observed.
The peak number of electrons per period is at 	zz1 � 9

with 	NN% � 	NN=
�������
2�

p
�z1 � 8:3� 108 which gives an ex-

pectation for the bunching due to shot noise of 	bb ����������������
�=4 	NN%

p
� 3:1� 10�5. It can be seen from Fig. 9 that

the bunching as calculated over the period 8:95< 	zz1 <
9:05 is very slightly larger than this, the difference being
attributed to the statistical fluctuations. The scaled aver-
age radiation intensity hjAj2i over the same interval is
also plotted. The scaled radiation intensity due to shot
noise can be estimated, as for the rectangular pulse profile
case, from Eq. (28) to obtain hjA0j

2i � 2:0� 10�11. The
FIG. 9. The filtered scaled average radiation intensity hjAj2i
(�) and modulus of the bunching parameter jbj (+) over the
single period interval 8:95< 	zz1 < 9:05 of a Gaussian profile
electron pulse of 	lle � 18 and �e � 3.

070701-9
value obtained from numerical calculation is a factor
� 4 times this value for 	zz * 0. Again we attribute this
difference to statistical fluctuations.
VI. CONCLUSIONS

The derivation of the shot-noise model presented here
is perhaps more physically intuitive, and therefore appeal-
ing, than those used in current FEL simulation codes: The
macroparticle properties of arrival time and charge are
derived directly from the intrinsic Poisson statistical
properties of the individual electron arrival times at the
beginning of the interaction region. The model is there-
fore independent of any external factors such as a reso-
nant radiation period. A simple numerical example
including energy spread demonstrated that the model
describes well the averaged bunching statistics of a real
electron distribution.

The shot-noise algorithm was further tested in the 1D
code FEMFEL currently under development to describe
simultaneously the effects of shot noise, CSE, and
electron beam energy spread in a single pass FEL.
Preliminary results from this code demonstrate good
qualitative and quantitative agreement with that expected
from analysis and have shown that both SASE and
SACSE evolution may coexist within the same rectangu-
lar profile electron pulse. Work is required to further test
the model for correct statistical behavior of fluctuations
and higher order correlations [14].

Further validation of the model to higher dimensions
of phase space will be required in FEL codes such as
GENESIS 1.3 [3] and GINGER [2]. Some modification of
the model may be required when applied to such time-
averaged codes, especially when harmonic radiation is to
be modeled, where quite complex macroparticle loading
schemes are necessary [5]. It is not apparent however, that
unaveraged radiation field models such as FEMFEL should
require such complex loading schemes as the full fre-
quency content of the radiation is contained within the
single scaled complex radiation field A�	zz; 	zz1�. In contrast
to averaged models, where the radiation field is usually
described by a summation over harmonic modes with
each mode requiring the solution of a PDE, by using
the FEM there is only one complex PDE describing all
harmonic radiation evolution. The harmonic content of
this field is limited only by the size of the finite elements
used to discretize the field via the Nyquist theorem.

Another area that would benefit from further investi-
gation is the presence in the model of significant field
amplitudes at frequencies well below the fundamental.
The existence of these low frequency fields is not an
artifact of the numerical model as this model agrees
very well with the results of analytical analysis [9,13].

Finally, it should be noted that it may be possible
to reduce the number of macroparticles required in
high dimensional simulations by either carrying out a
070701-9
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quasirandom sampling of phase space [20] or by discre-
tizing phase space so that elemental volumes are not
equal. One method, for example, would be to discretize
phase space so that each volume element �V' of Eq. (22)
contains approximately equal numbers of electrons 	NNj. In
some circumstances this method may also assist in im-
proving the statistics by reducing the charge contrast
between macroparticles where this is an important factor.
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