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The microwave instability driven by the coherent synchrotron radiation (CSR) has been previously
studied [S. Heifets and G.V. Stupakov, Phys. Rev. ST Accel. Beams 5, 054402 (2002)] neglecting effect
of the shielding caused by the finite beam pipe aperture. In practice, the unstable mode can be close to
the shielding threshold where the spectrum of the radiation in a toroidal beam pipe is discrete. In this
paper, the CSR instability is studied in the case when it is driven by a single synchronous mode. A
system of equations for the beam-wave interaction is derived and its similarity to the 1D free-electron
laser theory is demonstrated. In the linear regime, the growth rate of the instability is obtained and a
transition to the case of continuous spectrum is discussed. The nonlinear evolution of the single-mode
instability, both with and without synchrotron damping and quantum diffusion, is also studied.
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An important question for practical applications is the
minimal beam current at which the instability can occur.

ment to the numerical one. We summarize the main
results of the paper in Sec. VIII.
I. INTRODUCTION

A relativistic electron beam moving in a circular orbit
in free space can radiate coherently if the wavelength of
the synchrotron radiation exceeds the length of the bunch.
In accelerators coherent radiation of the bunch is usually
suppressed by the screening effect of the conducting
walls of the vacuum chamber [1–3]. The screening effect
is much less effective for short wavelengths, but if the
wavelength is shorter than the length of the bunch (as-
suming a smooth beam profile), the coherent radiation
becomes exponentially small. However, an initial density
fluctuation with a characteristic length much shorter than
the screening threshold would radiate coherently. If the
radiation reaction force is directed so that it drives the
growth of the initial fluctuation, one can expect an in-
stability that leads to microbunching of the beam and an
increased coherent radiation at short wavelengths.

In Ref. [4] the growth rate of the beam instability
driven by the coherent synchrotron radiation (CSR) was
found using the so-called ‘‘CSR impedance’’ [5,6] that
neglects the shielding effect of the walls and assumes a
continuous spectrum of radiation. The maximum growth
rate was found to correspond to the wave number k �
!=c of the order of k��2=3R�1, where

� �
nbre

j
j��20
: (1)

Here nb is the linear bunch density, 
 is the momentum
compaction factor, �0 is the rms energy spread in the
beam, R is the orbit radius, and re and � are classical
electron radius and relativistic factor, respectively. Recent
experiments at the Advanced Light Source (ALS) [7] and
at BESSY-II [8] showed good agreement between theory
and experiment.
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At this threshold current, the instability develops at wave-
lengths where effects of the shielding [1] should be taken
into account. This issue was only qualitatively addressed
in [4], because the ‘‘free space’’ CSR impedance [5,6] is
not applicable near the shielding threshold where the
spectrum of the synchrotron radiation is discrete, and
one has to take into account that the instability may be
driven by a single synchronous mode rather than a con-
tinuous spectrum.

In this paper, we take the first step to study such a
single-mode CSR instability. We employ a model of a
perfectly conducting toroidal chamber (in general, of
arbitrary cross section) as the beam environment. We
show that this model allows solutions for both linear
and nonlinear regimes. Although the model cannot be
directly applied to existing rings (where typically bends
are intermitted with straight sections, often with varying
cross sections), we believe that it is useful as a building
block for a more comprehensive theory. As in Ref. [4], we
assume that the bunch is much longer than the wavelength
of the modulation and use a coasting beam approximation.

The paper is organized as follows. In Sec. II we briefly
review properties of traveling modes in a toroidal wave-
guide. In Sec. III we derive linear equations for the beam
instability, and in Sec. IV we solve the dispersion relation
and find the growth rate of the instability. In Sec. V we
discuss the transition from a single-mode to a multimode
regime of the instability. In Sec. VI we derive a system of
equations for the evolution of instability in the nonlinear
regime, and in Sec. VII we add to this system terms
responsible for synchrotron damping and quantum diffu-
sion. A numerical solution to this system is then obtained
that demonstrates continuous growth of the wave ampli-
tude on a long time scale. We also find an approximate
asymptotic solution to the system and show a good agree-
2003 The American Physical Society 064401-1
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II. SYNCHRONOUS MODES IN TOROIDAL BEAM
PIPE CLOSE TO SHIELDING THRESHOLD

A relativistic beam moving in a toroidal beam pipe
interacts with synchronous modes that have phase veloc-
ity equal to the speed of light. Such modes in a toroidal
pipe have been extensively studied in the past [3,9,10].
Recently, a new approach to the problem [11] extended the
previous analysis and allowed us to treat an arbitrary
cross section of the toroid.

Following Ref. [11], we assume that the characteristic
size of the pipe cross section a is much smaller than the
toroid radius R, so that the ratio

���������
a=R

p
is a small parame-

ter. For a given toroid, the synchronous modes have wave
numbers k greater than a minimal value kmin � !min=c:

k �
!min

c
�
R1=2

a3=2
� a�1:

The lowest synchronous mode wave number is of the
order of k0, where

k0 �
�
a

����
R
a

r
:

For example, for a beam pipe of a square cross section
with the side a, kmin � 1:52k0. The loss factor per unit
length � and the group velocity vg for this mode are

� �
4:94

a2
; 1�

vg
c

� 0:62
a
R
: (2)

Note that such modes propagate with the group velocity
close to the speed of light. The next mode with a nonzero
loss factor has a frequency ! � 2:79ck0 and the loss
factor � � 3:01=a2. We emphasize here that the distance
between the synchronous modes in the vicinity of !min is
of the order of their frequency, and in that sense the
modes are well separated on the frequency scale.
Similar results hold for the round toroidal pipe [11].

III. INTERACTION OF THE BEAM WITH A
SINGLE SYNCHRONOUS MODE IN LINEAR

APPROXIMATION

The interaction of the beam with electromagnetic
waves is usually described in terms of the beam imped-
ance (see, e.g., [12]). For discrete synchronous modes, the
beam impedance has singularities centered at the mode
frequencies. In this case, a direct application of the stan-
dard approach, as we show in Appendix A, may give an
incorrect result. In this section, we derive the governing
equations describing this interaction starting from the
Maxwell-Vlasov system of equations without using the
concept of the impedance.

We use a one-dimensional model for the beam, ne-
glecting the effect of the finite transverse emittance and
considering a distribution function f�z; �; t�, where z is
the longitudinal coordinate measured from a reference
particle moving with the speed of light, and � is the
064401-2
energy offset relative to the nominal energy E0, � � �E�
E0�=E0. We also assume that the modulation wavelength
is small compared to the bunch length and consider a
coasting beam with the linear density nb equal to the
local linear density of the bunch.

In the linear approximation, the perturbation due to the
electromagnetic field can be considered as small:

f � f0��� 	 f1�z; �; t�;

with f1 
 f0. The linearized Vlasov equation for f1 is

@f1
@t

� 
c�
@f1
@z

	
e

�mc
E�z; t�

@f0
@�

� 0; (3)

where � � E0=mc
2 is the nominal � factor and E�z; t� is

the longitudinal component of the electric field. The
function f is normalized so that

R
fdzd� gives the num-

ber of particles in the beam. For what follows, it is
convenient to introduce the Fourier transform g1 of the
perturbation of the distribution function

g1�!; q; �� �
Z
dtdze�i�qz�!t�f1�z; �; t�: (4)

The electromagnetic field is excited by the beam cur-
rent. Let us consider a Fourier component of the field with
the frequency !:

E !�r; s� �
Z
dtei!tE�r; s; t�; (5)

where s is the arc length along the beam path and r �
�x; y� is the two-dimensional vector in the transverse
plane perpendicular to the orbit. This field can be repre-
sented as a sum of toroidal modes in an empty waveguide
[13]. Assuming that the electric and magnetic fields of the
nth mode of frequency ! are given by

En�r; s� � en�r�e�i!t	iq�n;!�s;

Hn�r; s� � hn�r�e�i!t	iq�n;!�s;
(6)

where q�n;!� is the wave number of the nth mode, we
have

E !�r; s� �
X
n

Cn�s�en�r�; H!�r; s� �
X
n

Cn�s�hn�r�:

(7)

In these equations, en and hn describe the transverse
distribution of the electric and magnetic fields in the
mode, respectively, and Cn�s� is the varying in space
complex amplitude of the mode. Note that the quantity
E�z; t� is equal to the longitudinal component of E�r; s; t�
taken at the location s � ct	 z on the axis r � 0,
E�z; t� � Es�0; s � ct	 z; t�. The Fourier coefficient
Cn�q;!� of the amplitude is defined by the following
equation:
064401-2
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Cn�q;!� �
Z 1

�1
dse�iqsCn�s�: (8)

The coefficients Cn�s� can be related to the function g1
by means of the Lorentz reciprocity theorem [14]:Z

dS�E! �H
n 	E

n �H!� � �Z0

Z
dVj! �E

n; (9)

where Z0 � 4�=c is the free space impedance. This equa-
tion allows us to find the coefficients Cn�q;!� in terms of
the Fourier component j! of the beam current density.
For a filament beam current moving along the axis s,
j! � sI!��x���y�, where I! is the frequency component
of the current and s is the unit vector in the direction of
the beam motion. For ideal conductivity of the wall,
integration in Eq. (9) over the volume of the beam pipe
between two cross sections s � s1 and s � s2 gives

Z dq
2�
Cn�q;!��ei�q�q�n;!��s2 � ei�q�q�n;!��s1�

� �
1

Nn
�en�0� � s�

Z s2

s1

ds0I!�s0�e�iq�n;!�s
0
: (10)

Here Nn is the norm of the nth mode

Nn �
1

Z0

Z
dS�en � h

n 	 c:c:�; (11)
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where the integration goes over the cross section of the
pipe and ‘‘c.c.’’ stands for the complex conjugate term.
The norm Nn does not depend on the location of the cross
section in the integral of Eq. (11) and is equal to 4 times
the energy flow in the mode [13].

The beam current I�s; t� can be obtained by integrating
the distribution function:

I�s; t� � ec
Z
d�f1�s� ct; �; t�;

where we used the relation z � s� ct. For the Fourier
component I!�s� one finds

I!�s� � ec
Z dq

2�
eiqs

Z
d�g1�!� qc; q; ��: (12)

The amplitudes Cn can be found from Eqs. (10) and (12)

Cn�q;!� �
i
Nn

ec�en�0� � s�
q� q�n;!� � i%

Z
d�g1�!� qc; q; ��:

(13)

The infinitely small % > 0 in this equation takes into
account casuality. Making a Fourier transform of Eq. (3)
and using Eqs. (5), (7), and (8) yields
�!	 
c�q�g1�!; q; �� � �i
e

�mc
@f0
@�

X
n

�s � en�0��Cn�q;!	 qc�: (14)

Substituting then Eq. (13) into Eq. (14) gives

�!	 
c�q�g1�!; q; �� �
rec

2

�
@f0
@�

X
n

�1� 'g��

vg�q� q�n;!	 qc� � i%�

Z
d�0g1�!; q; �0�; (15)
where 'g � vg=c, vg is the group velocity, and � is the
loss factor associated with the nth mode [11]:

� �
vg

1� 'g

j�s � en�0��j2

Nn
:

It follows from this equation, that the dependence of g1
on � can be factored out

g1�!; q; �� �
G�!; q�
!	 
c�q

@f0
@�

;

where the function G does not depend on �. Putting this
equation into Eq. (15) yields the dispersion equation

1 �
X
n

)
q� q�n;!	 qc� 	 i%

Z
d�

@f0=@�
!	 
cq�

; (16)

where

) �
rec

2

�vg
�1� 'g��:

As always in stability theory, the integration in Eq. (16)
goes in the complex plane above the pole � � �!=
cq.
For a real value of q, Eq. (16) defines a complex frequency
! the imaginary part of which gives the growth rate of
the instability. Alternatively, we can consider real ! and
find a complex wave number q describing a periodic
perturbation growing or decaying along the beam pipe.

Note that the frequency of the mode � observed in the
laboratory frame, where it has a dependence of ei�qs��t�,
is equal to � � !	 qc.

IV. DISPERSION RELATION FOR A SINGLE
MODE

Let us assume that the distribution function f0���
is Gaussian with the rms energy spread �0, f0 �
�nb=�0�*0��=�0� with *0�+� � e�+

2=2=
�������
2�

p
. In the

single-mode approximation, we leave only one term in
the dispersion equation (16) which takes the form

q� q�n;�� �
nb)
�0

Z
d+

d*0�+�=d+
�� qc	 
c�0q+	 i%

: (17)

We expect that the instability develops close to the mode
064401-3
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FIG. 1. Dimensionless growth rate Imx as a function of the
dimensional detuning y. The maximum of Imx is reached at
y � 0 and approaches zero at y � �1:89; Imx � 0 for y <
�1:89.
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frequency !0,

� � !0 	 ��; �� 
 !0: (18)

The function q�n;�� can be expanded in the vicinity of
!0,

q�n;�� � q0 	
��

vg
: (19)

The frequency !0 is defined as the frequency of the
synchronous mode n under consideration in an evacuated
waveguide, !0 � cq�n;!0�, and q0 � q�n;!0� is the
wave number of this mode. The denominator in the in-
tegral of Eq. (17) is �� qc	 
c�0q+ � ��� �q�
q0�c	 
!0�0+. Equation (17) then takes the following
form:

��� vg�q � �
nb)vg

!0�20

Z
d+
d*0

d+

�
��� c�q

!0�0

	 +	 i%
�
�1
; (20)

where �q � q� q0.
Depending on the ratio ��=
!0�0, there are two

possible regimes for the instability: a large energy spread
regime, when j��j 
 j
!0�0j, and a ‘‘cold beam’’ ap-
proximation when the opposite inequality holds. We con-
sider here the latter case only, as more relevant to the
parameters of the existing accelerators. In this case, we
can evaluate the integrand in Eq. (20) asymptotically in
the limit j���� c�q�=
!0�0j � 1, which results in the
cubic dispersion equation:

���� �qvg����� �qc�2 � �nb)vg
!0: (21)

For �q � 0, one of the roots has a positive imaginary
part:

�� � ,ei�=3; (22)

where we introduced the parameter ,

, � �nb)vg
!0�
1=3 � c

	
renb!0
�

c�
�1� 'g�



1=3
:

(23)

Note that for a cold beam there is no threshold for the
instability. The estimate of the integral term in the dis-
persion equation used above neglects the Landau damping
and is valid provided j,j � 
!0�0.

For a general case of arbitrary detuning �q, Eq. (21)
can be written in the dimensionless form as

x2�x	 y� 	 1 � 0; (24)

by introducing

x �
��� c�q

,
; y �

c�q�1� 'g�

,
: (25)

Equation (24) can be easily solved numerically—it has
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three roots one of which corresponds to the instability.
The dimensionless growth rate Imx as a function of the
variable y is plotted in Fig. 1. We see that the maximum
growth rate is achieved at zero detuning, �q � 0.

V. TRANSITION TO CONTINUOUS SPECTRUM

In the previous sections, we focused on the interaction
of the beam with a single mode of frequency !0 ’ !min

near the shielding threshold of the instability. As was
pointed out before, interaction with high-frequency
modes at !� !min can be treated in terms of the CSR
impedance [1]. In this section, we consider the transition
from the single-mode regime to the continuous spectrum
interaction and find a criterion on the electron beam
density which determines such a transition.

The spectrum of synchronous modes in a toroidal
waveguide with perfectly conducting walls consists of
discrete modes. The width of the spectral lines in an
evacuated waveguide is infinitely thin, corresponding to
delta functions at the mode frequencies. Excitation of
those modes by the beam can be considered as broadening
of those infinitely thin lines, so that they can be charac-
terized by some width �!mode. When this width becomes
comparable or exceeds the distance between the modes
�!, the spectrum can be considered as continuous.

The average distance between the modes �! can be
estimated as �!� �dNmode=d!�

�1, where dNmode=d! is
the mode density in the frequency space. The latter can be
found from the equation for synchrotron power radiation
spectrum dP=d! of a point charge e (recall that we
assume frequencies well below the critical frequency):

dP
d!

� e2��!�
dNmode

d!
;

where ��!� is the loss factor per unit length as a func-
tion of frequency of the mode. The spectrum of the
synchrotron radiation below the critical frequency is
064401-4
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dP=d! � 0:52�e2=R��kR�1=3, and the loss factor ��!� is
estimated in Ref. [11] as �� a�2�ck0=!�

1=3, which gives
for �!

�!� ck0

�
ck0
!

�
2=3
:

The width of the mode �!mode can be estimated as c�q
where �q can be found from the second of Eq. (25) as
�q��y,=�1� 'g�. Observing from Fig. 1 that �y� 1,
we conclude that �q�,=�1� 'g�. It is interesting to
note that �!mode � ��. The overlapping takes place
when c,=�1� 'g� * ck0�ck0=!�2=3, or

��
�0�2
�
k
k0

�
2=3

�ka�2 * 1; (26)

where the parameter � is defined by Eq. (1) and k � !=c.
The growth rate of the instability �inst for a cold beam

in the continuous spectrum model [1] can be estimated as�
�inst

c

�
cont

� �1=2

�

�0
a

��
k
k0

�
2=3
:

It is easy to check that at � given by Eq. (26), �inst �,,
which means that the growth rates in both theories match
at the boundary of their validity regions.

Equation (26) shows that the mode overlapping occurs
easier for high-frequency modes. In the continuous spec-
trum model, the maximum growth rate is achieved for
kR ’ �3=2 [4]. Equation (26) gives the critical linear
bunch density ncr at which overlapping occurs for this
frequency,
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ncr �
��0
re

�
�0�
3=5

�
R
a

�
3=5
:

The model of Ref. [4] is valid if the beam linear density
nb is larger than ncr. It describes the instability of higher
modes where the shielding effect of the walls can be
neglected. At the same time, the lowest toroidal modes
are described by the single-mode model developed in this
paper.

VI. NONLINEAR REGIME OF THE INSTABILITY

When the amplitude of the unstable mode becomes
large, the linear theory is not valid anymore and one
has to use the full Vlasov equation for the distribution
function f�z; �; t�:

@f
@t

� 
c�
@f
@z

	
e

�mc
E�z; t�

@f
@�

� 0: (27)

An important approximation that we make in the non-
linear regime is that the evolution of the instability is
governed by a single mode with a wave number qw. One
would expect that this wave number is equal to q0 —the
mode that has the maximum growth rate in the linear
regime —however, for the sake of generality, we treat qw
as arbitrary (but close to q0). The derivation of the
equation for E�z; t� describing the interaction of the
beam with the mode is presented in Appendix B. The
result is given by Eq. (B7) which we reproduce here:
E�z; t� � �ec��1� 'g�
qw
2�

Z 1

�1
d�

Z t

�1
dt0

Z 2�=qw

0
dz0eiqw�z�z

0�	ic�qw�q0��1�'g��t�t0�f�z0; �; t0� 	 c:c:

It is convenient to introduce dimensionless variables 0, 1 , and p instead of t, z, and �, respectively, where

0 � ,t; 1 � qwz; p � �

!0

,
�;

and , is given by Eq. (23). We also introduce the amplitude A�0� such that

E � �
�mc,
e
!0

�A�0�eiqwz 	 c:c:�;

where

A�0� �
rec

2�
!0�1� 'g�

�,2

qw
2�

Z 1

�1
d�

Z t

�1
dt0

Z 2�=qw

0
dz0e�iqwz

0	ic�qw�q0��1�'g��t�t0�f�z0; �; t0�; (28)
and the dimensionless distribution function

F�1; p; 0� �
1

2�nb

,

!0

f;

normalized by the condition
R
1
�1 dp

R
2�
0 d1F�1; p; 0� �

1. Note that we use an approximation cqw � !0. In these
variables, the beam dynamics is described by the follow-
ing equation:
@F
@0

	 p
@F
@1

	 �A�0�ei1 	 c:c:�
@F
@p

� 0; (29)

and the amplitude A�0�, as it follows from Eq. (28),
satisfies the equation

@A�0�
@0

� he�i1i 	 iuA; (30)

with
064401-5
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he�i1i �
Z 1

�1
dp

Z 2�

0
d1F�1; p; 0�e�i1 ;

u �
c
,
�qw � q0��1� 'g�:

(31)

Note that characteristics of Eq. (29) are equations of
motion for a single particle:

d1
d0

� p;
dp
d0

� �A�0�ei1 	 c:c:�: (32)

Equations (29)–(31) constitute a full system of equa-
tions. It has a universal form of beam-wave interaction
describing particles moving in the external potential of
the unstable mode where amplitude and frequency have to
be defined in a self-consistent way. These equations have
an integral of motion:

C � jAj2 � hpi; (33)

which reflects conservation of energy—the sum of the
wave energy and the beam energy is constant during the
interaction.

The system of Eqs. (29)–(31) is encountered in other
problems of nonlinear beam-wave interaction, e.g., in
the one-dimensional free-electron laser (FEL) theory
[15,16], with the parameter , being equivalent to the
Pierce parameter *. The solution of the system on a
limited time interval can be obtained by numerical meth-
ods. In the numerical approach, the beam is represented
by a finite number M of macroparticles, and the average
hei1 i is approximated by the sum

PM
1 e

�i1k over all par-
ticles’ coordinates 1k. The result of such a solution—the
absolute value jAj of the amplitude of the wave —is
shown in Fig. 2. It shows that the amplitude of an initial
small perturbation saturates after an initial exponential
growth and exhibits oscillations at frequency of the order
of the bounce frequency of particles in the bucket of the
FIG. 2. The dependence of the amplitude jAj versus 0 in the
nonlinear regime of the instability. After 0 ’ 1, the exponen-
tial growth of the linear regime changes to oscillations with
the average amplitude jAj ’ 1 and the frequency of the oscil-
lations ’ 1.
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excited wave. Figure 2 agrees with a similar solution
obtained earlier in Ref. [15].

VII. SYNCHROTRON DAMPING AND QUANTUM
DIFFUSION

Contrary to the FEL theory, where it usually suffices to
track the solution on several gain lengths only, for a beam
in the storage ring we may be interested in a time com-
parable to the synchrotron damping time. The analysis in
this case has to include the synchrotron damping and
diffusion due to quantum fluctuation effects. One of the
difficulties of such an analysis is that the damping time
typically is larger than the synchrotron oscillation period
in the storage ring so that one has also taken into account
synchrotron oscillations of particles in the bunch. In this
section, however, we will consider an idealized formula-
tion which neglects synchrotron oscillations, but includes
synchrotron damping and diffusion due to quantum fluc-
tuation in synchrotron radiation. A more detailed study,
with an account of synchrotron motion, can be found in
Ref. [17].

To include the effects of synchrotron damping and
quantum diffusion into the interaction of the wave with
the beam, we need to use the Vlasov-Fokker-Planck
equation [18]. In our dimensionless variables it has the
following form:

@F
@0

	 p
@F
@1

	 �A�0�ei1 	 c:c:�
@F
@p

� �
@
@p

�
�2 @F
@p

	 pF
�
; (34)

where � and � are related to the synchrotron radiation
damping �SR and the rms energy spread �SR due to the
quantum fluctuations in the synchrotron radiation:

� �
�SR

,
; � �


!0�SR
,

:

Note that with damping the integral C in Eq. (33) is not
conserved any more; we have

d
d0

�jAj2 � hpi� � �hpi

instead of Eq. (33).
First, we will show that Eqs. (30) and (32) do not have a

steady-state solution corresponding to a constant ampli-
tude A. For simplicity, we consider only the synchronous
wave with qw � q0. Indeed, assume that A�0� does not
depend on time, A�0� � �iA0=2�e

i70 , where 70 is an arbi-
trary phase. We then have the following equations of
motion for particles:

d1
d0

� p;
dp
d0

� �A0 sin�1 	 70�:

It is easy to see that these are the pendulum equations
with the Hamiltonian H,
064401-6



FIG. 3. (Color) The absolute value of the amplitude jA�0�j as a
function of 0. Black curve: result of simulation; red curve:
analytical solution of Eq. (42).
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H�p; 1� �
p2

2
	 A0�1� cos�1 	 70��:

The Fokker-Plank equation (34) in this case has a steady-
state solution

F�p; 1� � Z�1e�H�p;1�=�
2
;

where Z is the normalization constant. The amplitude A0

and the phase 70 have to satisfy the condition that follows
from Eq. (30) with dA=d0 � 0 (recall that u � 0),

he�i1 i � Z�1
Z 1

�1
dp

Z 2�

0
d1e�i1e�H�p;1�=�2

� 0:

Because of periodicity in 1 , this condition is reduced toZ 2�

0
d1e�2�A0=�2�sin21 cos1 � 0:

It is easy to see that this equation does not have a solution
with A0 � 0.

In order to carry out numerical simulation of the
Vlasov-Fokker-Plank equation, we note that this equa-
tion is equivalent to the set of single-particle equations of
motion with damping and an external force 9�0�:

d1
d0

� p;
dp
d0

� �A�0�ei1 	 c:c:� � �p	 9�0�;

where 9�0� is a random function of time 0 with zero
average value h9i � 0 and the correlation function

h9�0�9�00�i � 2��2��0� 00�:

In our simulation, we used a discrete time mesh 0i with
the time step 0i	1 � 0i � 0s and a finite number of par-
ticles M. On each interval, we first solved the system of
the differential equations (30) and (32) without damping
and fluctuations. The damping and fluctuations were
taken into account at the end of each step by changing
variables p of each particle:

pk ! pk � �0spk 	
�������������������
240s��2

q
+;

where + is a random number uniformly distributed in the
range ��1=2; 1=2�. This algorithm was tested on the case
without the wave, A � 0, and also for the case of an
external wave with constant amplitude A � const, when
the Vlasov-Fokker-Planck equation has analytical solu-
tions. In both cases we found good agreement between the
numerical and analytical solutions.

For simulations, we chose parameters close to that
of ALS [7]: E0 � 1:5 GeV, 
 � 1:4� 10�3, �0 � 7:1�
10�4, nb � 7� 1010 cm�1, and R � 4 m. Calculations
were made for the lowest synchronous mode assuming a
square cross section of the vacuum chamber with the size
a � 4 cm equal to the vertical full gap of the beam pipe.
This gives for the mode frequency !0 � 1:0� 1012 s�1.
For parameters ,, �, and � we find , � 3:2� 107 s�1,
� � 0:032, and � � 2:0� 10�6. However, to speed up
the tracking, we increased the parameter � from the ALS
064401-7
value to 2:0� 10�2. We expect that such a rescaling of �
accelerates the manifestation of the synchrotron damping
effects without qualitatively changing the solution.
Typically we used from 200 to 800 particles in the
simulation.

The results of the tracking for 0 � 1000 (correspond-
ing to approximately 20 damping times) are shown in
Figs. 3 and 4.

Figure 3 shows the amplitude A0�0�, and Fig. 4 shows
the average over the distribution function momentum hpi
and the rms spread in p, �prms, as functions of time. For
the time interval small compared with the damping time
0 & 50, results of tracking reproduce Fig. 2. For larger
time intervals, 0� 50, we see that the amplitude A0

keeps growing, and the beam comes to a quasiequili-
brium, with slowly changing values of hpi and �prms.
Note also a relatively small value of �prms, which means
that particles of the beam are well localized in the p
space.

The numerical results shown in Figs. 3 and 4 give us an
indication of an analytical solution to the problem in the
limit of large 0. In this solution we assume that

A�0� �
1

2
iA0�0�e�i:�0�0; (35)

where the function A0�0� and frequency :�0� are slow
functions of time. Without losing generality, we can as-
sume that both A0 and : are real. Substituting Eq. (35)
into Eq. (32) yields

d1
d0

� p;
dp
d0

� �A0 sin�1 � :0�; (36)

where the amplitude A0 has to be determined in a self-
consistent way from Eq. (30).

Let us make a canonical transformation of variables
from 1 and p to + and r, respectively,

+ � 1 � :0; r � p� :: (37)
064401-7



FIG. 5. Potential U � !+	 �1� cos+� for ! � 0:25.

FIG. 4. (Color) Numerical simulation of the nonlinear regime
of the instability: (a) the average momentum hpi; (b) the rms
momentum spread �prms. The red line shows the result of the
analytical model.
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The Fokker-Plank equation (34) in new variables takes
the form

@F
@0

	 r
@F
@+

� A0 sin+
@F
@r

� �
@
@r

	
�2 @F

@r
	 �r	 :�F



:

(38)

Because A0 and : are assumed to vary slowly, in this
equation we can neglect their time dependence and con-
sider them as constant.We then find a steady-state solution
of Eq. (38) as

F�r; +� � Z�1 exp

�
�r2 � 2A0U�+�

2�2

�
; (39)

where Z is a normalization constant and the potentialU is

U�+� � 1� cos+	!+;

with ! � �:=A0. Note that U depends on time only
through adiabatic dependence of A0 and :. For the pur-
pose of illustration, Fig. 5 shows the plot of the potential
U for ! � 0:25.

The condition of self-consistency defines time depen-
dence of the parameters A0 and :. Substituting Eq. (35)
into Eq. (30) yields

dA0

d0
� i:A0 � 2ihe�i+i: (40)
064401-8
Separating the real and imaginary parts in this equation
we get two equations:

dA0

d0
� �2hsin+i; : �

2

A0
hcos+i: (41)

Note that the nonzero detuning u would shift :!
:	 u=2.

Our numerical simulations show that at large 0 par-
ticles tend to accumulate at the bottom of local wells of
the potential U (see Fig. 5) with a small momentum r �
0. The adiabatic approximation can be simplified even
further if the averaging in Eq. (40) is replaced by the
value of the function ei+ taken at the location of the
minimum +0 of the potential U�+�:

he�i+i � e�i+0 :

It is straightforward to show that sin+0 � �!. Using
Eq. (41), we find ! � �1	 A4

0=�2��
2��1=2 and equation

for A0�0�,

dA0

d0
�

2����������������������������
1	 A4

0=�2��
2

q : (42)

Since this equation determines asymptotic behavior of A
in the limit 0! 1, the initial condition for it is not well
defined. For the purpose of comparison with the numeri-
cal solution, we considered an initial condition A�00� �
A, with A as a fitting parameter. The result of the
integration of Eq. (42) with A�100� � 2:5 is shown in
Fig. 3 in red, in good agreement with the numerical
solution. It is straightforward to show that for large 0 it
follows from Eq. (42): A0 / ��0�1=3. The averaged mo-
mentum of the particles hpi in this model can be found
from equation r � 0 which gives hpi � : � 2 cos+0=A0.
This curve is shown as a red line in Fig. 4(a).

Note that, as follows from Eq. (42), changing the
parameter � does not change the character of the growth
of the amplitude and results only in rescaling of the
characteristic time of the process. Although our simula-
tions shown in Figs. 4 and 5 were carried out with an
064401-8
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artificially large value of �, a small realistic value of �
would demonstrate a similar, though slower behavior.

VIII. CONCLUSION

In this paper, we studied stability of the beam interact-
ing self-consistently with a single synchronous mode in a
toroidal waveguide. We first derived the beam-mode in-
teraction equations in linear approximation, obtained the
growth rate of the instability, and compared the result
with the model of the CSR instability with continuous
spectrum. We also showed that the latter follows from the
singe-mode model in the limit when the resonances over-
lap, and obtained the criterion for transition from one
regime to the other.

We then derived equations for nonlinear beam-mode
interaction, assuming that the interaction is dominated by
a single synchronous mode. For relatively small time
intervals, the interaction can be described by a system
of equations which, after proper scaling, has a universal
form that does not depend on parameters of the system.
We note that this system of equations is analogous to a
one-dimensional free electron laser theory and leads to
the same beam dynamics.

For a storage ring, one is interested in the long-term
evolution of the instability, when effects of synchrotron
damping and quantum diffusion become important.
Using the Vlasov-Fokker-Planck equation to describe
these effects, we showed, both numerically and analyti-
cally, that in the long term there is no saturation of the
instability: the amplitude of the mode keeps growing
although at a slow rate. Our analytic approximation to
the solution describes such an asymptotic behavior and
shows a good agreement with the numeric one.
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APPENDIX A: DERIVATION OF THE
DISPERSION RELATION BASED ON SINGLE-

MODE IMPEDANCE

The dispersion relation in the standard theory of the
stability of a coasting beam is [12]

1 � i
nbrec2

��0
Z���

Z dpd*0�p�=dp
��� kc� 	 
c�0kp

;

where Z��� is the beam impedance, and k is the wave
number. The resonant impedance for a mode of frequency
!n is

Z��� �
Rn

1	 iQn�!n=���=!n�
; (A1)

where Rn and Qn are the shunt impedance and the Q
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factor of the mode, respectively. If the Q factor is large,
Qn 
 1, in the vicinity of the resonant frequency � �
!n, the impedance is simplified:

Z��� �
i
2

!n
��!n

Rn
Qn

� i
�n
��

; (A2)

where the loss factor �n � !nRn=2Qn.
Equation (25) now takes the form

1 � �
nbrec

2�n
��0�

Z dpd*�p�=dp
��� kc� 	 
c�0kp

: (A3)

The same results follow from Eqs. (17)–(19) for
q � qn � k except for the additional factor 1� 'g.
Equation (25), strictly speaking, implies a localized im-
pedance and has to be corrected for the impedance due to
propagating modes with large group velocity.

APPENDIX B: EQUATIONS DESCRIBING
INTERACTION OF THE BEAM WITH A

SINGLE MODE

The equation for the electric field can be obtained
analogously to the derivation of Eq. (13). The only differ-
ence is that instead of the Fourier component of the
perturbation of the distribution function g1, one has to
use the full distribution function g:

Cn�q;!� �
i
Nn

ec �en�0� � s�
q� q�n;!� � i%

Z
d�g�!� qc; q; ��;

(B1)

where

g�!; q; �� �
Z
dtdze�i�qz�!t�f�z; �; t�: (B2)

In a single-mode approximation, we assume that in the
nonlinear regime the electromagnetic field is dominated
by a mode with the wave number qw close to the syn-
chronous wave number q0. In this case, the distribution
function f is a periodic function of z with the period
equal to 2�=qw. This means that the function g given by
Eq. (B2) can be represented as

g�!; q; �� �
X
k

g�k��!; ����q� kqw�;

where

g�k��!; �� � qw
Z 2�=qw

0
dz

Z
dtf�z; �; t�e�i�kqwz�!t�dz:

The dominant part of the interaction of the beam with the
wave is determined by the first harmonic of the distribu-
tion function. For this reason, we will keep only harmon-
ics g��1� in Eq. (B1).

Note that the quantity E�z; t� in Eq. (27) is equal to the
longitudinal component of E�r; s; t� taken at the location
064401-9



PRST-AB 6 SINGLE-MODE COHERENT SYNCHROTRON RADIATION . . . 064401 (2003)
s � ct	 z on the axis r � 0, E�z; t� � Es�0; s � ct	 z; t�. Using Eqs. (B1) and (B2), we find for E�z; t�:

E �z; t� �
Z d!dq

�2��2
Cn�q;!� �en�0� � s�e�i!t	iq�z	ct�

�
iec
Nn

Z d!dq

�2��2
jen�0� � sj2

q� q�n;!� � i%
e�i!t	iq�z	ct���q� qw�

Z
d�g�1��!� qc; �� 	 c:c:

�
iec
Nn

Z d!dq

�2��2
jen�0� � sj2

q� q�n;!� � i%
e�i!t	iq�z	ct�qw��q� qw�

Z
d�dt0dz0e�i�qz

0��!�qc�t0�f�z0; �; t0� 	 c:c: (B3)

The integration over the frequency can be carried out using the following relation:

Z d!
2�

e�i!�t�t
0�

q� q�n;!� � i%
� ivg�q�"�t� t0��e�i!n�q��t�t

0� 	 ei!n�q��t�t
0��; (B4)

where "�t� is the step function,!n�q� is the solution of the dispersion relation q�n;!n� � q, and vg�q� � d!n�q�=dq is
the group velocity. In Eq. (B4) we took into account that for each q there are two values of !n with opposite signs
corresponding to waves propagating in opposite directions [we will assume !n�q� > 0 below]. Substituting Eq. (B4)
into Eq. (B3) gives

E �z; t� � �
ec
Nn

Z dq
2�
vg�q�jen�0�

� sj2qw��q� qw�
Z
d�dt0dz0"�t� t0�eiq�z�z

0��ei�cq�!n�q���t�t
0� 	 ei�cq	!n�q���t�t

0��f�z0; �; t0� 	 c:c:

� �
ec
�Nn

qw
2�

vg�qw�jen�0� � sj2
Z
d�dt0dz0"�t� t0�eiqw�z�z

0�	i�cqw�!n�qw���t�t0�f�z0; �; t0� 	 c:c:; (B5)

where we kept only the resonant terms in the equation. One can expand !n�qw� � !n�q0� 	 �qw � q0�vg�q0� and also
assume vg�qw� � vg�q0�. With this expansion, integration over q in Eq. (B5) with account of both contributions from
	q0 and �q0 yields

E �z; t� � �
ec
Nn

qw
2�

vgjen�0� � sj2
Z
d�dt0dz0"�t� t0�eiqw�z�z

0�	ic�qw�qn��1�'gn��t�t0�f�z0; �; t0� 	 c:c:; (B6)

where vg, 'g � vg=c, and en�0� now refer to the synchronous mode. It is worth noting that the retardation time in the
distribution function in Eq. (B6) depends on the relative speed of the particles (assumed here close to c) and the group
velocity of the wave vg.

The coefficient in Eq. (B6) is related to the loss factor � per unit length of the synchronous mode [11]:

� �
vg

1� 'g

j�s � en�0��j2

Nn
;

so that Eq. (B6) can also be written as

E �z; t� � �ec��1� 'g�
qw
2�

Z
d�dt0dz0"�t� t0�eiqw�z�z

0�	ic�qw�q0��1�'g��t�t0�f�z0; �; t0� 	 c:c: (B7)
Equations (27) and (B7) describe nonlinear interaction
of a synchronous mode with the coasting beam.
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