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A self-amplified spontaneous emission free-electron laser (SASE FEL) is a device which is based on
the creation of a very intense, relativistic electron beam which has very little temperature in all three
phase planes. The beam in this system is described as having ‘“high brightness,” and when it is bent
repetitively in a magnetic undulator, undergoes a radiation-mediated microbunching instability. This
instability can amplify the original radiation amplitude at a particular, resonant wavelength by many
orders of magnitude. In order to obtain high brightness beams, it is necessary to compress them to
obtain higher currents than available from the electron source. Compression is accomplished by the use
of magnetic chicanes, which are quite similar to, if much longer than, a single period of the undulator.
It should not be surprising that such chicanes also support a radiation-mediated microbunching
interaction, which has recently been investigated, and has been termed coherent synchrotron radiation
(CSR) instability. The purpose of this paper is to compare and contrast the characteristics of the closely
related FEL and CSR microbunching instabilities. We show that a high-gain regime of the CSR

instability exists which is formally similar to the FEL instability.

DOI: 10.1103/PhysRevSTAB.6.040702
L INTRODUCTION

A linear accelerator consists mainly of nominally
straight accelerating structures and focusing elements,
but also often relies on sections in the beam line where
the electron beam is transversely deflected. In addition to
bending magnets used to connect different beam lines
that have a relative offset, there are dispersive sections,
such as magnetic chicanes, in which the beam is finally
placed along its original axis. One of the main purposes
of such a bending configuration is to manipulate the bunch
length. This manipulation requires a time-energy chirp to
be applied to the electron bunch by the linear accelerator,
with the correlation partially or fully removed by the
beam dynamics in the chicane. Such a scheme is referred
to as a bunch compressor. In the process of bending the
beam in the chicane, broadband synchrotron radiation is
emitted. The amplitude of this radiation at wavelengths
similar to, or longer than, the bunch dimension can be
greatly enhanced by constructive interference. This
phenomenon, which is known as coherent synchrotron
radiation (CSR), can lead to significant, undesirable dis-
tortions of the beam’s longitudinal and transverse phase
space distributions, as well as introducing correlations
between phase planes.

Similar in layout to the chicane, but much smaller in
size, is a single period of an undulator or wiggler magnet.
The periodic deflection of the electron beam also causes
the spontaneous emission of synchrotron radiation. The
advantages of undulators or wigglers, which consist of a
large number of such periodic bending arrays, as radiation
sources are twofold: (i) the radiation power is accumu-
lated over the entire undulator length in a compact angu-
lar region, and (ii) the periodic nature of the radiative
process narrows the bandwidth in the angular spectrum
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around resonant frequencies through repetitive interfer-
ence effects. In addition, these resonant frequencies are
tunable by simply changing the driving beam energy.

The spontaneous synchrotron radiation emitted in an
undulator or wiggler can act back on the electron beam.
Again, because of the repetitive nature of the interaction,
the emitted radiation can modulate the beam energy on
the scale of the resonant wavelength [1], by forcing the
electrons to exchange energy with the field through mo-
tion transverse to the field propagation vector. The emitted
radiation modulates the beam particles forward of the
emitting electron, because the light travels essentially
along the nominal beam line path (s) at speed ¢, which
is faster than the electron velocity. Because the undulator
is, similar to the magnetic chicane, a dispersive device,
the energy modulation is eventually transferred into a
temporal (current) modulation termed microbunching.
Because the coherence of the radiation at the resonant
wavelength is enhanced by this microbunching, more
radiation power is emitted, and this feedback mechanism
can drive a collective instability [2,3], where an initial
bunching and the corresponding emitted radiation is
amplified up to a point where maximum bunching (satu-
ration) is achieved. This microbunching instability typi-
cally occurs on a scale much shorter than the bunch
length, and is the operating principle of the free-electron
laser [4] (FEL), where the instability is intended. To
enhance the performance of an FEL, bunch compressors
are often incorporated in the beam line to shorten the
bunch length, increasing the driving beam current and
beam brightness, and thus the FEL gain.

Although it is explicitly sought in an undulator or
wiggler, the interaction of the electron bunch with
the coherent, spontaneous radiation within a magnetic
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chicane can degrade the electron beam quality [5], re-
ducing the performance of a succeeding FEL employed
on the compressed beam. On their curved trajectory in
bend magnets, the electrons emit radiation, which again
moves forward in the beam, because the radiation prop-
agates faster, and in a straight line. The radiation field and
electron cross at an angle (typically much larger than in
an FEL undulator) yielding a longitudinal electric field
component, which changes the electron energy [6]. The
difference between this energy exchange mechanism and
that in an undulator is purely semantic. In the undulator,
we define longitudinal as along z, the undulator axis, and
thus energy exchange is possible because the electron
travels transverse to the nominal radiation direction,
along the electric field polarization direction. In the chi-
cane magnet, we define longitudinal to be always locally
along the direction of the electron s, so ‘“‘transverse”
motion of the beam’s central trajectory is forbidden by
definition. Thus the field propagation vector is now de-
fined as having a transverse component, and the electric
field as having a longitudinal component, allowing en-
ergy exchange. In analogy to an undulator the dispersion
causes a growth in the beam current modulation and thus
in the coherence level of the synchrotron radiations [7].
We shall see that the way in which microbunching due to
energy modulation asserts itself in the chicane is qual-
itatively different than in the undulator case.

In the following sections we undertake a comparison
of the collective beam dynamics induced by the beam-
radiation interaction in an FEL and a magnetic chicane.
For sake of simplicity we restrict ourselves to 1D models
of this interaction. Because the FEL theory [8] is well
understood, and because we will frequently refer to as-
pects of the FEL model, we begin our discussion with a
brief summary of its basic results. In addition, there has
recently been a tremendous improvement in understand-
ing the model of the microbunching instability (CSR
instability) in a bunch compressor [9,10]. Because this
theory is rather complex, we present here a simplified,
low-gain model of the instability, based on a few, but
well-justified, assumptions. We identify first many points
of comparison and contrast between the FEL and CSR
instabilities. We then extend the model of CSR instability
to the high-gain limit, noting similarities in the theoret-
ical analysis and underlying physics of both CSR and
FEL cases.

II. MICROBUNCH INSTABILITY IN A FEL

Free-electron lasers employ the collective instability of
an electron bunch in an undulator to increase the electro-
magnetic radiation output power level orders of magni-
tude beyond the level of spontaneous radiation. In
addition, this radiation is at least partly coherent, and so
the system has characteristics of more conventional la-
sers. We now review these characteristics through a dis-
cussion of the basic theory of the FEL.
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The analytical framework for FEL theory is well
understood and we present here only the results relevant
to our discussion. Three dimensional effects [11] such as
diffraction are ignored. A 1D treatment implies among
other characteristics that the radiation does not, as in the
case of the chicane system, leave the region of the beam
transversely, either by diffraction, or cross propagation.
As we consider a long beam limit only, the radiation also
does not leave the beam region longitudinally.

The FEL process is initiated by a preexisting modula-
tion in the electron bunch distribution at the undulator
fundamental resonance wavelength (self-amplified spon-
taneous emission free-electron laser, or SASE FEL),
which may exist initially only at the random noise level.
For a planar undulator the velocity of the electron in an
alternating B field B, (s) = By sin(kys) of period A, =
27/ky and longitudinal position s is in the xz plane with

Buls) = Jsinthus) B, =0,
1+ K?*/2 K?
ﬁz(s) =1- TZ/ + WCOS(kuS).

The undulator parameter K is defined as K = eBy/mcky;.
Because the electrons have a transverse velocity compo-
nent, they couple with a superimposed radiation field,
propagating along with the beam.

The change in the energy depends on the phase between
the motion and the electromagnetic field E, (s, t) =
Ecos[k(s — ct) + ¢]. The FEL model assumes that at
any phase the interaction over a single period is too weak
to exhibit significant effects. As the energy transfer has to
be accumulated over many periods, it requires that the
phase remains almost constant over many undulator
periods. One frequency fulfills this requirement, yielding
the FEL resonance condition

k
k+ky'

(B) = (D

This condition physically implies that the radiation slips
one wavelength past the beam electrons per undulator
period, as it must to allow optimal constructive interfer-
ence in the emitted radiation. The restriction of examin-
ing only a small bandwidth [12] around the resonant
frequency which obeys Eq. (1) is referred to as the reso-
nance approximation.

It significantly simplifies the analytical framework of
FEL theory if the equations of motion are averaged over
the undulator period. The longitudinal variables of each
electron—the ponderomotive phase 6; = (k + ky)s; —
ckt and the energy deviation &; = (y; — v¢)/p7y, from
the mean energy y,—are slow-varying quantities in the
comoving frame of the ponderomotive wave. The scaling
parameter [2] p is introduced to simplify the equations of
motion. It is defined as
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Kf,.y? 2/3
p= |: fc'}/owp :| (2)
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where @, = ,/uon,e?c?/myj is the plasma frequency

and 7y the resonant energy, which fulfills the requirement
of Eq. (1) for a given radiation and undulator wave num-
ber. In a planar undulator the electrons also perform a
longitudinal oscillation (when the transverse velocity is
large, the longitudinal velocity is diminished) which
effectively smears out the particle position. This reduces
the coupling and is expressed by the coupling factor f,. =
Jo(m) — Ji(n) with n = K?/(4 + 2K?). With the nor-
malized radiation field amplitude A = —i[Kf./(2 +
K?)p?l(eEy/mc?k)e’® the dynamics of an FEL is de-
scribed by the FEL equations

do;
=A+3S$.
L =A+s, 3
,\] = —[(A+ l'0-<e_101>)e“9/ +c.c.], 4)
das
A, .,
e ©

The detuning parameter A = (y3 — y%)/2p7y% is the col-
lective deviation of the beam energy from the resonant
energy. Note that the change in longitudinal position 8 is
linear with the total momentum offset A + 8. Thus the
longitudinal velocity responds without delay to changes
in momentum. Note that this is true only because the
equations of motion are averaged over a period—exami-
nations of delay in response shorter than one period are
outside of the model’s applicability.

We complete our description by noting that the space
charge parameter o = (w3y})/2c¢?kky v represents the
longitudinal repulsive forces which counteract the in-
duced bunching by the radiation field. The normalized
position § = 2ck,pt is the position in the undulator,
measured in units of the characteristic length 1/2k,p.

Equations (3)—(5) are coupled and allow collective
instability to occur. Assuming that the modulation in
energy and position as well as the radiation field ampli-
tude evolves exponentially as exp[iA$] the FEL equations
are reduced to the dispersion relation [13]

1 dfo 1
+ — v =
: <A U>]35A+A+6d5 0 ©)

where f| is the initial distribution in energy. In the case of
no detuning, space charge, and energy spread, the dis-
persion relation reduces to the cubic equation A3 = —1.
One of the roots has an imaginary part of amplitude
—/3/2 which corresponds in an exponential growth of
the field amplitude and the beam modulation. The char-
acteristic scale of the field growth is the gain length L, =

Ay/N127p.
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A limit is implicitly imposed on the FEL equations by
the resonance approximation. It can be expressed using
the FEL parameter p as

p <. )

For all existing and planned FELs [14—19] the condition
is sufficiently fulfilled. However, the conceptual conse-
quences of violating the condition in Eq. (7) will be
explored in the context of our comparison of the FEL
and CSR instabilities.

In summary, the FEL instability has several unique
features, which we point out here to aid in our comparison
with the CSR microbunching instability in a magnetic
chicane:

Frequency components are located within a narrow
bandwidth around a central, resonant wavelength Eq. (1).
The relative bandwidth is of the order of p. If p were to
attain values near unity, the resonance approximation
would clearly be violated, and the physical picture we
have deduced from the analysis above would qualitatively
change.

The amplitude of the transverse oscillation is typically
small compared to the beam size. The same radiation field
interacts with the electron bunch over the entire undulator
length. This requires one to include Maxwell equations
for a self-consistent description of the instability process.
Assuming validity of the resonance approximation and
the resulting predominant direction of propagation of the
radiation field at a well-defined wavelength implies the
paraxial approximation of the Maxwell equations, where
the second order derivatives of the radiation amplitude
and phase with respect to longitudinal position and time
are ignored.

The electron dynamics occurring during an undulator
period is replaced by its averaged behavior. As with the
paraxial approximation of the radiation field, this is valid
as long as the resonance approximation holds. Again, if p
is near unity, the paraxial approximation (and the related
slowly varying field amplitude approximation) would be
violated, and the standard description of the FEL we have
given is not valid.

III. DESCRIPTION OF PARTICLE DYNAMICS IN
A MAGNETIC CHICANE

A magnetic chicane consists typically of bending mag-
nets, drifts, and, optionally, focusing quadrupoles. For a
simpler comparison to the FEL we exclude the latter two
components from the discussion. The bend angle in a
chicane dipole depends on the beam energy, and the orbit
within the chicane is dispersive. If the electron energy is
constant the path length difference in the bunch compres-
sor can be expressed by the matrix element Rsq =
[0{(s)/96(s)], with

{(s) = L(sp) + Rse(s, 50)0. (8)
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Here s and s, denote the final and initial positions on
the design orbit, respectively, { = ct is the position in the
frame of the moving bunch, and 8 = (y — yq)/vo is
the normalized deviation of the electron energy from
the mean energy 7y,; we are using the ultrarelativistic
approximation 8 = 1. The matrix element Rss depends
on the dispersion function 7 and the bend radius R and is
defined as

Rsq(s, 59) = f ’ Zg,; s 9)

For the case where the electron beam interacts with the
spontaneous radiation, the dispersion functions change
with any change in the electron energy. We thus generalize
the definition of Rs4 to

£(s) = {(so) + f " 5(s)Rsgls, sds'. (10)

So

In the case that o is constant Eq. (10) reduces to Eq. (8)
using the relation Rs¢(s, s¢) = [;‘0 Rsq(s, s')ds’. The inter-
pretation of Eq. (10) is that the change in { is given by the
summation over all dispersion contributions between two
arbitrary points s and sy, wherever the beam energy
changes. The longitudinal “velocity” is easily obtained
by taking the derivative of Eq. (10), yielding

s >, /
%: ] 5(51)8RL(S’S)03S/. (11)
ds 5 ds

Note that the derivative with respect to the upper boun-
dary of the integral of Eq. (10) is zero. The function Rs
implicitly depends on the bend field and radiated energy at
all preceding positions in the magnetic chicane.

To describe a microbunched distribution of electrons,
we begin by assuming a coasting beam with a small
modulation

1({,s) = Ip{l + |b(s)| cos[k{ + ()]} (12)

Because the magnitude and the relative position of the
modulation can change within the bunch compressor, |b|
and ¢ depend on s. The emission of synchrotron radiation
interacts with electrons in the forward direction. The
resulting potential [6] seen by the electrons is

2 1 9

MO =GR R a

13)

for { < 0 and zero otherwise. Note that in this model we
exclude any transient effects and assume that the inter-
action is instantaneous. The energy change of any given
electron is
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(14)

The growth of the energy modulation scales linearly with
the modulation of the current. Note also that the potential
has a phase offset of — /6 with respect to the modulation
itself.

IV. THE CHICANE MODEL

To perform a first analysis of the CSR instability, we
consider an idealized chicane, which consists of three
bending magnets with no drift space separating them.
The outer magnets have a length of L while the inner one,
which bends in the opposing direction of the outer two, is
twice as long. This model, which describes many existing
chicanes well, may not apply to certain proposed chi-
canes, which have long intermagnet drifts.

To further simplify our calculations, the bend radius R
is assumed to be much larger than L and the dispersion
function is calculated based on the small deflection angle
approximation 6, = L/R < 1. It is convenient to nor-
malize the dispersion function 7 between any two arbi-
trarily chosen positions s and s’ to the bend radius R. With
the initial conditions n(s’) = 0 and 1'(s’) = 0 the dis-
persion function is

%(S;?S/)z (I, I), (H, H),
(111, 110),
n | D —LeR)? (L 1),
il R wm,
1(s=3L)2 4 1(@)2 — (32
2VR 2\ R R
|~ (111, 1),

where the pairs of roman numbers indicate in which di-
pole the ending and starting points, respectively, are
located. The dispersion function is related to the modified
matrix element Rsq as

J - a7 s— s
—Rs = =

as TR RORG) (16)

We incorporated the bend direction of the dipoles into the
sign of the bend radius as

R(s) = {R, s in 1st or 3rd dipole, 17

—R, s in 2nd dipole.

With this convention, it can be easily seen that the sign of
the differential matrix element changes when the electron
enters the adjacent dipole. Physically this means that a
particle that gains energy, becoming more rigid, has the
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tendency to fall behind the design trajectory in the mag-
net where the energy gain occurs. At a magnet boundary,
however, the change in the dipole polarity reverses this
effect, and the higher energy particle moves forward with
respect to the design trajectory. In a chicane where the
energy is held constant, the beam actually decompresses
in the first and last dipoles, and compresses in the middle.
Net compression is achieved in this case because the
dispersion is much larger in the middle dipole.

In the present model, the differential equation for the
longitudinal motion becomes

aiZ (s, s—s |

V. THE LOW-GAIN MODEL

Asindicated in Eq. (18) a change in the particle energy
has a delayed effect on the particle’s longitudinal posi-
tion, which grows with the third power in s. In addition
the change in the longitudinal position is also inhibited
by the change in the polarity of the bending magnets.
Particles with higher energy fall behind due to the larger
bend radius, but catch up due to the shorter path length
after a polarity change. Similar arguments are valid for
lower energy particles. A third condition must be present
before longitudinal motion and therefore instability can
grow—the energy modulation must first grow signifi-
cantly. Thus for short time scales, and low gain, 8(s’)
can be expected to change linearly in s'.

We recall for comparison that the resonance condition
of the FEL theory averages over one period, and as a
result the change in the longitudinal position due to an
energy modulation is linear in s. Therefore the differ-
ential equations for phase and energy must be solved
simultaneously. For the chicane, assuming low gain, the
situation is qualitatively different. We can expect that the
energy modulation is accumulated first before it affects
the longitudinal position, which changes primarily in the
last part of the chicane. The mechanism is very similar to
that of a klystron [20].

This assumption of klystronlike behavior is invalid for
high currents. In this case the delayed change in the
longitudinal position is noticeable even in the first bend-
ing magnet. This instability is similar to the bunching
instability in a storage ring [21], which can be regarded as
a single long bending magnet. An initial bunching will be
amplified exponentially until all particles are bunched
and the beam breaks up. We discuss this limit further in
the following section.

For many of the presently operating or proposed chi-
cane compressors, the low-gain limit is valid. We model
the initial current by an equidistant distribution plus an
added sinusoidal modulation in the positions. The ampli-
tude and wave number of this modulation are A/ and k.
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The complex-value bunching factor is determined by
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= J1(kAQ)e'. 19)

o0

> JkAg)explin(is; + ) |

n=-—o0

Because the effective radiation potential is harmonic in {
the resulting modulation in the longitudinal position is
harmonic as well with 8¢ = Z(s) sin(k{y + ), where ¢,
is the initial position of a particle and Z(s) vanishes at the
entrance of the chicane. The resulting bunching factor
becomes

b(s) = > J,(kADT,(KZ(s))em? imb (20)

n+m=1

In our low-gain model the initial offset A{ and the
modulation amplitude Z(s) are much smaller than the
modulation wavelength. This implies that in the Taylor
series expansion of the Bessel functions in Eq. (20) the
lowest order term is linear either in A/ or Z(s). Further
the initial amplitude of the longitudinal modulation is
small compared to the modulation wavelength. As long as
Z(s) is comparable to the initial modulation amplitude
A/, the bunching factor can be taken as constant and
Eq. (14) can easily be integrated, giving a linear depend-
ence on s. Inserting &(s) into Eq. (18), the longitudinal
position evolves in the chicane as

Iy 2T
Iryo BR»)'3
: sin<k§j(0) + o+ 73—T>CI>(S), 1)

gils) = £;(0) — 16(0)]

with

=

1

={ L 1L 2L 1L (]]) (22)
24R? 2R? 3R? 6 R? ’
1 s* L2 2 4 5203 56 L*

The roman numerals indicate the dipole in which the
position s lies. Figure 1 shows the universal function ®(s).
The function can be characterized differently in four
sections. In section 1 (first dipole, I) an electron, which
gains energy, is slowed down because the bend radius and
thus the path length gets larger. Section 2 is the first half
of the second dipole (II), where the longitudinal motion is
inverted as the polarity of the magnetic field changes. In
the second half of the second dipole the ‘““‘slow-down”
effect of the increasing bend radius takes over. Finally in
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FIG. 1.

The function ® [Eq. (22)].

the third and last magnet (section 4, dipole III) the path
length changes originating in the first and second dipoles
adding up with the same sign. Here the strongest change
in the longitudinal position occurs. Somewhat surpris-
ingly, the final offset in { is identical to that calculated
if the accumulated energy change is applied directly at
the entrance of the chicane and the electron is tracked by
using the standard expression for the matrix element Rsg.

The value of ® at the end of the chicane is
—(8/3)(L*/R?), which also defines the maximum offset
in the longitudinal direction a particle will see. The final,
normalized amplitude is

INNG) <8L3k )4/3
21A Yo 3R2 '

With kZ(4L) = £|b(0)| < 1 the gain, defined as the ratio
between final and initial amplitude of modulation, be-

comes
@l _ s
G 0] 1+ &+ €& 24)

or G = ¢ in the limit of large values for £. Expressed in
terms of the Rs¢ matrix element it becomes
I,I'G
G ~ 9 (pgypyen, (25)
2470

&= (23)

which is in agreement with the results in Ref. [9],
although a different model for the bunch compressor
has been used. Note that the gain is broadband, not
resonant. This stands in contrast to the FEL instability,
where resonant behavior is derived from the periodic
nature of the beam-undulator-radiation interaction.

As an example of a generic magnetic chicane, model-
ing the first Linac Coherent Light Source (LCLS) bunch
compressor (y =500, Ip =100 A, R=12m, and L =
1.5 m), an initial modulation with a period of 5 um
would grow by a factor of 25. The notion of “low gain”
is somehow misleading in this context. We use this ex-
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pression because the gain scales roughly linearly with the
beam current. This regime of operation is named ‘“‘one-
stage amplification” [9]. This is identical with an optical
klystron, a low-gain FEL [4], where the gain is enhanced
by a dispersive section. In the FEL high-gain regime, as
discussed in Sec. II, the dependence is exponential. We
will also find similar exponential dependence in the high-
gain regime of the CSR instability.

VL. ENERGY SPREAD AND COMPRESSION

The gain growth, discussed above, has a singularity at
a zero modulation period length. This artifact is removed
if energy spread is included in the model. With finite
uncorrelated (thermal) energy spread, any modulation in
the beam current is spread out and the emission level of
the synchrotron radiation is reduced. This effect is par-
ticularly strong at short modulation wavelengths. Thus
one expects that there is an optimum wavelength for gain
of the CSR-induced modulation, where the natural ten-
dency of the system to amplify shorter wavelengths is not
yet damped by thermal effects. This type of instability
suppression is often designated as Landau damping.

We now provide an analysis of energy spread effects.
Including energy spread, the current profiles evolve as

/= 10[1 + f F(8)]b(0)] cos[k(£ + Rsgd) + ¢]d5}
(26)

where f(8) is the normalized energy distribution. We
assume no correlation between energy and longitudinal
position on the scale of the modulation. For a Gaussian
energy distribution with rms spread o4 the integration of
this equation yields

[ = Iy[1 + e /D@sRk?|p(0)| cos(k¢ + @)]. (27)

The modulation decays if the spread in the longitudinal
position osRse is comparable with the modulation period
length. The initial modulation is sheared mainly in the
second dipole, where the value of matrix element Rsq
changes significantly. Because the seed for the micro-
bunch instability—the accumulated change in the elec-
tron energy—occurs before that, the change in the
longitudinal position [Eq. (22)] is hardly affected. We
can just apply the damping factor due to the energy spread
to the previous results of Eq. (24). With Rsc(4L,0) =
—(4/3)L3/R? the final gain is

G=e 1+ ¢+ &, (28)

defining the normalized energy spread as

_ Iyyo N3,
B w M

For the LCLS case with an energy spread of 0.01%
(a = 0.05), the gain at 5 wm would be reduced by 7 orders
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FIG. 2. Gain curve for energy spreads of @ = 0.003, 0.015,
and 0.05 (solid, dotted, and dashed lines, respectively).

of magnitude. Figure 2 shows the achievable gains for
different energy spreads.

In the case that a linear chirp is imposed on the beam to
compress it, the path length differences in the chicane
change the period length of the modulation. With the
compression factor

1

C(S) - 1+ hR56(S, O)

(30)

and the chirp gradient & = d&/cdt, the wave number k
scales along the chicane as k(s) = C(s)k(0). This results
in a larger wakefield amplitude although the dependence
is rather weak due to the cubic root of the wave number in
Eq. (14). Further, this wakefield enhancement is mainly
visible in the last dipole. Because of the same reason the
increase of the current due to compression has only
limited impact on the gain of the microbunch instability.
As in our discussion of the energy spread, the induced
energy modulation in the first half of the chicane drives

010 T T T
0.05 i

< 0.00 .

3 [ )

<
-0.05 i
-0.10L s s s

0 1 2 3 4
s/L
FIG. 3. Change in the longitudinal orbit ® due to a compres-

sion by a factor of 10.
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the longitudinal motion. Figure 3 shows the change in the
function @ for a strong compression by a factor of 10,
solving Egs. (14) and (18) self-consistently. The maxi-
mum change is less than 10%. The remaining effect of
compression is that the electrons move farther with re-
spect to the reduced modulation wavelength. The normal-
ized amplitude and energy spread scales as

E— C¢ and a — /Ca.

VII. THE HIGH-GAIN MODEL

In our low-gain model we assumed that the CSR
microbunching instability does not drive any bunching
within the first dipole. To qualitatively place a limit on
this assumed scenario, we develop here a high-gain,
exponential growth model as well. There may be situa-
tions where the exponential gain does not assert itself in
the first dipole, but may, by compression and thus higher
current, become notable in the last dipole. We shall see
that the exponentially growing regime of the CSR insta-
bility has many similarities with the high-gain FEL.

To begin our analysis, we define the collective variables

B = —ik{e ™), (31)

A = (e V§), (32)

where W; = k¢ ; is the initial phase of the jth electron of
a uniform distribution. Note that B is the Taylor series
expansion of the bunching factor b [Eq. (20)]. The equa-
tions of motion for a cold beam become

dA péSR i(/3)
E2 — _PCsR itm/3)p, 33
ds kR2 (33)
dB k(s
Is = _lﬁfo A(s — s')ds’, (34)

with the definition (in direct analogy with the FEL case)
of the dimensionless pcggr parameter

1, 2\ /4
pCSR=[—°4'/3F(—)} kRS (35)
I 0 3

The equations can be combined into a fourth order differ-
ential equation. Using the ansatz B o exp[iAs] we obtain
the dispersion relation

A4 = (P%SR >4ei(577/6)‘ (36)

Four solutions exist, where two of the roots have a
negative imaginary part, corresponding to an exponen-
tially growing instability. The growth rates are
(pcsr/R) sin(77/24) and (pcsr/R) sin(57/24), respec-
tively. An estimate for the growth rate has been derived
in [20], which differs only by a few percent from the exact
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solution, given above. Just as the gain length of the
high-gain FEL scales as Ay/p, the gain length of the
high-gain CSR instability is roughly R/pcsg. Because
the calculations are based on a relatively small deflection
angle (L < R) exponential gain within a single dipole
becomes significant only for

R

In comparison to the FEL the dispersion relation for CSR
instability is of fourth order, because the change in
the bunching factor is of third order in energy, while
the energy modulation is linear in the bunching. For the
FEL model, all equations (energy, phase, and radiation
field) are linear, resulting in a third order expression.

The startup regime of the high-gain CSR instability is
of particular interest because it determines after how
many gain lengths the exponential growth becomes dom-
inant. In the case of an FEL this is typically achieved
after the first or second gain length. Here the situation is
different because the number of modes is higher. In addi-
tion the two growing modes have similar growth rates but
different phase slippages (real part of A), so that the
interference between these two is still noticeable after
several gain lengths. Figure 4 shows the growth rate
normalized to [Im(A ;)| = (pcsg/R) sin(77/24). It takes
at least five gain lengths before the bunching factor has
grown by 1 order of magnitude, compensating an initial
amplitude drop. The interference with the other growing
mode is still notable after 20 gain lengths.

The integral in Eq. (34) prevents an easy solution of the
Vaslov equation to include energy spread effects. We
conclude this section with a qualitative analysis. For a
characteristic spread o5 in energy the momentum disper-
sion couples it to a phase spread of approximately
(k/6R?)0ss3. In units of the gain length (§ = spcsg/R)

(1/B)dB/ds / llm(A,)!

-2: P T S S RS S E
0 5 10 15 20 25
sp/R

FIG. 4. Growth rate of the bunching factor, normalized to the
growth rate of the dominant growing mode.
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the normalized phase spread 65 = (kR/6pisg)0s is in-
dependent of the bend radius and wavelength. An esti-
mate on the mitigation of the instability by the energy
spread can be obtained by the condition that for a
Gaussian-spectrum beam the growth over five gain
lengths is canceled by the phase spread. The threshold
for the normalized energy spread is 65 < 0.02 by this
criterion—any value larger than 0.02 would completely
suppress the exponential growth of this instability. Note
that if even the constraint is fulfilled the energy spread
may affect the instability at a certain point due to its
strong delpendence on s. For a Gaussian spread this occurs
after &5 73 gain lengths. Because the gain length depends
on k, longer wavelengths are less affected by the energy
spread, as we have seen in the low-gain analysis already.

VIIL. CONCLUSIONS

Because of the mechanism of coherent synchrotron
radiation-induced energy feedback, any transverse de-
flecting beam system may support a microbunching in-
stability. The underlying dynamics of these instabilities
may be quite different, however. In the cases we have
considered, the undulator and the magnetic chicane, these
differences are particularly strong. In an FEL the local
interaction is rather weak over one period, and must be
accumulated over many bending oscillations to yield an
instability. It is quite important to the FEL instability that
the emitted radiation stays in the electron beam region,
therefore, to allow a significant buildup of the beam-
radiation interaction. The relative weakness of this inter-
action is expressed by the value of the p parameter, which
is much smaller than unity, indicating a slowly varying
system.

Theoretically, an important measure of the transition
between the FEL instability and the microbunching in-
stability in a chicane would be the extrapolation of p to
unity and beyond. It should be emphasized that the use of
the standard analytical model in this case would not yield
reasonable results, as the assumptions (slowly varying
system, paraxial radiation) would be violated. A valid
theory in this limit must include the entire radiation field
in all directions, as well as the explicit longitudinal
motion variations of the electrons. Some of these charac-
teristics are present in our chicane-based analysis, which
is not fully general. In a chicane, the orbit offset is large
compared to the beam size so that an emitted radiation
field interacts only briefly with the electrons before es-
caping the beam. Under this assumption the radiation
field dynamics have been simplified to a wake potential
which acts instantaneously on the beam. A general treat-
ment, covering both FEL-like and chicanelike cases,
would demand a much more sophisticated model of the
radiation emission.
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FIG. 5. Evolution of the gain along the chicane, using the
low-gain model [Eq. (24)] and a self-consistent numerical
simulation (solid and dashed lines, respectively). The input
parameters are Iy = 100 A, vy =500, R=12m, and L =
1.5 m.

We have derived a simple low-gain model to calculate
the growth of an initial current modulation within a
magnetic chicane. As in a klystron the physics is split
into the initial modulation in beam energy, and a change
in the longitudinal position (followed by an enhanced
emission level of radiation). The major assumption in
our low-gain model is that the beam current modulation,
which generates the coherent synchrotron radiation, is
held constant over the entire chicane. The klystronlike
assumption implies that the system does not have an
exponential gain, but rather acts as a linear amplifier
where the gain coefficient is dependent on the physical
details of the beam and chicane. This is in striking
resemblance with the low-gain model of an FEL [22].
Figure 5 shows the difference, however, between our
klystronlike model and a self-consistent, more complex
model [10].

In order to extend the low-gain model to account for
self-consistent behavior, we have developed a high-gain
model that has notable similarities with high-gain FEL
theory. In particular, we obtained a quartic dispersion
relation which allows us to scale the gain through a p
parameter (pcsg), with a gain length proportional to
R/pcsr- In contrast to the FEL case, with the CSR
instability, the parameter pcsg must have a value in
excess of unity, so that exponential gain occurs within a
single dipole.

In conclusion, a microbunching instability, displaying
familiar behaviors such as klystronlike or exponentially
growing, occurs in transverse deflecting magnetic devi-
ces. Different assumptions and approximations allow this
instability to be investigated analytically, within the
confines of physically relevant models, such as the FEL
and the compressor chicane. The FEL analysis relies on a
simplified, period-averaged view of the electron motion,
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allowing an exponentially growing instability. In the case
of the magnetic chicane, on the other hand, electron
motion must be treated in a more intricate way, but the
radiation field can be simply expressed by a continuous
force acting to change the beam energy. The transition
between FEL and the CSR instability is controlled by the
strength of the p parameter; when it nears unity, a CSR-
like case would occur. As the p parameter is a valid
number only when it is small, it is really only of value
for a FEL-like (resonance approximation, paraxial radi-
ation) case. For the CSR instability, it is more valuable to
define the pcgg parameter in the context of exponential
growth in a single bend magnet. With these issues in
mind, we can classify bending systems in a hierarchy of
gain strength, from lowest to highest: (1) standard FEL
instability, where p < 1; (2) ultrahigh gain FEL p = 1,
where the standard theory is no longer valid; (3) CSR
instability in the low-gain limit, where pcgg is not greater
than 1, and the system is klystronlike, requiring the entire
chicane to develop; (4) high-gain CSR instability, where
pcsg > 1 and the beam microbunches in one chicane
magnet. At present, the only systems which are com-
monly encountered are (1) and (3). The relevance of
analysis of systems (2) and (4) awaits further progress
in high brightness electron beam production.
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