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We develop a new approach to the calculation of the synchrotron radiation in a toroidal vacuum
chamber. Using a small parameter � �

���������
a=R

p
, where a is the characteristic size of the cross section of

the toroid and R is the bending radius, we simplify Maxwell’s equations assuming that the character-
istic frequency of the modes !� c=a� and neglect terms of higher order in �. For a rectangular cross
section of the waveguide, we find an analytical solution of the equations and analyze their asymptotics
at very high frequency. We then obtain an equation which gives radiation into each synchronous mode.
We demonstrate the flexibility of the new method by calculating the frequencies and the loss factors for
the lowest modes in square and round waveguides.
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velocity equal to the particle’s velocity v � c. As dis-
cussed in Refs. [3,4], for a given toroid, the synchronous

V we present expressions for the energy radiated into
synchronous modes by a moving charge and introduce
I. INTRODUCTION

For short bunches of high-energy electrons or posi-
trons, typical for modern accelerators and photon sources,
one of the important elements of the beam dynamics is
the effect of coherent synchrotron radiation (CSR) of the
beam [1]. In vacuum, if the reduced wavelength of the
radiation exceeds the bunch length, the beam radiates
coherently, and the power of the radiation increases
many orders of magnitude relative to the incoherent ra-
diation at the same wavelength. Typically, however, CSR
at such wavelengths is suppressed due to the shielding
effect of the conducting walls of the vacuum chamber.
CSR at shorter wavelengths can still play a role in a
microwave instability causing microbunching of the
beam [2].

Synchrotron radiation of a relativistic beam moving in
a toroidal chamber with conducting walls has been ex-
tensively studied in the past (see, e.g., [3–5]). Many
important features of the radiation have been analyzed
based on the direct solution of the Maxwell equations for
rectangular cross section of the chamber, in the limit of
large values of the azimuthal number n. In the particular
case of the parallel conducting plates, the method of
image charges was used in Ref. [6]. Unfortunately, these
methods can be used only for a rectangular cross section
of the chamber and are not applicable to other shapes
encountered in practice.

In this paper, we study radiation of a relativistic par-
ticle moving in a circular orbit inside of a toroidal cham-
ber, using a different approach. We introduce a small
parameter � equal to

���������
a=R

p
, where a is the characteristic

chamber size and R is the toroid radius. A relativistic
particle circulating inside the toroid can resonantly excite
the synchronous electromagnetic modes that have phase
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modes have wave numbers k greater than a minimal value
kmin � !min=c:

k >
!min

c
�
R1=2

a3=2
�

1

�a
� a�1: (1)

Using the scaling ka� ��1 that follows from Eq. (1) and
considering only modes that have phase velocity close to
the speed of light, we simplify Maxwell’s equations,
keeping only terms of the lowest order in �. We then solve
these equations for the synchronous modes and find the
intensity of the particle’s radiation into each mode.

The advantage of this approach is that instead of deal-
ing with a solution of a full set of Maxwell’s equations
for a chosen geometry of the toroidal chamber, we first
simplify the equations using an appropriate scaling of
the relevant parameters of the problem (such as k, R,
and a). The simplified equations do not contain the small
parameter �. In this paper, we focus on two cases—
rectangular and round cross sections of the toroid. The
first case allows an analytical solution for the eigenmodes
and permits a detailed comparison with the results known
in the literature. The second case relies on a numerical
solution of the equations and demonstrates applicability
of the new method to the cross sections with the shapes
other than the rectangular one.

Throughout the paper we assume perfect conductivity
of the walls. We also consider relativistic particles with
the Lorentz factor �� 1.

The paper is organized as follows. In Sec. II we sim-
plify Maxwell’s equations in the limit of small �, and in
Sec. III we formulate boundary conditions for the equa-
tions. A variational principle for the equations is derived
in Appendix A. In Sec. IV we obtain an analytical solu-
tion for the rectangular cross section of the toroid. In Sec.
2003 The American Physical Society 034401-1
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the impedance associated with those modes and the lon-
gitudinal wake. The derivation of the radiative energy loss
is given in Appendix B. In Sec. VI we present results for
numerically computed parameters of the lowest modes
for the cases of square and round cross sections. In
Appendix C we derive a formula for the group velocity
of toroidal modes. In Appendix D we consider a limit of
high frequency and show that our results in this limit
reduce to the standard formulas for the synchrotron ra-
diation in free space.

II. EQUATIONS FOR ELECTROMAGNETIC
FIELD

In this section we will derive equations for the electric
and magnetic fields in the toroidal waveguide. We con-
sider a smooth toroidal vacuum chamber of radius R and
arbitrary cross section. The geometry of the problem and
the choice of the coordinate system are shown in Fig. 1.
We use the cylindrical coordinate system r, , z and the
notation x for the difference x � r� R.

We assume that all components of the field have the
following dependence on time and the azimuthal angle :

E;H / e�i!t�ikR: (2)

We are interested in such solutions of Maxwell’s equa-
tions which have the phase velocity equal to the velocity
of the particle

!
k
� v � c

�
1 �

1

2�2

�
: (3)

To keep track of the order of magnitudes, we will
assume that x and z coordinates are of the order of �0 �
1 and the orbit radius R is of the order of ��2, where �2 �
a=R is a formal small parameter of the problem.
According to Eq. (1), k is assigned the order of ��1. We
will also assume that �� ��1. As we will see below, if
the transverse to the orbit components of the fields Er, Ez,
Hr, and Hz are of the order of 1, then the longitudinal
components E;H � �. The latter can be explained by
the fact that in the limit of high frequencies which we
FIG. 1. (Color) Smooth toroidal vacuum camera for circular (left) a
the toroid. It is assumed that a particle’s orbit goes through the cente
is removed for illustration purposes.
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consider here the effect of the walls is relatively small,
and the electromagnetic waves are almost transverse
relative to the direction of the propagation .

From the Maxwell equations

i!
c
Hr �

ikR
r
Ez �

@E
@z

;
�i!
c
Er �

ikR
r
Hz �

@H
@z

;

(4)

using Eq. (3) and the smallness of E and H we find to
the lowest order

Hr � Ez; Hz � �Er: (5)

These are relations that hold in a plane electromagnetic
wave; in our case they are satisfied approximately to
order �2.

From the other pair of Maxwell equations

� i
!
c
H �

1

r
@rEz
@r

�
@Er
@z

; i
!
c
E �

1

r
@rHz
@r

�
@Hr
@z

;

(6)

using Eqs. (5) we expressH andE in terms of Er and Ez

H �
i
k

�
@Ez
@x

�
@Er
@z

�
; E �

i
k

�
@Er
@x

�
@Ez
@z

�
; (7)

where again we neglected terms of the order of �3.
Having expressed E,Hz,H, andHr in terms ofEr and

Ez, we can now derive equations for Er, Ez if we note that
Ez and Hz (and hence Er) satisfy the wave equation

�Ez �
!2

c2 Ez � 0; �Er �
!2

c2 Er � 0: (8)

Let us write the first of Eqs. (8) as

1

r
@
@r
r
@Ez
@r

�
@2Ez
@z2

�

�
!2

c2 �
k2R2

r2

�
Ez � 0: (9)

The same equation holds for Er. Substituting r � R� x,
expanding in small ratio x=R and using Eq. (3), we find
nd rectangular (right) cross sections with R the major radius of
r of the toroidal chamber and has the same radius R. A segment
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�?Ez � 2k2

�

 �

x
R

�
Ez � 0; (10a)

�?Er � 2k2

�

 �

x
R

�
Er � 0; (10b)

where �? � @2=@x2 � @2=@z2,


	!; k
 �
1

2

�
!2

k2c2 � 1

�
: (11)

The parameter 
 measures deviation of the phase veloc-
ity!=k from the speed of light c; in what follows we will
assume that 
 � �2. Note that in derivation of Eq. (5) we
set ! � ck which formally corresponds to 
 � 0; it is
easy to check, however, that the equations are still valid
for 
 � �2, the error being of the order of �2.

Although we have separate Eqs. (10) for Er and Ez, in
the next section we will see that the functions Er, Ez are
coupled through the boundary conditions on the conduct-
ing wall.

III. BOUNDARY CONDITIONS FOR ER, EZ

Let n � 	nx; nz
 be the normal vector to the toroid’s
surface in the plane xz directed toward the metal, while
� � 	�nz; nx
 be the vector tangential to the surface in
the same plane. For the perfectly conducting wall, the
tangential electric field vanishes at the surface: E �
E� � 0. The first equality, E � 0, yields

@Ez
@z

�
@Er
@x

� 0: (12a)

The second one gives

nxEz � nzEr � 0: (12b)

In the general case, these boundary conditions couple
Eqs. (10) so that one has to solve them together. The two
equations with the boundary conditions constitute an
eigenvalue problem—for a given k, the solution exists
only for a discreet set of values of !. If, however, we
specify the value of 
 (e.g., 
 � 0, corresponding to
waves propagating with the phase velocity equal to c),
then the solution exists only for a discreet set of eigen-
values k. Note that both the equations and the boundary
conditions do not involve complex numbers—this means
that the field components Er and Ez of eigenmodes can
always be chosen real. From Eqs. (5) and (7) it follows
that Hr and Hz are also real, and E and H are purely
imaginary.

Equations (10) with the boundary conditions Eqs. (12a)
and (12b) can also be formulated as a variational problem
which can be used for the numerical solution of the
problem. We derive the corresponding variational func-
tional in Appendix A.
034401-3
A. Rectangular toroid

For a rectangular cross section of the toroidal camera
with the width a the size along the horizontal axis x
(directed along the major radius R of the toroid), and
the height b the size along the vertical axis z (see Fig. 1),
it is readily seen that the boundary conditions for the Er
and Ez functions separate. Noting that nx � �1, nz � 0
at x � �a=2 while nx � 0, nz � �1 at z � �b=2, we
find

@Er
@x

� 0 at x � �a=2; Er � 0 at z � �b=2 (13a)

for the Er component, and

Ez � 0 at x � �a=2;
@Ez
@z

� 0 at z � �b=2 (13b)

for Ez.

B. Round toroid

For the toroid with a circular cross section of radius a
we introduce the poloidal angle� and the radius vector �,
such that x � � cos�, z � � sin�. We then have @=@n �
@=@�, nx � cos�, and nz � sin�. The boundary condi-
tion (12a) at � � a yields

1

�
@�Er
@�

cos��
1

�
@�Ez
@�

sin� � 0: (14a)

The other boundary condition (12b) reduces to

Ez cos�� Er sin� � 0: (14b)

IV. ANALYTICAL SOLUTION FOR
RECTANGULAR TOROID

As was pointed out above, in the case of a rectangular
toroid Eqs. (10) and the boundary conditions decouple
and can be solved separately for Er and Ez. This means
that there are two sets of modes with different polar-
ization: one in which Er � 0 and the other with Ez � 0.
We will call the first set Ez modes, or vertically polarized,
and the second one Er modes, or horizontally polarized.
Separating x and z variables and using the boundary
conditions (13a) and (13b) at z � �b=2 we find

Er	x; z
 � Er	x
 sin
�
�p
b

�
z�

b
2

��
; p � 1; 2; 3; . . .

(15a)

for the Er modes, and

Ez	x; z
 � Ez	x
 cos

�
�p
b

�
z�

b
2

��
; p � 0; 1; 2; . . .

(15b)

for the Ez modes.
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FIG. 2. (Color) Solution of the dispersion equation 
 � 0 for
various mode numbers m indicated on the plot. Er mode:
magenta (also indicated by symbol r); Ez mode: blue (indicated
by symbol z). The dashed lines show the approximate solutions
discussed in the subsection of IV.
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In what follows, we will use the notation U	x
 both for
Er	x
 and Ez	x
 when it is not important to distinguish
between them. The equation for U takes the form

d2U

dx2 � 2k2

�
x
R
� 
 �

�2p2

2k2b2

�
U � 0:

To proceed further we introduce the dimensionless coor-
dinate

� � x
�
2k2

R

�
1=3

and dimensionless parameters �0 and �a

�0 �
�2p2R2=3

	2k2
2=3b2
� 	2k2R2
1=3
; �a � a

�
2k2

R

�
1=3
:

(16)

This yields the equation

d2U

d�2 � 	�� �0
U � 0: (17)

The boundary conditions at � � ��a=2 read

U	�
 � 0;

for the Ez wave, and

d
d�
U	�
 � 0;

for the Er wave.
The general solution of Eq. (17) involves the Airy

functions Ai and Bi:

U	�
 � C1Ai	�0 � �
 � C2Bi	�0 � �
; (18)

where C1;2 are unknown constants to be found from the
boundary conditions. Boundary conditions for Er yield
the dispersion equation

Ai0	�0 � �a=2
Bi0	�0 � �a=2


� Ai0	�0 � �a=2
Bi0	�0 � �a=2
; (19a)

and the boundary conditions for Ez yield

Ai	�0 � �a=2
Bi	�0 � �a=2


� Ai	�0 � �a=2
Bi	�0 � �a=2
: (19b)

We will mark a sequence of eigenvalues of Eqs. (19a) and
(19b) by an integer index m. This index is defined so as
to indicate the number of nodes in the function U	�
 on
the interval ��a=2 < � < �a=2. For the Er modes, m
takes values of 0; 1; 2; . . . . For the Ez modes, due to the
boundary condition U	��a=2
 � 0, the values of m
are 1; 2; 3; . . . .

Let us consider the case when 
 � 0, that is, the waves
that have the phase velocity equal to the speed of light.
Note that, in this case,
034401-4
�0 �
�2

�2
a

�
pa
b

�
2
; (20)

and hence from the dispersion Eqs. (19a) and (19b) one
can find the relation between �a and the parameter pa=b.
The latter can be expressed as

k �
�
R

a3

�
1=2
Fm

�
pa
b

�
; (21)

where Fm is a function defined from the solution of
Eqs. (19a) and (19b). The plot of this function for both
Er and Ez modes for a few lowest radial mode numbers m
is shown in Fig. 2 by solid lines. From this figure, one can
see that the minimal frequency in a rectangular toroidal
waveguide is attained for the Er mode with m � 0. For
example, in the case of a square cross section, a � b, this
minimal frequency is !min � 4:78cR1=2a�3=2. Note that
kmin � !min=c confirms the estimate used in Eq. (1).

Limit of High Frequency, ! � !min

In the limit of high frequencies, !� !min �
cR1=2a�3=2, the exact solution for the rectangular cross
section can be considerably simplified. In this limit, as we
will show below,

�0 � �a=2 � 1; (22)

and the factors Ai	�0 � �a=2
Bi	�0 � �a=2
=Bi	�0 �
�a=2
 and Ai0	�0 � �a=2
Bi0	�0 � �a=2
=Bi0	�0 � �a=2

in the dispersion relations (19a) and (19b) are
034401-4
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exponentially small. The latter reduces to

Ai0	�0 � �a=2
 � 0 (23a)

for the Er wave, and to

Ai	�0 � �a=2
 � 0 (23b)

for the Ez wave. The argument of the Airy function in
Eqs. (23a) and (23b) is a large negative number and we
can use the asymptotic formula

Ai	�
 �
1����

�
p

	��
1=4
sin

�
2

3
	��
3=2 �

�
4

�
; (24)

which is actually valid with high accuracy for � & �1.
We obtain

�0 �
�a
2
�

�
3�
2

�
m�

1

4

��
2=3
; (25)

where the upper sign corresponds to the Er mode while
the lower one corresponds to the Ez mode. The radial
mode number m runs over values 1; 2; 3; . . . for the Er
mode and 0; 1; 2; . . . for the Ez mode.

Using the definitions of �a and �0, Eq. (16), we find


 �
�2p2

2k2b2 �
1

2

�
3�
kR

�
m�

1

4

��
2=3

�
a
2R
: (26)

Eigenfunctions of toroidal modes in this limit can also
be simplified:

Er � Ai	�0 � �
 (27a)

for the Er mode, and

Ez � Ai	�0 � �
 (27b)

for the Ez one. The modes are evanescent in the inner part
of the camera, closer to the axis of the toroid, where the
argument �0 � � of the Airy function is positive. The
modes oscillate in the outer part of the toroidal cross
section.

Solving Eqs. (20) and (25) together, we find the func-
tion Fm in Eq. (21):

Fm	$
 �
�$���

2
p F

�
2

3

�
m� 1=4

$

�
2
�
; (28)

where

F 	q
 � fq1=3 � �1 � q�
���������������
1 � 2q

p
�1=3

� �1 � q�
���������������
1 � 2q

p
�1=3g3=2:

Approximate solution (28) is shown in Fig. 2 by dashed
lines. It is very close to the exact solution Eq. (21), shown
in solid lines, everywhere except for the Er,m � 0 modes
in the case pa=b & 1 (the lowest curve in Fig. 2), where a
more accurate treatment reveals that F0	$
 � 301=4

�������
�$

p
.

To prove that the condition Eq. (22) is satisfied at high
frequencies we will show that it is satisfied if eitherm or p
(or both) are much greater that unity. Since �0 > 0, we
034401-5
need to prove that �a � 1; for simplicity, we will assume
that a� b. Form� 1, from Eq. (25) it follows that �a *

m2=3, and indeed �a is large for large m. If, however,
m� 1, then it follows from Eq. (25) that �a � �0, which
together with Eq. (20) gives �a � p2=3, and again �a is
large when p� 1. Hence the result of this subsection is
applicable to modes that have at least one eigennumber
much larger than unity.

Remarkably, approximate formulas of this section give
accurate numerical results even at the edge of the applic-
ability region, specified by Eq. (22). For example, Eq. (28)
yields Fm	1
 � 5:00, which differs by 4:4% from the
exact value 4:78 given by Eq. (21).

We note here that our solution can also be simplified in
the limit where the condition opposite to Eq. (22) is
satisfied. However, we will not consider this case here
because the modes in this limit have phase velocities that
are greater than the speed of light and cannot be excited
by the beam.

V. RADIATION OF A MOVING CHARGE

In the preceding sections, we formulated equations
whose solution gives synchronous eigenmodes propagat-
ing with the phase velocity close to the speed of light. A
relativistic particle moving in a circular orbit inside the
toroid will resonantly interact with these modes and will
deposit part of its kinetic energy into the electromagnetic
field of the modes. The strength of the interaction can be
characterized by the amount of energy radiated into a
given synchronous mode. As shown in Appendix B, the
radiated energy per unit length of path dW=ds is given by
the following formula:

dW
ds

�
e2

4P
jE0j

2

������� 1

vg
�

1

v

�������
�1
; (29)

where P is the averaged over time energy flow in the
mode, vg is the group velocity, and E0 is the amplitude
of the longitudinal electric field of the mode on the
particle’s trajectory. A related parameter, which is usu-
ally used in accelerator physics, is the loss factor +
defined as the energy loss of a unit charge:

+ �
1

e2

dW
ds

�
1

4P
jE0j

2

������� 1

vg
�

1

v

�������
�1
: (30)

From Eq. (29) we see that in order to calculate the
radiated energy for each mode one has to know the energy
flow P and the group velocity of the mode vg. The former
can be expressed as an integral over the cross section of
the chamber of the component of the Poynting vector S
along the direction of propagation,

P �
Z
Sdxdz; (31)
034401-5



FIG. 3. (Color) Field patterns for a square cross section of the
waveguide: (a) Er mode, m � 0, p � 1; (b) Er mode, m � 0,
p � 2; (c) Ez mode,m � 1, p � 1; (d) Er mode,m � 0, p � 3;
(e) Ez mode, m � 1, p � 2; (f) Er mode, m � 0, p � 4. For
the Ez modes, the graphs show distribution of the Ez component
of the field; and for the Er modes, the Er distribution is shown.
The color coding palette is shown in the upper right corner of
the picture, where the bottom and the top of the palette
correspond to lower and higher values, respectively. Note that
the mode profiles are not normalized, and the patterns of
different modes cannot be compared with each other.
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where

S �
c

8�
	�ErHz � EzHr
 �

c
8�

	E2
r � E2

z
; (32)

and we took into account that the averaging over time
introduces a factor of 1=2 in S. The quantity P can be
easily calculated by numerical integration if the fields are
available.

Calculation of the group velocity using the definition
vg � @!=@k requires numerical differentiation of the
dispersion relation. There is however an alternative
method of calculation of vg, more suitable for numerical
analysis. We recall that in a waveguide with straight axis
the group velocity is equal to the ratio of energy flux
throughout the cross section of the waveguide to the
energy density integrated over the cross section. In toroid,
this relation takes the form

vg �

R
SdxdzR

w	1 � x=R
dxdz
; (33)

where

w �
1

16�
	E2 �H2
 (34)

is the averaged over time of the energy density in the
wave. The geometric factor 1 � x=R in Eq. (33) takes into
account that the infinitesimal volume in the toroid is
equal to 	1 � x=R
dxdzds. The expression for vg in terms
of the fields Er and Ez, which follows from Eqs. (33) and
(34) is obtained in Appendix C:

vg
c

� 1 �
2

R

R
dxdzx	E2

r � E2
z
R

dxdz	E2
r � E2

z

� 
: (35)

Equations (31), (32), and (35) give explicit expressions for
the energy radiated into an eigenmode in terms of the
field components Er, Ez and the longitudinal electric field
on the axis E0.

Wake and impedance

A longitudinal impedance Z	!
 generated by the ra-
diation of a point charge in a single mode has a resonant
character. In the vicinity of the resonance it can be de-
scribed by the following formula [3]:

Z	!
 �
i+

	!�!s
 � i�=2
; (36)

where � is the resonance width associated with the finite
conductivity of the wall and + is the loss factor. In the
limit of a perfectly conducting wall, which we consider
here, � ! 0, and

Z	!
 � +�/	!�!s
 � i+P
1

!�!s
; (37)

where P denotes the Cauchy principal part. This imped-
ance corresponds to the following wake function w	s

034401-6
(see, e.g., [7]):

w	s
 � 2+ cos
!ss
c
; (38)

which simply means that the charge excites the synchro-
nous wave with the amplitude of the longitudinal electric
field in the wave equal to 2+e2.

VI. RADIATION IN RECTANGULAR AND
CIRCULAR TOROIDS

In this section we will present results of numerical
calculations of the mode patterns, frequencies, and loss
factors for several lowest modes in the toroids of rectan-
gular and round cross sections. In these calculations we
assume 
 � 0, corresponding to the phase velocity of
waves equal to the speed of light.
034401-6
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Calculations for the rectangular cross section are based
on the analytical solution developed in Sec. IV. For the
sake of simplicity, we only consider here the case of the
square cross section, a � b.

We remind one that in this case there are two uncoupled
types of modes—Er and Ez—which are characterized by
the integer numbers m and p, where p is defined in
Eqs. (15a) and (15b) and m is equal to the number of
zeros in the functionU	�
 [see Eq. (17)]. The field patterns
for a few lowest modes are shown in Fig. 3 and the
frequency, group velocity, and the loss factors for each
mode are given in Table I. The lowest mode in this case is
of type Er, with the frequency equal to 4:78cR1=2a�3=2

and the loss factor + � 5=a2.
To calculate the eigenmodes for the round cross section

we used two approaches. In the first one, the system of
equations for Er and Ez was solved numerically on a
triangular mesh, using the PDE Toolbox of the Matlab
[8]. The accuracy of the numerical solution depends on the
number of triangles N; we evaluated that it scales as
	m2 � p2
=N. The maximum number of N was limited
by the run time which grows as N2 —we typically used
N � 104 at most.

The second approach was based on the variational
principle described in Appendix A. In this approach,
the solution was represented as a sum of trial functions
with unknown coefficients, and the coefficients were
calculated by minimizing the functional I. The results
of both methods agree within 10% with each other. In
Table II we show the frequency, group velocity, and the
TABLE I. Lowest modes in the toroidal waveguide of the
square cross section. The wave number of the mode k, the
difference between c and the group velocity, 1 � vg=c, and
the loss factory + are all normalized by the proper combina-
tions of R and a.

Type m p kR�1=2a3=2 	1 � vg=c
R=a +a2

Er 0 1 4.78 0.62 4.94
Er 0 2 8.11 0.73 0
Ez 1 1 8.78 0.42 3.01
Er 0 3 11.42 0.79 0.19
Ez 1 2 11.80 0.52 0

TABLE II. The lowest modes in a toroidal waveguide with
the round cross section. The notations are the same as in Table I.

kR�1=2a3=2 	1 � vg=c
R=a +a2

2.12 1.08 2.11
2.73 0.79 0
3.96 0.88 0.33
4.07 0.96 0
4.82 0.76 1.04
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loss factors for a few lowest modes. Note that the modes in
which Ez is an even and Er is an odd function of z have a
zero loss factor—this is explained by the fact that for
these modes, as follows from Eq. (7), the longitudinal
electric field vanishes at the location of the particle z � 0.

The field patterns for the lowest three modes that have
nonvanishing loss factors (the first, third, and fifth lines in
Table II) are shown in Fig. 4.

The lowest modes with m� p� 1 correspond to the
waves propagating at an angle �

���������
a=R

p
relative to the

minor axis of the toroid. Modes withm ;p� 1 propagate
at smaller angles, and during the process of radiation of
such modes, they do not ‘‘feel’’ the presence of the con-
ducting boundaries of the waveguide. In this limit, we
expect that the spectral density of the radiation ap-
proaches that in free space, and, hence, does not depend
on the exact shape of the cross section of the chamber. For
the case of a rectangular cross section we prove this
FIG. 4. (Color) Field profiles for a round cross section of the
waveguide for the three lowest antisymmetric modes: (a)
kR�1=2a3=2 � 2:12; (b) kR�1=2a3=2 � 3:95; (c) kR�1=2a3=2 �
4:82. The left plot in each pair of graphs shows distribution
of the Er in the mode, and the right one shows the distribution
of Ez. The color coding palette is shown in the upper right
corner of the picture.
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assertion in Appendix D by direct calculation of the
spectrum of the radiation in the limit !� !max.

VII. CONCLUSIONS

In this paper we developed a new approach to the
calculation of the synchrotron radiation in a toroidal
pipe. Using a small parameter � �

���������
a=R

p
we simplified

Maxwell’s equations assuming that the characteristic fre-
quency of the modes !� c=a� and neglected terms of
higher order if �. The resulting equations involve only
two components of the field Er and Ez. For a rectangular
cross section of the waveguide, we found an analytical
solution of the equations and analyzed its asymptotics at
very high frequency.

Based on Vainshtein’s formulation of the radiation
problem, we then obtained an equation which gives ra-
diation into each synchronous mode. The energy loss
involves three characteristics of the mode: the group
velocity, the longitudinal electric field on the orbit, and
the energy flow in the mode. We showed how all these
three quantities can be expressed in terms of Ez and Er in
a form that allows an easy numerical evaluation.

Finally, we demonstrated the flexibility of the new
method by calculating the frequencies and the loss factors
for the lowest modes in square and round waveguides.
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APPENDIX A: VARIATIONAL PRINCIPLE

In this Appendix we will show how Eqs. (10) with the
boundary conditions (12a) and (12b) can be cast into a
variational principle.

Let us introduce the two-dimensional vector w, w �
exEz � ezEr, where ex and ez are unit vectors in x and z
directions. From Eqs. (10) we find that w satisfies the
following equation:

�w� 2x0w � 0; (A1)

where 2 � 2k2=R, and x0 � x� R
. The boundary con-
dition (12b) means that w has only a tangential compo-
nent on the boundary,

w � n � 0: (A2)

The boundary condition (12a) reads

rotw � 0: (A3)

If we write Eq. (A1) as

K̂Kw � 0; (A4)
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where K̂K is a linear operator, in order to be able to prove a
variational principle, we need to show that the operator K̂K
is symmetric:

Z
dSu � K̂Kw �

Z
dSw � K̂Ku; (A5)

where the functions u, w satisfy the boundary conditions
(A2) and (A3). To prove the symmetry of K̂K , we introduce
a functional I

I � �
Z
dSu � K̂Kw � �

Z
dS	u � �w� 2x0u � w
:

(A6)

Substituting the vector identities

u � �w � ugrad divw� urot rotw
� div	udivw
 � divudivw� div	u� rotw


� roturotw (A7)

into Eq. (A6), and performing the integration we find that
the div terms vanish because of the boundary conditions
(A2) and (A3), so that

I �
Z
dS	rotu � rotw� divu � divw� 2x0u � w
: (A8)

This expression is clearly symmetric with respect to
exchange w $ u, which proves the relation Eq. (A5).

To obtain the variational principle, we set u � w:

I �
Z
dS�	rotw
2 � 	divw
2 � 2x0w2�: (A9)

It is now easy to see that the condition /I � 0, for the
functionsw that satisfy the boundary conditions Eqs. (A2)
and (A3), constitutes a variation principle for the Eq. (A1).

It follows from Eq. (A6) that if w is a solution of
Eq. (A1) with the eigenvalue 2, then I � 0. Using now
Eq. (A9), we can express the eigenvalue 2 through inte-
grals of the solution w:

2 �
2k2

R
�

R
dS�	rotw
2 � 	divw
2�R

dSx0w2

�

R
dxdz�	@Ez@z �

@Er
@x 


2 � 	@Er@z �
@Ez
@x 


2�R
dxdz	x� R

	E2

r � E2
z


: (A10)

This relation turns out useful in the calculation of the
group velocity of eigenmodes; see Appendix C.

APPENDIX B: RADIATION OF A RELATIVISTIC
CHARGE MOVING IN TORODIDAL CHAMBER

Let us consider a point charge moving with relativistic
velocity in the toroidal vacuum chamber along the axis of
the toroid. To calculate the energy radiated by the charge
into synchronous modes we will use the approach devel-
oped by Vainshtein [9] (see also [5]). This approach gives
an explicit expression for the amplitudes of the modes
034401-8
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excited by an arbitrary distribution of current j	r
e�i!t

oscillating with the frequency !.
Let the index w denote an eigenmode with the fre-

quency ! propagating in the direction of the particle’s
motion (the direction in which  increases), and �w
denotes the same mode propagating in the opposite direc-
tion. The electric field of the eigenmode w is Ew	r
e�i!t.
An external current j	r
e�i!t in the waveguide excites
this mode with an amplitude Cw	s
 so that the electric
field E in the mode is

E	r
 � Cw	s
Ew	r
; (B1)

where s � R is the coordinate along the axis of the
toroid. The formula for Cw reads [9]

Cw	s
 �
1

Nw

Z s

�1
dsdSj	r
 �E�w	r
; (B2)

where E�w is the electric field of the eigenmode propa-
gating in the opposite direction, Nw is the norm of the
mode,

Nw �
c

4�

Z
dSe � 	Ew �H�w �E�w �Hw
; (B3)

the integral in Eq. (B2) is taken over the volume to the
left of the point at which Cw	s
 is evaluated, and the
integral in Eq. (B3) is taken over the cross section of
the waveguide. The vector e in Eq. (B3) is a unit vector
in the  direction. We will assume that the fields in the
modes w and �w are chosen so that E�w � �E�

w, then
one can show that the norm is equal to 4 times the
averaged over time of the energy flow Pw in the mode,
Nw � 4Pw [9]. The field E�w can be represented as

E�w	r
 � �E�
w	x; z
e

�ik	!
s; (B4)

where Ew	x; z
 gives the transverse distribution of the
electric field in the w eigenmode in the plane x, z, and
k	!
 is the wave number as a function of the frequency.

We now calculate the Fourier components of the cur-
rent corresponding to the point charge moving with ve-
locity v. The current density has only the  component

j	r; t
 � ev/	x
/	z
/	s� vt
: (B5)

Making the Fourier transformation of the current Eq. (B5)
yields

1

2�

Z
dtj	r; t
ei!t �

e
2�
/	x
/	z
ei!s=v: (B6)

Inserting this expression into Eq. (B2) gives the following
result for the amplitude Cw:

Cw	s
 �
e

2�Nw
E0

Z s

�1
ds0e�is

0�k	!
�!=v�

�
ieE0

2�Nw

e�is�k	!
�!=v�

k	!
 � !
v � i0

; (B7)
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where E0 � �E�
w;s	0; 0
 � Ew;s	0; 0
 is the longitudinal

electric field of the eigenmode on the particle’s path and
we took into account that E0 is purely imaginary in our
problem [see Eq. (7)]. As seen from Eq. (B7), the function
Cw has a singularity at the frequency of the synchronous
mode !s that satisfies the equation

!s � vk	!s
: (B8)

The term i0 in the denominator of Eq. (B7) indicates an
infinitesimally small imaginary part that introduces a
shift of the pole from the real axis—in the general case
the pole can be shifted either up or down from the real
axis !.

Let us now calculate the energy W radiated by the
particle per unit time into the synchronous mode. In
what follows, we will assume that the particle’s velocity
v � c is greater than the group velocity of the mode vg.
We will drop this assumption at the end of derivation.

First, we find the longitudinal electric field E	s; t
 on
the axis by making the inverse Fourier transform of the
electric field. Note that k	!
 is an odd function of !,
hence there are always two solutions for !s with opposite
signs. Using Eq. (B7) we find

E	s; t
 �
Z 1

�1
d!CwE0e

ik	!
s�i!t

�
ieE2

0

2�Nw

Z 1

�1
d!

eis !=v�i!t

k	!
 � !
v � i0

: (B9)

Expanding the denominator in the integrand near the
pole,

k	!
 �
!
v
� i0 � 	!�!s


�
dk
d!

�������!�!s

�
1

v

�
�i0

� 	!�!s

�

1

vg
�

1

v

�
�i0; (B10)

where vg is the group velocity of the mode, vg �
d!=dkj!�!s , it is easy to see that in the case when
v > vg the pole is located below the real axis !. In front
of the particle, where s > vt, we can close the integration
path in the integral of Eq. (B9) by an infinite half circle in
the upper plane of !, and since there are no poles inside
such an integration contour, the integral vanishes. Hence
the field in front of the particle is equal to zero.

The field behind the particle, s < vt, can be obtained
by shifting the integration path below the real axis,
Im!< 0. The contribution from the poles should be
interpreted as a radiation field associate with the synchro-
nous modes. It is easy to find this contribution by calcu-
lating the two residues as ! � �!s,

E	s; t
 �
2eE2

0

Nw

�
1

vg
�

1

v

�
�1

cos

�
!s
v

	s� vt

�
: (B11)

As might be expected, the field behind the particle is a
034401-9
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sinusoidal oscillation with the frequency and the wave
number equal to those of the synchronous mode w.

Since the electric field in front of the particle is zero,
the effective electric field that acts on the charge is equal
to half of the field behind it, Eeff �

1
2E	s � vt� 0
. The

energy lost by the particle per unit length of the path can
be calculated as a work of the force eEeff :

dW
ds

� �eEeff �
e2

Nw
jE0j

2

�
1

vg
�

1

v

�
�1
: (B12)

Recalling that Nw � 4Pw, for the ultrarelativistic par-
ticle, we arrive at Eq. (29) (the index w is suppressed
for ease of notation).

If v < vg, the above derivation remains valid with
minor amendments. It is readily seen that in this case
the wake field is located in front of the particle, and the
formula (B12) is still valid if one substitutes the last factor
	1=vg � 1=v
�1 with its absolute value j1=vg � 1=vj�1.

APPENDIX C: AN EXPRESSION FOR vg

We will see below that the difference 1 � vg=c is of the
second order in parameter � and it might seem that in
order to calculate 1 � vg=c one has to know the fields up
to the second order. Fortunately, it turns out that
the second order terms cancel out and the final result
is formulated in terms of the zeroth and first order
terms only.

Recall that Ez, Hz, Er, and Hr are of the zeroth order,
and E and H are of the first order in �. Suppose that we
know the functions Ez, Hz, Er, and Hr up to the terms of
the order of �2, i.e.,

Ez � E	0

z � E	2


z ; Hz � H	0

z �H	2


z ;

Er � E	0

r � E	2


r ; Hr � H	0

r �H	2


r ;

where the superscript indicates the order in �. The terms
of the second order in the  component of the Poynting
vector S, Eq. (32), will be

S �
c

8�
	�E	0


r H
	2

z � E	2


r H
	0

z � E	0


z H
	2

r � E	2


z H
	0

r 
;

(C1)

and the terms of the second order in w will be

w �
1

8�
	E	0


z E
	2

z � E	0


r E
	2

r �H	0


z H
	2

z �H	0


r H
	2

r

� E2
 �H2


: (C2)

Using Eqs. (5) and (7) for the zero-order components of
the fields and substituting Eqs. (C1) and (C2) into Eq. (33)
we find that the second order terms will cancel each other:
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vg
c

� 1 �
1

2k2

R
dxdz�	@Ez@z �

@Er
@x 


2 � 	@Er@z �
@Ez
@x 


2�R
dxdz	E2

r � E2
z


�
1

R

R
dxdzx	E2

r � E2
z
R

dxdz	E2
r � E2

z

: (C3)

Further simplification of this expression is possible by
applying the variational principle [(A10)]. According to
this principle, the second term on the right-hand side is
equal to the third one plus 
, so that

vg
c

� 1 �
2

R

R
dxdzx	E2

r � E2
z
R

dxdz	E2
r � E2

z

� 
: (C4)

APPENDIX D: RADIATION IN THE LIMIT OF
HIGH FREQUENCIES

When the frequency of the radiation ! is much larger
than the critical frequency for the toroidal waveguide
!� !min � ckmin [see Eq. (1)], the shielding effect of
the conducting boundaries becomes small. One expects
that in this limit the spectrum of the radiation does not
depend on the shape of the boundary and, with increase of
!, approaches the spectrum of the synchrotron radiation
in vacuum. In this Appendix, we will demonstrate, by
direct calculation for the rectangular cross section, that
the limit !! 1 recovers the well-known formulas for
the synchrotron radiation in free space.

Since the radiation in free space has a continuous
spectrum, we expect that in the limit of large ! the
main contribution to the radiated energy will come from
modes with p;m� 1 (see the subsection of IV). This
means that we can neglect the addend 1

4 in comparison
with m, m� 1

4 ! m, in Eqs. (25) and (26).
Let us first do calculations for the Ez mode; the con-

tribution from the Er mode is similar and its derivation is
outlined at the end of the Appendix. First we calculate the
electric field E0 on the axis,

E0 � Ejx;z�0 �
i
k
@Ez
@z

�������x;z�0
� �

i�p
kb

sin

�
�p
2

�
Ezj��0;

(D1)

which tells that it vanishes for even p; for odd p we have

jE0j �
�p
kb

jEzjj��0 �
�p
kb

jAi	�0
j; (D2)

where we used Eq. (27b).
The energy radiated per unit path of the particle is

given by Eq. (B12):

dW
ds

�
X
p;m

e2

4P
jE0j

2

������� 1

vg
�

1

v

�������
�1
; (D3)

where E0, P, and vg are functions of p and m. Since we
know that large values of p and m make the dominant
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contribution, we will use integration instead of summation. Also, since only odd p contributes, we will add a factor 1=2:

dW
ds

�
1

8
e2

Z 1

0
dm

Z 1

0
dp

1

P
jE0j

2

������� 1

vg
�

1

v

�������
�1

�
1

8
e2

Z 1

0
dm

Z 1

0
dp

Z 1

0
dk

1

P
jE0j

2

������� 1

vg
�

1

v

�������
�1
/	k
 � k=2�2


������� d
dk

�
k
 �

k

2�2

��������: (D4)

In the last equation we introduced integration over the wave number k together with the delta function, which takes
explicitly into account the resonance conditions 
 � �1=2�2; the integration goes over the positive half of the k axis
because Eq. (B12) already takes into account modes propagating in opposite directions. Making use of Eqs. (3) and (25)
one can show that

������� 1

vg
�

1

v

�������
�1
������� d
dk

�
k
 �

k

2�2

���������
vvg
c

� c;

which simplifies Eq. (D4)

dW
ds

�
1

8
ce2

Z
dm

Z
dp

Z
dk

1

P
jE0j

2/	k
 � k=2�2
: (D5)

Using Eq. (27b) and taking into account that in the Ez mode Hr � Ez and Hz � Er � 0, as follows from Eq. (5), it is
easy to find the energy flow P in the mode:

P �
cb

16�2

�
3�mR

4k2

�
1=3

	1 � /p0
: (D6)

Now substituting Eqs. (D2), (D6), and (26) into Eq. (D5) we obtain

dW
ds

�
22=3�11=3

31=3

e2

b3R1=3

Z
dm

Z
dp

Z
dk

p2E2
z

m1=3k4=3
/
�
k
�
�
a
2R

�
1

2�2 �
�2p2

2k2 b2 �
1

2

�
3�m
kR

�
2=3

��
:

We first integrate over p and get rid of the delta function

dW
ds

�
25=3�5=3

31=3

e2

bR1=3

Z
dm

Z
dk

p	m


m1=3k1=3
E2
z ; (D7)

where

p	m
 �
kb
�

�
a
R
�

1

�2 �

�
3�m
kR

�
2=3

�
1=2
: (D8)

Note that for a given k, p varies from 1 to pmax �
	bk=�
	a=R� 1=�2
1=2 when m varies from 0 to mmax �
	kR=3�
 	a=R� 1=�2
3=2.

Equation (D7) is the energy radiated per unit length of
the path. If we drop integration over k from that equation
and divide it by v, we obtain the energy loss per d! �
vdk, which is the spectral energy loss PE	!
. A simple
calculation yields

PE �
25=3�5=3

	3kR
1=3cb

�
Z
dmm�1=3p	m
Ai2

�
�2p2R2=3

22=3k4=3b2
�

	2k2R2
1=3

2�2

�
;

(D9)

where we used Eqs. (27a) and (27b) for Ez, Eq. (16) for �0,
and set 
 � �1=2�2, v � c. Changing the integration
variable from m to 5, with
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5 �
k2=3R2=3

22=3

�
a
R
�

1

�2 �

�
3�m
kR

�
2=3

�

yields the following result:

PE	!
 �
25=3e2

c
k1=3R�2=3

�
Z 1

0
d5

����
5

p
Ai2

�
5�

�
kR

2�3

�
2=3

�
; (D10)

where in the limit a; b! 1 the lower and upper limits of
integration are zero and infinity, respectively.

So far we have found the radiation to Ez modes. To
calculate radiation PH to Er modes, it is sufficient to note
that Eq. (D6) is also valid for Er modes (except for the
p � 0 mode which does not exist), @Ez=@z in Eq. (D1) has
to be substituted with @Er=@x, and that Er in this limit is
also equal to the Airy function, Eq. (27a). As a result, the
expression for the spectral energy radiation PH	!
 into
Er modes is

PH	!
 �
25=3e2

c
k1=3R�2=3

�
Z 1

0
d5

1����
5

p Ai02
�
5�

�
kR

2�3

�
2=3

�
: (D11)

The total energy, radiated per unit path per unit fre-
quency, is the sum of (D10) and (D11):
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P	!
 �
e2!H �

c2 25=3

������
3$
2

3

r Z 1

0
d5

� ����
5

p
Ai2

�
5�

�
3$
4

�
2=3

�
�

1����
5

p Ai02
�
5�

�
3$
4

�
2=3

�
; (D12)
where $ � 2kR=3�3 and !H � c=R.
One can show that Eq. (D12) can be cast into the form

P	!
 �
e2!H �

c2 F
�
2kR

3�3

�
;

F	$
 �

���
3

p

2�
$
Z 1

$
d$K5=3	$
d$;

(D13)

which coincides with Eq. (74.17) from [10].
0344
[1] A.W. Chao and M. Tigner, Handbook of Accelerator
Physics and Engineering (World Scientific, Singapore,
1999).

[2] S. Heifets and G.V. Stupakov, Phys. Rev. ST Accel.
Beams 5, 054402 (2002).
01-12
[3] R. L. Warnock and P. Morton, Part. Accel. 25, 113 (1990).
[4] K.-Y. Ng, Part. Accel. 25, 153 (1990).
[5] M. M. Karliner, N.V. Mityanina, and V. P. Yakovlev,

Budker Institute of Nuclear Physics Technical Report
No. BUDKERINP 93-90, 1993.

[6] J. B. Murphy, S. Krinsky, and R. L. Gluckstern, Part.
Accel. 57, 9 (1997).

[7] A.W. Chao, Physics of Collective Beam Instabilities in
High-Energy Accelerators (Wiley, New York, 1993).

[8] Partial Differential Equation Toolbox User’s Guide (The
MathWorks, Inc., Natick, MA, 1995).

[9] L. A. Vainshtein, Electromagnetic Waves (Radio i svyaz’,
Moscow, 1988), in Russian.

[10] L. D. Landau and E. M. Lifshitz, The Classical Theory of
Fields, Course of Theoretical Physics Vol. 2 (Pergamon,
London, 1979), 4th ed., translated from the Russian.
034401-12


