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A large-scaleVlasov simulation study of the microwave instability below transition energy in a beam
confined between two barrier pulses is performed. Starting from a matched distribution function for the
confined ion beam including the space charge impedance the stability threshold in the longitudinal
impedance plane is obtained. A simple stability criterium is found to be in good agreement with the
simulation results.
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shape, compared with bunches in conventional rf buckets, Section IV then outlines the linearized theory for
I. INTRODUCTION

The determination of reliable impedance budgets for
the design of low energy, high current ring machines
requires the inclusion of space charge in combination
with the other ring impedance components. Up to now,
systematic studies of the coherent stability limits due to
the longitudinal microwave instability were performed
mostly for high energy bunches in conventional rf buckets
(for a review, see, e.g., Ref. [1]). Sacherer [2] showed that,
without mode coupling, a single bunch interacting with a
resistive broadband impedance is stable. Nonlinear mode
coupling is required in order to give an unstable, traveling
wave on the bunch. However, if the instability is fast
compared with the synchrotron period good agreement
with growth rates from the linearized coasting beam
theory is obtained. For the microwave instability in space
charge dominated low energy beams detailed studies
exist for coasting beams (see, e.g., [3]). The longitudinal
instability in space charge dominated bunches driven by
a resistive wall impedance was considered in [4–6].
Special attention was paid to the reflection of unstable
space charge waves at the bunch ends. Experiments on
the reflection of space charge waves were described in
Ref. [7].

In the present work a large-scale simulation study of
the microwave instability in a barrier bucket below tran-
sition energy is performed. In an ideal barrier bucket the
bunch is confined between two well-separated and local-
ized rf pulses. Between the pulses the beam is coasting.
This enables a straightforward comparison of bunched
and coasting beam stability limits. The effect of the
bunch is more or less reduced to a gap in the coasting
beam. However, the results obtained in this work are also
applicable to general bunch forms.

Barrier buckets are usually considered in low energy,
high current ring machines in order to increase the trans-
verse space charge limit [8]. The flattening of the bunch
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causes a reduction of the peak current density and thus of
the transverse space charge tune shift. Another method
to flatten the bunches is the installation of a second-
harmonic rf system [9]. The bunching factor, determined
by the average current divided by the peak current, can be
as high as 0.5 in these rf systems. The highest bunching
factors, approaching one, can be achieved with barrier
buckets. Therefore, barrier buckets play an important role
in proposed accumulators for low to medium energy, high
current ion beams, like the planed SIS 100 synchrotron at
GSI [10] or the storage rings for heavy ion fusion driver
scenarios [11]. Experiments with medium energy proton
beams in barrier buckets were performed already in the
BNL Alternating Gradient Synchrotron (AGS) [8] and in
the CERN Super Proton Synchrotron (SPS) [12]. In the
AGS experiment the two barriers were formed by a single
sine wave that was generated by a magnetic alloy loaded
cavity. The comparison of the AGS experiment with
simulations including the shunt impedance of the barrier
rf cavity showed the importance of a feedback system.
The effect of parametric resonances in barrier buckets
excited by rf noise was studied theoretically in Ref. [13].
Besides the increased transverse space charge limit bar-
rier buckets offer greater flexibility for bunch manipula-
tions compared to conventional rf systems, especially for
injection and accumulation (see, e.g., [14]). Recently the
application of barrier buckets to future high energy col-
liders was proposed [15]. Higher luminosities could be
achieved because of the reduced beam-beam tune shift.
Another application is the cooling of bunched ion beams
by electrons or lasers. In Refs. [16,17] it was demonstrated
experimentally that laser cooling in a barrier bucket
generates extremely cold, space charge dominated ion
bunches.

The paper is structured as follows. Section II describes
the framework of the kinetic model. In Sec. III a matched
beam distribution with space charge is introduced that
serves as the initial distribution in the simulations.

bunched beams before in Sec. V the simulation results
are presented and analyzed. Some design considerations
for barrier bucket systems are given in Sec. VI.
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PRST-AB 6 SPACE CHARGE EFFECTS AND COHERENT STABILITY . . . 034207 (2003)
II. KINETIC DESCRIPTION

The time evolution of the beam distribution f�z; vz; t)
is governed by the Vlasov equation
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with the distance z and the velocity derivation vz from the
synchronous particle, the total longitudinal electric field
Ez�z; t�, the relativistic parameter 
0 � �1� 
2

0�
1=2, the

slip factor 	, the ion charge q, and the ion mass m. The
line charge density �L is given through
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fdvz: (2)

The electric field amplitude resulting from a line den-
sity perturbation at the nth harmonic of the revolution
frequency !0 is obtained from

En � �
1

2�R
ZnIn: (3)

Here, In � 
0c�L;n and En denote the amplitudes of the
beam current and the resulting longitudinal electric field.
Zn is the total ring impedance acting at the nth harmonic.
At low beam energies the space charge impedance is
usually dominant. For the case of a transversely uniform
beam of radius a in a circular beam pipe of radius b it was
shown in Refs. [18,19] that the longitudinal space charge
impedance can be approximated as
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with Z0 � 377 �, g � 0:5� 2 ln�b=a�, and the cutoff
harmonic nc � 2�R=�c determined by the length scale
parameter �c � 
�1

0 �a
���
g

p
. The space charge impedance

is proportional to the harmonic number in the long wave-
length regime and vanishes at wavelengths of the order
of �c due to the image charges on the inner side of the
beam pipe.

In addition to the purely reactive space charge impe-
dance [Eq. (4)] many of the vacuum chamber elements
through which the beam travels have a cavitylike struc-
ture whose individual contributions to the total ring im-
pedance can be represented as (shunt impedance Rs,
quality factor Q)

Zcav
n �

Rs

1� iQ�!n=!r �!r=!n�
; (5)

with the eigenfrequency !r and !n � n!0. Often the
total impedance due to imperfections of the ring environ-
ment is approximated in terms of a single broadband
resonator impedance with !r in the GHz range.
034207-2
III. MATCHED BEAM DISTRIBUTIONS WITH
SPACE CHARGE

A. Parabolic bunch model

For long bunches (l � �c) in the presence of space
charge, Neuffer (Ref. [20]) showed that the distribution
function

f�z; v� � f0

���������������������������
1�

z2

z2m
�

v2

v2
m

s
; � zm < z < zm; (6)

with the bunch half length zm � l=2, the velocity half-
width vm, and

f0 �
3N

2�vmzm
(7)

reproduces the line charge density (particle number N)
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4zm

(8)

that yields a linear space charge electric field. In the case
of an external linear (‘‘sawtooth’’) electric field or in a
sinusoidal rf field for small particle amplitudes (zm 	
�0=2, rf wave length �0) the Neuffer distribution (also
called the parabolic bunch model) represents a self-
consistent solution of the Vlasov equation [Eq. (1)] in
the presence of space charge [Eq. (4)]. It is important to
point out that a matched distribution in an arbitrary
external rf field can be obtained using a technique de-
scribed in Ref. [21].

Within the parabolic bunch model the matched enve-
lope can be calculated from (see also Ref. [22])

k20zm �
KL

z2m
�

&2L
z3m

� 0; (9)

with k20 � qV0h	=�2�R2
0

2
0mc2� the linearized rf

focusing force for a voltage amplitude V0 at harmonic
h, the longitudinal perveance

KL � �
3gNrc
2
2

0

3
0

	; (10)

with the classical particle radius rc, q as the charge, and
m the ion mass. The longitudinal emittance is defined as

&L �
vmzm

0c

� �	zm�m; (11)

with the momentum spread �m. The perveance can be
related to the bunched beam space charge parameter (see
Ref. [23])

� �
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m
;

Im � q
0c�m:
(12)

The required rf voltage amplitude for a given zm can be
calculated from
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The depression of the synchrotron wave number due to
space charge is given through

k
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From this we can obtain the reduced momentum accept-
ance �max due to space charge in a sinusoidal rf bucket
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with the momentum acceptance for � � 0
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B.‘‘Sausage’’ beam model

By extending the parabolic bunch model to a beam
confined between two sinus half waves (‘‘sausage beam
model’’) we arrive at the distribution function (see Fig. 1)
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with

f0 �
�m

q�vm
: (18)

The resulting line charge density is
FIG. 1. (Color) Sketch of the line density (blue curve) of a
matched beam confined between two sinus half waves (red
curve) of amplitude V0.
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The sausage beam model represents a self-consistent
solution for a beam confined between two triangular
pulses. It can be applied to sinus waves, provided that
the penetration depth zm is much smaller than �0=2. As
for the parabolic bunch we can use the normalized space
charge parameter [Eq. (12)] together with Eq. (13) to
calculate the required rf amplitude for a given penetration
depth zm.

The synchrotron period Ts in a barrier bucket is deter-
mined by the time of flight between the two barriers plus
the time spent in the barriers that can be neglected
because of �0 	 l and 
c � vm,
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v
�
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v
: (21)

IV. STABILITY THRESHOLDS FOR THE
MICROWAVE INSTABILITY FROM LINEARIZED

THEORY

Stability thresholds for the coasting beam microwave
instability are usually given in the normalized impedance
plane �U;V� (see, e.g., Ref. [24])
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with the average current I0, the ring impedance Zn, and
the full width half maximum (FWHM) momentum
spread �FWHM.

For a general operating point in �Un; Vn� space one
needs to evaluate the dispersion function for the complex
frequency shift �! � !� n!0 following from the lin-
earized Vlasov equation. This determines the corre-
sponding region of stability (�!I � 0) that is provided
by Landau damping.

Below transition and in the cold beam approximation
(U2

n � V2
n � 1) a simplified dispersion function can be

obtained (Ref. [24]) yielding backward (‘‘slow’’) and
forward (‘‘fast’’) running waves with a coherent phase
velocity (vFWHM � �	
0c�FWHM)
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The instability growth (damping) rate for the slow (fast)
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wave is

,�1
I �

1

2

n
R
vFWHM

�
1

2

������������������
U2

n � V2
n

q
�

1

2
Un

�
1=2

: (24)

In the frame comoving with the synchronous particle
the instability is convective, meaning the unstable mode
is a traveling wave. On the contrary the pure (Vn � 0)
negative mass instability above transition is absolute (the
unstable mode is a standing wave). It is usually assumed
that the coasting beam results for the complex frequency
shift can be applied to bunched beams provided that the
bunch length l is much longer than the wavelength �n �
2�n=R of interest. The results presented in a later section
will show that this is not the case in space charge domi-
nated beams below transition.

In low energy beams the imaginary part of the impe-
dance spectrum Un is dominated by the space charge
impedance [Eq. (4)]. The normalized space charge im-
pedance U for n 	 nc can be related to the bunched beam
space charge parameter � through

U �
1

-2 � (25)

with I0 � Im and the constant parameter - depending on
the relation between the momentum spreads �FWHM �
-�m. For the parabolic and the sausage bunch models
- �

���
3

p
holds. Coasting beams are called space charge

dominated for U * 1. Below transition the convection
induced by the space charge impedance has strong im-
plications on the stability of bunched beams, as will be
discussed in the following.

Within a linearized theory a single long bunch inter-
acting with a broadband resonator is always stable: per-
turbations generated at one of the bunch ends move
towards the other end where they are reflected. As pre-
dicted in Ref. [4] already, due to the fact that the back-
ward running (slow) mode growths and the forward
running (fast) mode is damped the total growth over
one round trip vanishes. However, as pointed out in
Ref. [6], unstable growth over one round trip is possible
due to mode conversion during reflection of finite ampli-
tude perturbations. On the other hand, as pointed out in
Ref. [5], mode conversion and wave-particle coupling
during reflection also have a self-limiting effect on the
instability. In the framework of the cold coasting beam
approximation both pictures can be cast into a simple
‘‘stability criterion’’ for long bunches

�.e,I�
�1 &

cs
l
: (26)

Here .e is introduced as the allowed end-to-end e-folding
before nonlinear effects at the boundary lead to unstable
growth or as the damping rate .ecs=l due to wave reflec-
tion. Using Eqs. (23) and (24) yields
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2
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2
: (27)
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For .eR=�nl� 	 1 Eq. (27) can be approximated through

Vn

Un
&

2R.e

nl
: (28)

The stability criteria [Eqs. (26) and (28)] predict that
space charge induced convection can have a stabilizing
effect on the microwave instability in bunches. The factor
.e must be determined from simulation studies described
in the following section.

It is worth keeping in mind that in the limiting case of
very long bunches (l ! 1) the damping effect due to
wave reflection gets weaker and coasting beam damping
rates such as the Landau damping rate ,�1

L �n� due to
Gaussian momentum spread tails (see Ref. [3]) determine
the instability threshold. Therefore Eqs. (27) or (28) can
be valid for .ecs=l � ,�1

L �n� only.

V. SIMULATION OF THE MICROWAVE
INSTABILITY IN BARRIER BUCKETS

The microwave instability in a single bunch is essen-
tially a nonlinear phenomenon. Therefore the reliable
determination of threshold currents or impedance budg-
ets requires analytic or numerical methods beyond line-
arized Vlasov theory. In the present work a large scale
simulation study in �Un; Vn� parameter space (‘‘impe-
dance scan’’) is performed employing a Vlasov code
(Ref. [3]). Especially for resolving instability thresholds
a high-resolution,‘‘noise-free’’ Vlasov solver has advan-
tages over standard particle tracking codes. In the simu-
lations we study the interaction of the beam with a cavity
impedance in the presence of space charge. For the space
charge impedance we choose a cutoff parameter �c �
0:1 m. In order to limit the number of points along the z
axis to Nz � 1024 with �x 	 �c we restrict our numer-
ical study to a periodic beam pipe of the length L �
10 m. The resonance of the resonator is tuned to the
harmonic number nr � 20 of the simulation model and
the quality factor is set to Q � 5. A two parameter study
is performed by varying the shunt impedance Rs of the
resonator and the space charge reactance Xsc �
gZ0=�
0


2
0�. An initial harmonic perturbation at n � nr

with a maximum amplitude of 1% is used to initiate the
instability.

A. Coasting beam impedance scans

In the limiting case of a coasting beam (l ! 1) with a
Gaussian velocity distribution the momentum spread
blowup from about 100 Vlasov simulation runs for differ-
ent �U;V� is shown in Fig. 2. Here U and V are the
normalized space charge and resonator shunt impedance,
respectively. We see that the boundary of the stable
(black) area in �U;V� space agrees very well with the
stability threshold obtained from the linearized Vlasov
theory for a Gaussian velocity distribution (white line).
For the coasting beam velocity distribution,
034207-4



FIG. 2. (Color) Momentum spread increase in a coasting beam
with a Gaussian velocity distribution as a function of initial
�U;V� values. The black area corresponds to a stable beam.
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f�v� � f0

���������������
1�

v2

v2
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s
; (29)

that directly corresponds to a sausage beam [Eq. (17)]
with l ! 1, the result is shown in Fig. 3. The stability
FIG. 3. (Color) Momentum spread increase in a coasting beam
with the velocity distribution Eq. (29) as a function of initial
�U;V� values. The black area corresponds to a stable beam.
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threshold obtained from linearized Vlasov theory (solid
white line) agrees with the simulation result if a damping
rate 2 � 10 s�1 is added to the denominator of the dis-
persion integral. This damping rate slightly enlarges the
stable area and removes the singular dip in the linearized
stability boundary for V � 0 that cannot be resolved
within the simulation. This damping rate reflects the
unavoidable numerical diffusion in grid based simulation
codes. The comparison with the instability threshold
curve for the rms equivalent [vm � 2vrms for Eq. (29)]
Gaussian velocity distribution (dashed red line in Fig. 3)
shows that the stable area is reduced, but the rms mo-
mentum spread growth inside the area between the two
curves remains below 2.0.
B. Barrier bucket impedance scans

In the bunched beam computer model an initial sausage
beam with l � 7 m and zm � 1 m is studied. The bunch is
confined between two triangular shaped electric field
pulses of different polarity (the total pulse width corre-
sponds to the third harmonic of the simulation model).
The electric field gradient is matched to the initial beam
conditions using Eq. (13). Figure 4 shows the bunch with a
superimposed modulation at n � 20 with an amplitude
variation that is typically generated by the interaction
with a cavity impedance. The current amplitudes of the
modulated bunch together with the resistive part of the
cavity impedance and the space charge impedance are
shown in Fig. 5. In order to avoid overlap of the resistive
cavity impedance with the unperturbed bunch spectrum
the resonance harmonic nr and the quality factor Q are
chosen sufficiently large. Still the amplitude spectrum of
the unstable mode is narrow compared to the chosen
frequency width of the resistive resonator impedance.
FIG. 4. (Color) Typical standing wave pattern on a sausage
beam induced by a resonator impedance. The red dotted curve
represents the unperturbed current profile.
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FIG. 7. (Color) Emittance increase in a sausage beam as a
function of initial �U;V� values with nr � 10. The black area
corresponds to a stable beam. .e � 5.

FIG. 5. (Color) Current amplitude of the modulated bunch
(Fig. 4) as a function of the frequency together with the
resistive part of the cavity impedance and the space charge
impedance (both in a.u.).
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The result of a parameter scan in �U;V� space for a
cavity impedance centered at nr � 20 is shown in Fig. 6.
For U & 1 the stable area increases relative to the equiv-
alent coasting beam (solid white line) and extends to-
wards the stability domain for the rms equivalent
coasting beam with a Gaussian velocity distribution
(dashed red line). For U * 1 the stable area increases
relative to a coasting beam and the instability threshold
can be well described (dashed white line) by Eq. (27) or
its approximation Eq. (28) with n � nr � 20 and an end-
to-end e-folding factor .e � 6. The dependence on the
FIG. 6. (Color) Emittance increase in a sausage beam as a
function of initial �U;V� values with nr � 20. The black area
corresponds to a stable beam. .e � 6.

034207-6
initial perturbation amplitude was checked between 0.1
and 1%. In this range the boundary of the black area stays
unaffected.

The results for decreased resonance harmonics nr � 10
and nr � 5 are shown in Figs. 7 and 8. For nr � 10 the
FIG. 8. (Color) Emittance increase in a sausage beam as a
function of initial �U;V� values with nr � 5. The black area
corresponds to a stable beam. .e � 3.
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stability threshold can again be well described by Eq. (27)
with a slightly decreased .e � 5. For nr � 5 the
wavelength of the unstable mode is close to the pulse
width of the barrier and in addition the bunch cannot be
regarded as long relative to the unstable wavelength. Still
the stable area for U * 1 can be fitted to Eq. (27) if the
origin is shifted and .e � 3 is chosen.
C. Instability saturation in barrier buckets

By studying the time evolution towards a new station-
ary state for initial parameters close to the stability
boundaries one can gain insight into the relevant damp-
ing mechanisms for finite amplitude modes in barrier
buckets. In addition one can learn how far outside the
stable (black) areas in Figs. 6–8, a machine can be
operated safely. Figure 9 shows the evolution of the
instability for initial parameters U � 0:3, V � 0:3, and
FIG. 9. (Color) Time evolution of the microwave instability in
a barrier bucket for U � 0:3, V � 0:3, and nr � 20. The red
dotted curves represent the initial current profile and velocity
distribution.
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nr � 20 (final rms emittance change approximately 1.6).
The cold beam growth time ,I [Eq. (24)] and the coherent
phase velocity cs [Eq. (23)] are used to normalize time
and velocity. One has to keep in mind that these cold
beam values are not applicable for initial values U2 �
V2 < 1. However, in the present example they are used
also to normalize velocity and time in the case of a
‘‘warm’’ beam. In Fig. 9 one can see that the slow mode
is amplified towards its way to the bunch end. Before
reaching the bunch end particles are trapped in the large
amplitude wave. The phase space holes formed by the
trapped particles survive the reflection, but the amplitude
of the reflected mode is strongly reduced, possibly due to
nonlinear wave phenomena during reflection, such as
mode coupling and wave-particle interaction. After
more than 300� ,I one can still observe long-lived
hole structures in the turbulent phase space distribution.
The velocity distribution turns into a stationary tentlike
FIG. 10. (Color) Time evolution of the microwave instability in
a barrier bucket for U � 0:3, V � 0:3, and nr � 10. The red
dotted curves represent the initial current profile and velocity
distribution.

034207-7
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form, with an increased total width relative to the initial
distribution. No particle leakage into the gap is observed.
The time evolution for U � 0:3, V � 0:3, and nr � 10 in
Fig. 10 shows a similar behavior. For U & 1 one can
safely operate inside the area enclosed by the stability
curve for the coasting rms equivalent Gaussian beam, if
an rms emittance change of 1.6 with a corresponding
increased penetration depth into the gap of about 30% is
acceptable.

In the space charge dominated regime a different sat-
uration behavior is observed. The time evolution for U �
1:0, V � 0:2, and nr � 20 is shown in Fig. 11. Here the
final rms emittance change is 1.5, similar to the former
examples, but the shape of the final distribution function
is very different. Particles trapped and accelerated in the
large amplitude wave form a low density halo. The cor-
FIG. 11. (Color) Time evolution of the microwave instability in
a barrier bucket for U � 1:0, V � 0:2, and nr � 20. For a better
resolution of the low density phase space regions the contours
of ln�1� f� are shown and a different color set is used. The
green dotted curves represent the initial current profile and
velocity distribution.

FIG. 12. (Color) Time evolution of the microwave instability in
a barrier bucket for U � 2:0, V � 0:3, and nr � 20. For a better
resolution of the low density phase space regions the contours
of ln�1� f� are shown and a different color set is used. The
green dotted curves represent the initial current profile and
velocity distribution.

034207-8
responding tail of the velocity distribution extends up to
v � 2cs. This can be related to the fact that large ampli-
tude perturbations move faster then cs (see, e.g., [3]). For
the chosen barrier height, some of the tail particles can
leak into the gap. The tail efficiently seems to damp all
current perturbations on the bunch. The simulations show
that this saturation mechanism is characteristic for oper-
ating points with U * 1 outside, but still close to the
stable area.

For increasing U the tails get thinner and extend to
higher maximum velocities. Figure 12 shows the time
evolution for U � 2:0, V � 0:3, and nr � 20. Here the
tail extends up to 2:5cs for the slowed down (negative vz)
particles. For U * 1 one must be careful in choosing
operating points outside the black areas in Figs. 6–8
because of the possible penetration of particles slowed
down by large amplitude waves into the gap.
034207-8
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VI. BARRIER BUCKET DESIGN
CONSIDERATIONS

A. Barrier height considerations

The required barrier height depends on the tolerable
penetration depth of particles into the gap. If, e.g., the gap
size is adjusted to the extraction kicker rise time, then
particles between the barrier pulses are lost. In high
current machines this may lead to residual activation.
Beam ions in the gap can also cause a two-stream insta-
bility between beam ions and residual gas electrons
(Ref. [25]). For the suppression of this two-stream insta-
bility in long bunches clean gaps are essential.

For the sausage beam distribution, or rms equivalent
distribution functions, the penetration depth zm for a
given voltage can be obtained from Eq. (13). For space
charge dominated beams (U * 1) and V � 0 the required
barrier voltage scales according to V0 � cs=zm, with the
coherent phase velocity cs � vm

����
U

p
[see Eq. (23)]. Large

amplitude waves generated by the microwave instability
can accelerate particles to velocities exceeding cs (see
Figs. 11 and 12). Therefore one should include a safety
factor of 2–3 for the barrier voltage, in order to ensure a
penetration depth zm also for the tail particles. Or equiv-
alently, in designing a barrier system for space charge
dominated beams, especially close to the stability boun-
daries, the voltage should always be sufficiently high in
order to confine the particle velocity 2–3 cs � vm.

B. Impedance budget considerations

First, it is important to note that in the absence of a
resistive impedance (V � 0) the perturbed sausage beam
distribution is stable. Within our simulation model no tail
formation or reconfiguration towards a more Gaussian-
type distribution is observed. For finite V and U & 1 an
increased stability boundary relative to a equivalent
coasting beam is observed in the simulation. In the space
charge dominated regime (U * 1) Eq. (27) or its approx-
imation Eq. (28) can be used. The free parameter .e
depends, as observed in the simulations, on the ratio of
the bunch length to the wavelength of the unstable mode.
For known .e and long bunches the maximum shunt
impedance can be written in the simple form

Rs &
XscL.e

�l
(30)

with the circumference of the machine L, the space
charge reactance Xsc, and the bunch length l. The simu-
lation shows that Eq. (30) might be used also to estimate
the tolerable shunt impedance of barrier bucket rf cavities
and its high harmonic impedance components.

In cooler storage rings it could be advantageous to cool
in barrier buckets instead of using coasting beams.
Because of the increased stability region in barrier buck-
ets the heating due to coherent instabilities can be reduced
or even totally suppressed. During cooling (reduction of
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�p=p0) the �U;V� parameters always move along a line
that goes through the origin and the initial starting point.
If the initial,‘‘uncooled’’ beam parameters in the �U;V�
plane are within the stable area determined by Eq. (27)
then also the cooled beam parameters will be stable.

VII. CONCLUSIONS

The sausage beam model was introduced that extends
the parabolic bunch model for usual rf buckets to barrier
buckets. In the presence of space charge and for triangular
barrier pulses the sausage beam model represents a
strictly self-consistent, matched solution. The coherent
stability limits of this distribution in the presence of a
cavity resonator are studied using impedance scans per-
formed with a Vlasov simulation code. The comparison
between coasting and barrier bucket beams shows that
space charge induced convection together with bunch end
effects strongly widens the region of longitudinal stabil-
ity, especially in the space charge dominated regime. A
simple stability criterion was found in good agreement
with the simulation results. The criterium can be very
useful to estimate impedance budgets for space charge
dominated beams in barrier bucket systems. The satura-
tion of the instability in space charge dominated beams
results in the formation of an extended longitudinal halo.
For moderate space charge long-lived turbulent behavior
is observed together with a stationary tentlike velocity
distribution.
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