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The dispersion relation for the resistive hose instability in a charged particle beam with a flattop
density profile is derived from the linearized Vlasov-Maxwell equations. Stability properties of the
resistive hose instability where the perturbations are initiated at the beam entrance are investigated. In
particular, the complex eigenfrequency � in the dispersion relation is expressed as a function of the real
oscillation frequency ! of the excitation at the beam entrance. As expected, the growth rate Im� � �i
decreases rapidly as the conducting wall approaches the beam (rw=rb ! 1). The growth rate also
decreases substantially as the frequency ratio !=�c increases, where �c is the electron collision
frequency. Stability properties for perturbations propagating through the beam pulse from its head
to tail are also investigated. In this case, the growth rate Im! is calculated in terms of the real
oscillation frequency � of each beam segment. It is shown that the resonance frequency � � �r
corresponding to the infinite growth rate detunes considerably from the betatron frequency !	 of the
beam particles. It is also found that the bandwidth corresponding to instability is narrow when the
plasma electron collision time (1=�c) is long compared with the magnetic decay time (
d).
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the beam density and is independent of the chamber
pressure. Therefore, the oscillation frequency ! may be

nb. In this case, for large-volume plasma, the plasma
electrons respond rapidly and provide nearly complete
I. INTRODUCTION

Intense charged particle beams produced in high en-
ergy accelerators and transport systems [1–5] have a wide
range of applications, including basic scientific research,
spallation neutron sources, nuclear waste transmutation,
and heavy ion fusion [6–8], to mention a few examples.
Charged particle beams propagating through preformed
plasma may be subject to various instabilities [9–26] that
can cause deterioration of the beam quality. One of the
most serious instabilities for a beam propagating through
a plasma channel appears to be the resistive hose insta-
bility [20–26]. Previous theories [21–26] of the resistive
hose instability were developed for highly collisional
plasmas, where the electron collision frequency �c is
much higher than the oscillation frequency ! of the
perturbations, i.e., �c � j!j. The electron collision fre-
quency �c for an electron temperature Te � 1 eV is about
1011 s�1 in ambient air at one atmospheric pressure,
where the electron collisions are dominated by electron-
neutral collisions. Obviously, the electron collision fre-
quency decreases considerably if a plasma channel is
preformed in a low-pressure chamber. A typical oscilla-
tion frequency ! of the perturbations is on the order of
the transverse betatron frequency !	 of the beam par-
ticles in the equilibrium fields, as will be seen later. The
betatron frequency of the beam particles is again on the
order of the beam-plasma frequency !pb or less. Keep in
mind that the beam-plasma frequency is determined by
1098-4402=03=6(3)=034204(10)$20.00 
comparable to or higher than the electron collision
frequency �c in a preformed plasma channel in a low-
pressure chamber. As an example, consider a 1 kA cesium
ion beam (mass number A � 137) with average kinetic
energy ��b � 1�mbc2 � 2:5 GeV corresponding to axial
beam velocity Vb � 	bc � 0:2c, and beam radius rb �
1 cm. In this case the beam density is calculated to be
nb � 1012 cm�3, and the corresponding depressed beta-
tron frequency [Eq. (7)] is!	 � 1:5� 107 s�1, assuming
zero return current (fm � 0). On the other hand, for
plasma electron temperature Te � 1 eV and electron den-
sity ne � 1012 cm�3, the electron collision frequency due
to Coulomb collisions is �c � 2:9� 107 s�1, showing
that !	 and �c can be comparable in size. In this context,
we reinvestigate the resistive hose instability including
the important influence of the oscillation frequency ! of
the perturbations, by making use of the Vlasov-Maxwell
equations for an infinitely long, intense charged particle
beam propagating through a preformed plasma channel.
The background plasma is assumed to provide complete
neutralization of the beam space charge, and the
beam particle motion is assumed to be paraxial (p2

z �
p2
r 	 p2

�). Moreover, the background plasma may provide
partial neutralization of the beam current with fractional
current neutralization fm. Finally, the present analysis is
intended for application to intense, positively charged ion
beams propagating through background plasma with
density larger than or comparable to the beam density
2003 The American Physical Society 034204-1
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neutralization of the ion beam space charge [27]. For
applications to intense ion beams for heavy ion beam
fusion [28–31], both assisted-pinched transport [28,29]
in the target chamber and neutralized ballistic transport
[30,31] through background plasma are possible modes
for beam propagation. The present analysis is most appli-
cable to assisted-pinched transport since the beam radius
is assumed to be approximately constant.

The basic assumptions and theoretical model are
presented in Sec. II, where a charged particle beam
with a flattop density profile propagates through a back-
ground plasma channel. The dispersion relation for the
resistive hose instability is derived from the linearized
Vlasov-Maxwell equations, assuming long-wavelength
(krb 
 1), low-frequency (j!jrb 
 c) perturbations,
and that complete charge neutralization is provided by
the background plasma, including neutralization of the
perturbed beam space-charge field. Here k and ! are the
axial wave number and frequency, respectively, of the
perturbations, and rb is the beam radius. When a current-
carrying beam moves through a conducting plasma, its
self-magnetic field may follow the beam with a delay
time called the magnetic decay time 
d. The magnetic
field lines are frozen into the plasma, pulling back the
distorted beam segment if the plasma is highly conduct-
ing. However, this restoring mechanism, which leads to
the resistive hose instability, overshoots and grows due to
the motionless resistive plasma medium [21–26]. If the
plasma electron collision time (1=�c) is comparable to or
longer than the magnetic decay time 
d, some of the
magnetic field lines may slip through the plasma follow-
ing the beam’s transverse motion, thereby weakening the
instability mechanism. Here, �c is the electron collision
frequency. Therefore, the dispersion relation obtained in
Sec. II includes the stabilizing influence of a finite mag-
netic decay time, which can be comparable to or shorter
than the electron collision time. The instability driven by
the return current is investigated in Sec. III in the limit of
a negligibly small value of the magnetic decay time. The
instability driven by the return current occurs whenever
the fractional current neutralization fm is larger than the
critical current fc defined in Eq. (34).

The perturbations are Fourier decomposed according
to exp�i�kz�!t�� � exp��i�!
	�z=	bc��, where 
 �
t� z=	bc represents the coordinate measured from the
head of the beam to the tail, and � � !� k	bc is the
Doppler-shifted frequency seen by a beam particle. Here,
	bc is the average axial beam velocity. The dispersion
relation can be analyzed according to the nature of the
initial perturbation. In other words, the beam segment
may be treated by using z and t as independent variables,
or by using z and 
 as independent variables. If the
perturbation is initialized by a deflecting excitation at
z � 0 with oscillation frequency !, then the complex
frequency � � !� k	bc represents the oscillation and
growth (or damping) of the wave as a particular beam
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segment propagates downstream. Stability properties of
the resistive hose instability where the perturbations are
excited at the beam entrance are investigated in Sec. IV.
In particular, the eigenfrequency � in the dispersion
relation is expressed as a function of system parameters
and the real oscillation frequency ! of the excitation at
the beam entrance. As expected, the growth rate �i �
Im� decreases significantly as the conducting wall radius
rw approaches the beam radius rb. The growth rate �i
also decreases substantially as the frequency ratio !=�c
increases. However, the real oscillation frequency Re� is
almost independent of the frequency ratio !=�c.

Stability properties for perturbations propagating
through the beam pulse from its head to tail are inves-
tigated in Sec. V, by selecting z and 
 as independent
variables. In this case, the Doppler-shifted frequency �
seen by the beam particles scales as the characteristic
transverse betatron frequency !	 of the beam particles.
In addition, the frequency ! scales as the magnetic decay
time in the plasma channel. The complex eigenfrequency
! in the dispersion relation is expressed as a function of
the real oscillation frequency � of each beam segment.
Then ! determines the growth of the perturbation as one
moves backward from the head of the beam. It is shown
that the resonance frequency � � �r defined in Eq. (48)
and corresponding to infinite growth rate detunes consid-
erably from the betatron frequency !	 of the beam par-
ticles. We also show that the instability bandwidth is
narrow when the electron collision time (1=�c) is longer
than the magnetic decay time (
d). Finally, it is important
to recognize the limitations of the present analysis im-
posed by the assumption of the flattop density profile. In
reality, charged particle beams have a somewhat rounded
density profile, which assures a spread in transverse beta-
tron frequencies. Individual beam particles then have a
betatron frequency that depends on the transverse energy
[22,23]. In this case, there is not a distinct resonance
frequency, and the maximum growth rate of the insta-
bility has a finite value [22,23]. We are currently
investigating the effects of a rounded density profile
and electron collisions on detailed stability behavior,
and results of this study will be presented in a future
publication.
II. BASIC ASSUMPTIONS AND THEORETICAL
MODEL

We consider an intense relativistic charged particle
beam with radius rb propagating through background
plasma, whose conductivity is determined primarily by
the plasma electrons. The beam-plasma system is con-
fined transversely within a perfectly conducting cylindri-
cal wall with radius rw. Cylindrical polar coordinates
(r, �, z) are used, with the z axis along the axis of
symmetry. In equilibrium, both the beam and plasma
are assumed to be azimuthally symmetric (@=@� � 0),
034204-2
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infinitely long, and axially uniform (@=@z � 0). The
background plasma, whose density is comparable to or
higher than the beam density, is assumed to provide
complete neutralization of the beam space charge, and
the motion of the beam is assumed to be paraxial (p2

z �
p2
r 	 p2

�). The beam particles are radially confined by the
self-magnetic field produced by the axial current of the
beam. Under the assumption that the equilibrium distri-
bution function for the beam particles is axisymmetric
and spatially uniform in the axial direction, we recognize
that the transverse Hamiltonian and axial momentum of
the beam particles are constants of the motion in the
equilibrium fields [5,19,23]. Therefore, for present pur-
poses, the equilibrium distribution function for the beam
particles is taken to be [5,17]

F0
b�H?b; pz� �

nb
2��bmb

��H?b � T?b�Gb�pz�; (1)

where nb � const is the number density of beam particles
on axis (r � 0), and T?b is a positive constant related to
the transverse energy of the beam particles. The quantity
H?b occurring in Eq. (1) is the transverse Hamiltonian
defined by

H?b �
1

2�bmb
p2
? 	 Zbe��0�r� ��0m�; (2)

where Zbe is the charge of a beam particle, �0�r� is
defined by �0�r� � �	bAz�r�, 	bc is the mean axial
velocity of the beam particles, c is the speed of light in
vacuo, and Az�r� is the axial component of the equilib-
rium vector potential. In Eq. (2), r � �x2 	 y2�1=2 is the
radial distance from the beam axis, and the axial mo-
mentum distribution is normalized according toZ 1

�1
Gb�pz�dpz � 1: (3)

Substituting Eq. (1) into

n0b�r� �
Z
d3pF0

b�H?b; pz�; (4)

we obtain the step-function (flattop) density profile

n0b�r� �
�
nb � const; 0 � r < rb;
0; rb < r � rw;

(5)

for the charged particle beam, where the equilibrium
beam radius rb is defined by

r2b � 2
T?b

�bmb!
2
	

; (6)

and the (depressed) betatron frequency !	 for the beam
particles is defined by

!2
	 � 	2

b

!2
pb

2
�1� fm�: (7)

The quantity !2
pb occurring Eq. (7) is the on-axis rela-
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tivistic beam-plasma frequency squared defined by
!2
pb � 4�nbZ

2
be

2=�bmb, and fm � const is the fractional
current neutralization. Here, we have assumed that
the background plasma carries a constant return current
Ip � �fmIb in the region 0 � r < rb, where Ib �
nb�r2bZbe	bc is the axial current carried by the beam
particles. In equilibrium, the plasma return current, if
any, is assumed to have the same radial profile as the
beam current. As expected, the (depressed) betatron fre-
quency in Eq. (7) for the beam particles is constant
(independent of radial coordinate r) for the step-function
density profile in Eq. (5).

We use the linearized Vlasov-Maxwell equations [5] to
investigate the resistive hose instability for perturbations
about the intense beam equilibrium described by Eq. (1).
We adopt a normal mode approach in which all perturbed
quantities are assumed to vary with �, z, and t according
to

 �x; t� �  �r� exp�i��	 kz�!t��; (8)

where k and ! are the axial wave number and complex
oscillation frequency, respectively, of the perturbations.
Note that the perturbations in Eq. (8) have a dipole-mode
structure with azimuthal mode number ‘ � 1. In prac-
tice, it is convenient to use 
 and z, rather than t and z, as
independent variables, where 
 � t� z=	bc. In this rep-
resentation, the perturbations are expressed as

 �x; t� �  �r� exp�i����z=	bc�!
��; (9)

where � � !� k	bc is the Doppler-shifted frequency
seen by the beam particles. Either ! or � may be re-
garded as specified quantities, depending on the situation
envisioned. If, for example, a perturbation is initialized
by an oscillatory deflecting excitation at z � 0, then ! is
the real frequency of the excitation, and �, generally
complex, represents the oscillation and growth (or damp-
ing) of the wave as a particular beam segment propagates
downstream. If, on the other hand, each beam segment is
taken to oscillate at a fixed real frequency �, then Im!
represents the growth of the wave as one moves backward
from the head of the beam. The frequency � occurs
through the dynamics of particular beam segments and
is expected to scale with the betatron frequency !	,
whereas ! occurs through the magnetic coupling of dif-
ferent beam segments and is expected to scale with the
magnetic decay time.

We assume that the background plasma is collisional,
although the plasma electrons respond to the perturbed
electric field. Therefore, the plasma is characterized by a
scalar conductivity (�r�, which is primarily contributed
by the plasma electrons. We further assume that the
perturbed beam space-charge field is completely neutral-
ized by the plasma, which requires that

4�j(�r�j � ! (10)
034204-3
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for 0 � r < rb, where rb is the beam radius. We further
consider perturbation wavelengths that are long and fre-
quencies that are low compared with quantities that char-
acterize the beam radius rb, i.e.,

jkrbj 
 1; j!rbj 
 c; (11)

where c is the speed of light in vacuo. The most unstable
modes satisfy Eq. (11) when Eq. (10) holds. It follows that
the transverse components of the perturbed fields, Bz, Er,
and E�, can be neglected, and that the perturbations can
be represented in terms of a perturbed axial component of
vector potential Aez according to

B��r� � �
dA�r�
dr

; Br�r� �
i
r
A�r�;

Ez�r� � �
1

c
@A�r�
@t

:
(12)

The plasma electrons respond to the axial component
Ez�r� of the perturbed electric field in Eq. (12).

After carrying out some algebraic manipulations,
Ampere’s law for the perturbed axial component of vec-
tor potential A�r� can be expressed as

d
dr

1

r
d
dr
rA	

4�i!(�r�

c2
A � �

4�
c
Jb�r�; (13)

where the conductivity (�r� is related to the perturbed
axial plasma current Jp�r� by Jp�r� � (Ez�r� and the
perturbed axial beam current density Jb�r� is calculated
from

Jb�r� � Zbe
Z
d3p�zFb: (14)

The perturbed beam distribution function Fb occurring
in Eq. (14) is calculated by the method of the character-
034204-4
istics, which can be expressed as [5,19,23]

Fb�x;p; t� � ZbeGb�pz�
@

@H?b
F0
b�H?b�

Z t

�1
dt0

p0
?

�bmb
� r?A�x0; t0�;

(15)

where use has been made of Eq. (11).
For a given value of axial wave number k, there is

generally a discrete set of eigenvalues ! and eigenfunc-
tions A�r� with different radial mode structures. Our
interest here lies in the dipole-mode eigenfunction, which
corresponds to a sideways displacement of the beam with
a minimum of internal distortion. In the low-frequency
limit characterized by

4�r2bj!(j=c
2 
 1; (16)

the dipole-mode eigenfunction inside the beam is ex-
pressed as

A�r� / r; (17)

representing a rigid transverse displacement of the uni-
form beam as well as a self-generated B� field. If the term
proportional to ( in Eq. (13) can be neglected in leading
order in accordance with Eq. (16), the eigenfunction in
Eq. (17) is a self-consistent solution [17] of the eigenvalue
equation (13) in the beam interior. Substituting Eq. (17)
into Eq. (15), we can carry out the time integration in
Eq. (15) for known particle orbits in the equilibrium field
configuration. Defining the perpendicular momentum
phase angle ’ by px � p? cos’ and py � p? sin’, the
transverse orbits for the step-function density profiles in
Eq. (6) are given by
x0�t0� �
p?

�bmb!	
cos’ sin�!	�t0 � t�� 	 r cos� cos�!	�t0 � t��;

y0�t0� �
p?

�bmb!	
sin’ sin�!	�t

0 � t�� 	 r sin� cos�!	�t
0 � t��;

(18)
where!	 is the (depressed) betatron frequency defined in
Eq. (8). Substituting Eqs. (1), (17), and (18) into Eq. (15)
and carrying out the time and momentum integrations
[17,23], we obtain the eigenvalue equation

d
dr

1

r
d
dr
rA	

4�i!(�r�

c2
A �

!2
pb	

2
b

�2 �!2
	

��r� rb�
r

A�r�;

(19)

where � is the Doppler-shifted frequency defined by � �
!� k	bc.

If the plasma conductivity (�r� is constant within the
beam and constant outside the beam, the eigenfunctions
of Eq. (19) are Bessel functions of order unity, and the
dispersion relation connecting ! and � can be derived in
closed form from the boundary conditions A�0� �
A�rw� � 0, as well as from the matching conditions at r �
rb. We consider the particular case

(�r� �
1

1� i!=�c
�

�
(p; 0 � r < rb;
(1; rb < r � rw;

(20)

where (p and (1 are the dc plasma conductivities in the
two regions, and �c is the electron collision frequency.
The frequency ! is of the order of the betatron frequency
!	 defined in Eq. (7), which is determined by the beam
density. On the other hand, the electron collision fre-
quency �c in Eq. (20) is determined by plasma properties.
In this context, the parameter !=�c in Eq. (20) can be
larger or smaller than unity, depending on the system
parameters.
034204-4
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For a beam of radius rb, with conductivity (�r� given by Eq. (20), the solutions to Eq. (19) can be expressed as

A�r� � Ain�r� � J1�-pr�; 0 � r < rb; (21a)

and

A�r� � Aout�r� � J1�-prb�
N1�-1rw�J1�-1r� � J1�-1rw�N1�-1r�
J1�-1rb�N1�-1rw� � J1�-1rw�N1�-1rb�

; rb < r � rw; (21b)
where the parameters -p and -1 are defined by

-2
p �

4�i!(p
c2�1� i!=�c�

; (22a)

and

-2
1 �

4�i!(1

c2�1� i!=�c�
: (22b)

Here, J1�x� and N1�x� are the Bessel functions of the first
and second kinds, respectively, of order unity. Note that
the eigenfunctions A�r� in Eqs. (21a) and (21b) vanish
at r � 0 and r � rw and are continuous at r � rb. The
remaining boundary condition relating Ain�r� and Aout�r�
is obtained by multiplying the eigenvalue equations (21a)
and (21b) by r, integrating across the surface of the beam
from r � rb�1� "� to r � rb�1	 "� and taking the limit
"! 0	. We obtain

rb

�
d
dr
Aout

�
rb

�rb

�
d
dr
Ain

�
rb

�
!2
pb	

2
b

�2 �!2
	

A�rb� (23)

for the remaining boundary condition. Substituting
Eqs. (21a) and (21b) into Eq. (23), the dispersion relation
for the resistive hose instability can be expressed as

!2
pb	

2
b

�2 �!2
	

�-1rb
J01�-1rb�N1�-1rw� � J1�-1rw�N0

1�-1rb�
J1�-1rb�N1�-1rw� � J1�-1rw�N1�-1rb�

� -prb
J01�-prb�

J1�-prb�
; (24)

where J01�x� � �d=dx�J1�x� and N0
1�x� � �d=dx�N1�x�.

Note from Eqs. (22a) and (22b) that the Bessel functions
on the right-hand side of Eq. (24) are functions of com-
plex arguments. Therefore, these Bessel functions are also
complex functions. Equation (24) can be used to inves-
tigate stability properties of the resistive hose instability
in a charged particle beam propagating through a back-
ground plasma for a broad range of system parameters.

We consider the particular case

j!j(1 
 c2=4�r2b; (25)

which assures that magnetic diffusion through the weakly
conducting region rb < r � rw is fast compared with the
time scale !�1, and therefore the terms in the dispersion
relation in Eq. (24) proportional to (1 are small. In this
case, the dispersion relation in Eq. (24) reduces to
034204-5
!2
pb	

2
b

�2 �!2
	

� �-prb
J01�-prb�

J1�-prb�
�
r2w 	 r2b
r2w � r2b

; (26)

where rw is the conducting wall radius.Within the context
of Eq. (16), we can expand the right-hand side of Eq. (26)
in powers of -prb up to third order. Then, Eq. (26) can be
further simplified to give

!2
	=�1� fm�

�2 �!2
	

� i
!
d

1� i!=�c
� g; (27)

where the transverse betatron frequency !	 is defined in
Eq. (7), the magnetic decay time 
d for the perturbed
current is defined by


d �
�(pr

2
b

2c2
; (28)

and the geometrical factor g is defined by

g �
1

1� r2b=r
2
w
: (29)

In obtaining Eq. (27), use has been made of the definition
in Eq. (7). Note that the geometrical factor g in Eq. (29)
increases to infinity as the conducting wall radius rw
approaches the beam radius rb. Equation (27) recovers
the previous result [23] for the resistive hose instability in
the limit where the electron collision frequency domi-
nates the oscillation frequency of the perturbations, i.e.,
!=�c ! 0.

III. INSTABILITY DRIVEN BY PLASMA RETURN
CURRENT

At moderate values of magnetic decay time 
d, the
beam current produces an azimuthal component of the
self-magnetic field, and this azimuthal magnetic field
cannot move freely through the plasma even if a segment
of the beam is displaced sideways. Instead, this field pulls
back the displaced beam segment. When this restoring
force overshoots, the resistive hose instability [25] devel-
ops (Secs. IV and V). On the other hand, if the magnetic
decay time 
d is so short that j!jtd 
 1, then Eq. (27) can
be approximated by

!2
	

�2 �!2
	

� ��1� fm�g: (30)

Solving Eq. (30) for �2 gives
034204-5
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�2 �
�1� fm�g� 1

�1� fm�g
!2
	: (31)

Note from Eq. (31) that �2 < 0 whenever �1� fm�g�
1< 0, corresponding to one purely growing solution
(Im� > 0) and one purely damped (Im� > 0) solution.
Therefore, Eq. (31) predicts instability provided the
plasma return current satisfies

fm > fc �
g� 1

g
�
r2b
r2w
: (32)

This unstable mode is called the return-current-driven
instability. The beam current and plasma return current
flow in opposite directions, thereby generating a repulsive
force. Therefore, the beam is displaced transversely by the
plasma current. The perturbation is purely growing with-
out any oscillatory motion.

Collisions of course modify the dispersion relation in
Eq. (31). For example, in the limit where the oscillation
frequency ! of the perturbation is much larger than the
electron collision frequency �c, we express i!
d=�1�
i!=�c� � �
d�c and the dispersion relation in Eq. (27)
can be approximated by

�2 �
�1� fm��g	 �c
d� � 1

�1� fm��g	 �c
d�
!2
	; (33)

which recovers the previous result in Eq. (31) in the limit
where 
d�c ! 0. Note that Eq. (33) predicts instability
(�2 < 0) whenever fm > fc, where fc is defined as

fc �
g	 �c
d � 1

g	 �c
d
: (34)

On the other hand, whenever fm < fc, it follows from
Eq. (33) that �2 > 0 and the solutions are purely oscil-
latory. For a large-volume plasma with r2b 
 r2w and g �
1, note from Eq. (34) that the threshold value of the return
current for the onset of instability reduces to fc �

d�c=�1	 
d�c�.

IV. PERTURBATIONS WITH REAL FREQUENCY
EXCITATION AT z � 0

In this section, we consider an initial excitation of a
beam segment at z � 0 with real oscillation frequency!.
Returning to Eq. (9), it then follows that �, which is
generally complex, represents the oscillation and growth
(or damping) of the perturbation as the beam segment
propagates downstream. The characteristic value of !
could be of the order of !	, which is a natural oscillation
frequency of the beam particles. It is convenient to ex-
press the dispersion relation in Eq. (27) as 22 � �2�1�
fm�=!2

	 � a	 i	, where the parameters 4 and 	 are
defined by

4 � 1� fm �
g	 �
d 	 g=�c�!2=�c
g2 	 �
d 	 g=�c�

2!2 (35)
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and

	 � �
!
d

g2 	 �
d 	 g=�c�2!2 : (36)

Expressing 2 � 2r 	 i2i, the normalized growth (damp-
ing) rate 2i � Im2 and real frequency 2r � Re2 solving
Eq. (27) can be expressed as

2i � �
1���
2

p �

������������������
42 	 	2

q
� 4�1=2; (37)

and

2r � �
	���
2

p
1�������������������������������������

�42 	 	2�1=2 � 4
q ; (38)

respectively. The upper sign in Eq. (37) corresponds to
instability with 2i � Im2 > 0.

Equations (35)–(38) can be used to investigate detailed
stability properties over a wide range of system parame-
ters. For example, if !
d ! 0 and !=�c is finite, then
	! 0 and the growth rate of the unstable solution in
Eq. (37) reduces to 2i � �j4j � 4�1=2=21=2. In this case,
2i � 0 whenever 4 > 0, corresponding to stable oscilla-
tions, whereas 2i � j4j1=2 whenever 4< 0, correspond-
ing to instability. For !
d ! 0, the instability condition
4< 0 reduces directly to the inequality fm > fc � �1�
g�=g in Eq. (32) required for the onset of the return
current instability, as discussed in Sec. III. Note that
the real frequency 2r � 0 for 4< 0 and !
d ! 0, in-
dicating a purely growing instability.

As a second example, we consider Eqs. (35)–(38) for
the case fm � 0 (no return current) and g � 1 (r2w=r2b !
1). In this case, Eqs. (35) and (36) reduce to

4 �
�!
d 	!=�c�!
d
1	 �!
d 	!=�c�2

; (39)

and

	 � �
!
d

1	 �!
d 	!=�c�2
; (40)

respectively. The normalized growth rate for the unstable
mode (2i > 0) in Eq. (37) is given by

2i �
�!
d=2�1=2

�1	 �!
d 	!=�c�
2�1=4

�

�
1�

�!
d 	!=�c�

�1	 �!
d 	!=�c�2�1=2

�
1=2
; (41)

where !
d > 0 and !=�c > 0 are assumed without loss
of generality. For �!
d 	!=�c�

2 
 1, note that Eq. (41)
reduces to 2i � �!
d=2�

1=2, which is the familiar nor-
malized growth rate of the resistive hose instability [23].
For !2
2d 
 1, but values of !=�c corresponding to
!2=�2c > 1, we note from Eq. (41) that the effect of
electron collisions is to reduce the growth rate relative
to the value �!
d=2�1=2.
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FIG. 2. Plots of the normalized real frequency 2r versus the
geometrical factor g obtained from Eq. (38) for parameters
identical to Fig. 1.
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As noted earlier, Eqs. (35)–(38) can be used to
investigate detailed stability properties over a wide range
of system parameters. Typical results are illustrated in
Figs. 1 and 2 for the case where!
d � 0:075 and fm � 0.
In Fig. 1, the normalized growth rate 2i � Im�=!	 is
plotted versus the geometrical factor g � �1� r2b=r

2
w�

�1

for g ranging from 1 to 2, and several values of the
parameter!=�c. Note that g � 1 corresponds to r2w=r2b !
1, whereas g � 2 corresponds to a nearby conducting
wall with rb � 0:7rw. As expected, the proximity of a
conducting wall greatly reduces the growth rate of the
resistive hose instability. Furthermore, the normalized
growth rate 2i decreases for increasing values of !=�c
[see also Eq. (41) for g � 1], although the normalized
oscillation frequency 2r is relatively insensitive to the
value of !=�c (see Fig. 2). Note also from Fig. 1 that the
growth rate of the resistive hose instability can be sub-
stantial, even when !2
2d 
 1. For example, from Fig. 1,
for g � 1 and !=�c � 0:5, we obtain Im� � 0:125!	.

As an illustrative example characteristic of heavy ion
fusion applications [7,8,27], we consider a 1 kA cesium
ion beam corresponding to mass number A � mb=mp �
137. The beam ions are singly charged with Zb � 1, and
the average kinetic energy is ��b � 1�mbc

2 � 2:5 GeV
corresponding to 	b � 0:2. Assuming that the beam
radius is rb � 1 cm, the beam density is calculated to be
nb � 1012 cm�3. The corresponding betatron frequency
calculated from Eq. (7) is !	 � 1:5� 107 s�1, assuming
zero return current (fm � 0). The electron collision fre-
quency for Coulomb collisions is given by [32]

�c � 2:9� 10�6ne ln�T
�3=2
e ; (42)

where the typical value of the Coulomb logarithm is
about ln� � 10. Assuming the electron temperature is
about Te � 1 eV and taking ne � nb � 1012 cm�3, the
1.00 1.25 1.50 1.75 2.00
0.00

0.05

0.10

0.15

0.20

2

1

0.5

ω/ν
c
= 0

χ i

g

FIG. 1. Plots of the normalized growth rate 2i versus
the geometrical factor g obtained from Eqs. (35)–(37) for
several values of the frequency ratio !=�c, and !
d � 0:075
and fm � 0.
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electron collision frequency is �c � 2:9� 107 s�1. The
conductivity of the background plasma (assumed fully
ionized) can be expressed as [33]

( �
3me

�16=
����
�

p
�Ze2 ln�

�
2-Te
me

�
3=2
; (43)

where - is Boltzmann’s constant. From Eq. (43), for Te �
1 eV and ln� � 10, the conductivity is ( � 3�
1012 s�1. Therefore, the magnetic decay time defined in
Eq. (28) is calculated to be 
d � 5� 10�9 s. Assuming
the characteristic value of real frequency is ! � !	 at
z � 0, we obtain !
d � 7:5� 10�2, which is much less
than unity. Substituting the appropriate numbers into
Eq. (37), the instability growth rate is Im� � �i �
0:13!	 for g! 1. The corresponding real oscillation
frequency calculated from Eq. (38) is Re� � �0:22!	.
Note that the growth rate of the resistive hose instability
can be a substantial fraction of the betatron frequency of
the beam particles for this choice of system parameters.

V. INSTABILITY FOR PERTURBATIONS
PROPAGATING THROUGH THE BEAM PULSE

A finite size beam pulse is often required to propagate
to a target in practical applications. Although the beam
head may be at the target, the tail of the beam pulse may
deviate from the proposed path due to perturbations that
are initiated at the beam head and propagate through the
beam pulse, growing during the propagation. In Eq. (9),
the coordinate 
 defined by


 � t�
z
	bc

(44)

represents the distance (in units of 	bc) from the
beam head to position z. Here, all perturbed quantities
are assumed to vary according to exp�i����z=	bc�
!
��. If each beam segment in the beam pulse is taken to
034204-7
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oscillate at a fixed real axial wave number �=	bc, then!
in Eq. (9) represents the oscillation and growth (or damp-
ing) of the perturbation as one moves backward from the
head of the beam.

In the collision-dominated limit where j!j=�c ! 0,
the dispersion relation in Eq. (27) reduces to

i!
d � g	
!2
	=�1� fm�

�2 �!2
	

; (45)

which determines the dependence of ! on � (assumed
real). Several points are noteworthy from Eq. (45). First,
the complex eigenfrequency ! is purely imaginary for
real values of �. Moreover, instability (Im! > 0) occurs
only over a bounded range of �2 satisfying

!2
	

�1� fm�g
��1� fm�g� 1�<�2 <!2

	;

for fm < 1�
1

g
�
r2b
r2w
;

(46a)

0<�2 <!2
	; for f m > 1�

1

g
�
r2b
r2w
: (46b)

Second, the growth rate Im! approaches (unphysically)
infinity as �2 approaches the betatron frequency squared
from below, i.e., �2 ! !2

	. This occurs for the flattop
density profile in Eq. (5) for the choice of distribution
function in Eq. (1), because all particles in the beam are
in resonance with the wave at this frequency. Keep in
mind from Eqs. (7) and (18) that all beam particles in a
flattop density profile execute transverse oscillations at
the betatron frequency !	 � const defined in Eq. (7).
Therefore, choosing � � !	 would cause a very strong
growth of the perturbation that propagates from beam
head to tail. For (more physical) rounded beam profiles,
however, the growth rate for the resistive hose instability
is finite [22,23] for any value of � because the beam
particles in these profiles oscillate with different betatron
frequencies determined by their position. Third, Eq. (45)
explicitly exhibits the dependence of the growth rate on
the current neutralization factor fm. The destabilizing
effect of fm is due to the repulsive interaction between
the beam current and the plasma return current. It is
particularly significant that instability can occur even
for � � 0 when fm > 1� 1=g � r2b=r

2
w, as evident

from Eq. (32). Finally, we note from Eq. (46a) that the
range of �2 corresponding to instability decreases as the
conducting wall approaches the beam, i.e., g! 1, indi-
cating stabilization by proximity of the conducting wall.

The full dispersion relation in Eq. (27) can be ex-
pressed in the equivalent form

i!
d �
��1� fm���

2 �!2
	�g	!2

	��c
d
�1� fm���2 �!2

	���c
d 	 g� 	!2
	

; (47)

which relates the complex eigenfrequency ! to the real
034204-8
frequency � of the beam segment for arbitrary value of
the electron collision frequency (�c
d). Equation (47)
recovers the result in Eq. (45) in the limit of high colli-
sion frequency characterized by �c
d ! 1. Equation (47)
also predicts that the frequency! is purely imaginary for
real values of �. For the dispersion relation in Eq. (47),
instability (Im! > 0) occurs over the bounded range of
�2 satisfying

�1�fm�g�1

�1�fm� g
!2
	<�2<�2

r�
�1�fm��g	�c
d��1

�1�fm��g	�c
d�
!2
	;

(48)

where fm<1�1=g� r2b=r
2
w is assumed in Eq. (48).

Equation (48) recovers the previous result in Eq. (46a)
in the limit of high collision frequency characterized by
�c
d!1. Moreover, the growth rate Im! in Eq. (47)
approaches infinity as �2 approaches the resonance fre-
quency squared �2

r from below, i.e., �2!�2
r . Note that

the resonance frequency �r is generally detuned from the
betatron frequency!	 of the beam particles.We also note
from Eq. (48) that the width of the range �2 correspond-
ing to instability is given by

��2�
�c
d

g�1�fm��g	�c
d�
!2
	; (49)

for the case where �1�fm�g>1, or equivalently fm<1�
1=g� r2b=r

2
w. It is evident from Eq. (49) that ��2 exhibits

a strong dependence on �c
d, and that the instability
bandwidth becomes quite narrow for �c
d
1 and
fm�0. For the case where �1�fm�g<1, the inequality
in Eq. (48) is replaced by 0<�2<�2

r and the corre-
sponding width of the range of �2 corresponding to the
instability is ��2��2

r . Furthermore, if the fractional
current neutralization fm satisfies fm>fc�1�1=�g	
�c
d� defined in Eq. (34), then �2

r <0, and Eq. (47) has
a purely growing solution (Im!>0) for �2�0.

As an illustrative example, we consider a 1 kA cesium
ion beam corresponding to mass number A � mb=mp �
137. For the parameters chosen in Sec. IV, the electron
collision frequency obtained from Eq. (42) is �c � 2:9�
107 s�1 and the magnetic decay time defined in Eq. (28) is
calculated to be 
d � 5� 10�9 s, which gives �c
d �
0:15. For fm � 0 and g! 1, the resonance frequency is
�r � 0:36!	, which is considerably downshifted from
the betatron frequency !	 of the beam particles. The
instability range in Eq. (49) is given by ��2 � 0:13!2

	,
indicating a narrow band of instability.

VI. CONCLUSIONS

We have investigated properties of the resistive hose
instability in a charged particle beam propagating
through a preformed plasma channel. The basic assump-
tions and theoretical model were presented in Sec. II for
an intense beam with a flattop density profile. The dis-
persion relation for the resistive hose instability was
034204-8
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derived from the linearized Vlasov-Maxwell equations.
The return-current-driven instability was investigated in
Sec. III in the limit of negligibly small magnetic decay
time. The return current instability occurs whenever the
fractional current neutralization fm is larger than the
critical value fc defined in Eq. (34). The full dispersion
relation in Eq. (27) was analyzed according to the nature
of the initial perturbation. Stability properties of the
resistive hose instability where the perturbations are ini-
tiated at the beam entrance were investigated in Sec. IV.
In particular, the complex eigenfrequency � was deter-
mined in terms of the real oscillation frequency ! of the
deflecting perturbation at the entrance. As expected, the
growth rate Im� � �i decreases rapidly as the conduct-
ing wall approaches the beam (rw=rb ! 1). The growth
rate also decreases substantially as the frequency ratio
!=�c increases. However, the oscillation frequency Re�
is almost independent of the frequency ratio !=�c.
Stability properties for perturbations propagating
through the beam pulse from its head to tail were inves-
tigated in Sec. V. The complex eigenfrequency ! was
expressed as a function of the real oscillation frequency
� of each beam segment. It was shown that the resonance
frequency � � �r corresponding to infinite growth rate
detunes considerably from the betatron frequency !	 of
the beam particles. It was also found that the bandwidth
corresponding to instability is narrow when the electron
collision time (1=�c) is long compared to the magnetic
decay time (
d).

Finally, we conclude this article by pointing out that
the present analysis has been carried out for a flattop
density profile of beam particles, where all of the beam
particles have the same betatron frequency !	 � const
for their transverse motion. In this context, the growth
rate Im! approaches infinity whenever each beam seg-
ment is taken to oscillate at the fixed real frequency � �
�r defined in Eq. (48), thereby developing an absolute
instability for perturbations propagating through the
beam pulse from its head to its tail. In reality, however,
charged particle beams have a somewhat rounded density
profile, which assures a spread in betatron frequencies.
Individual beam particles then have a transverse betatron
frequency that depends on the transverse energy [22,23].
In this case, there is not a distinct resonance frequency,
and the maximum growth rate of the instability has a
finite value. We are currently investigating the resistive
hose instability for rounded density profiles, including
the influence of electron collisions on stability behavior.
Results of this study will be presented in a future
publication.
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