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Limitations of electron beam conditioning for free-electron lasers
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Several ideas have been proposed to ‘‘condition’’ an electron beam prior to the undulator of a free-
electron laser (FEL) by increasing each particle’s energy in proportion to the square of its transverse
betatron amplitude. This conditioning enhances FEL gain by reducing the axial velocity spread within
the electron bunch. We demonstrate that for symplectic beam lines, and independent of the method, this
conditioning is always accompanied by a large head-tail focusing variation which, for short-wavelength
FELs, is so severe as to make conditioning completely impractical. We furthermore find that any system
added to correct the head-tail focusing variation will also remove the conditioning. As an example, a
new method for conditioning is presented and shown to generate exactly the same head-tail focusing
problems as in previously published work.
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FEL beam conditioning and, as an example, present a the particle’s relative energy deviation, �u is the electron
energy in the undulator (in units of rest mass), � �� � ��
I. INTRODUCTION

The most demanding requirement for future free-
electron lasers (FELs) in the x-ray regime [1,2] is the
reliable generation of a sufficiently small transverse elec-
tron emittance. To mitigate this problem, several ideas
have been proposed to ‘‘condition’’ an electron beam prior
to the undulator by increasing each particle’s energy in
proportion to the square of its betatron amplitude [3–6].
This conditioning enhances FEL gain by reducing the
axial velocity spread within the electron bunch generated
over the undulator, due to both energy spread and finite
transverse emittance. A common proposal for generating
the conditioning correlation is to differentially accelerate
off-axis particles with a series of TM210-like mode trans-
verse rf structures. But the conditioning can also be
accomplished by delaying large amplitude particles in a
long, strong focusing channel and differentially acceler-
ating the delayed particles with off crest-phase accelera-
tion [6]. In Ref. [3] an undesirable side effect is briefly
mentioned, due to the transverse time-dependent mag-
netic field, which results in a head-tail focusing variation
along the bunch length. A correction is also suggested
using rf quadrupoles (RFQ). Unfortunately, as we show in
this paper, this side effect is a necessary outcome of
conditioning, due to the symplecticity of the map describ-
ing the beam line, and it can be prohibitively large. In the
conditioner at the end of Ref. [6], although not discussed
there, the effect will appear as the chromaticity of a
strong focusing channel on a chirped beam. Further-
more, we find that any system added to correct this
head-tail focusing variation will necessarily remove the
energy conditioning.

In this paper, we briefly review the requirements for
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new conditioning scheme using strong solenoid magnets,
which at first examination looks promising. But the head-
tail focusing again appears and we quantify the resulting
‘‘projected’’ (i.e., bunch length integrated) transverse
emittance growth, relating it directly to the FEL parame-
ters. A numerical example is used to demonstrate the
extreme severity of the effect and the impracticality of
conditioning a short-wavelength FEL. We then present a
general symplectic beam conditioner using generator
functions and show the unavoidable relation between
conditioning and projected transverse emittance growth.
Finally, we discuss the limitations, provide a more famil-
iar analogy, and summarize our results.

II. FEL BEAM CONDITIONING

Electron beam conditioning, as proposed in [3], in-
creases each particle’s energy in proportion to the square
of its betatron amplitude. A particle with high energy
travels a shorter path in an undulator (increased mean
axial velocity), while a large betatron amplitude delays a
particle by lengthening its path through the undulator [7].
The conditioning correlation establishes a cancellation
of these two effects, resulting in a significant reduction
of the axial velocity spread, enhancing the FEL gain, or
perhaps allowing the FEL to operate with a larger trans-
verse emittance than required without conditioning. The
relative energy conditioning requirement, for natural un-
dulator focusing, can be written as [3]

�u � �n �
1

4�u

�N
�u

�u
�r
r2; (1)

where �n�� �u� is the nonconditioned component of

N u
is the normalized rms transverse emittance (equal in x
and y), �u�� �x � �y� is the constant beta function in
the undulator, �u is the undulator period, �r is the FEL
2003 The American Physical Society 030701-1



solenoid

h1

L, Bz
RF

e−

h2

+I

RF

FIG. 1. One-phase electron beam conditioner composed of a
solenoid magnet sandwiched between rf accelerating sections
operated at opposing zero-crossing phases.
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radiation wavelength, and r is the invariant normalized
4D betatron amplitude of the particle,

r2 �
x2 � ��ux

0�2 � y2 � ��uy
0�2

�u�
: (2)

The index u above indicates the value of the respective
quantity in the undulator. The betatron amplitude, r, is
expressed in terms of a particle’s transverse positions, x
and y, and angles, x0 and y0, with natural focusing where
�x � �y � 0. A conditioner beam line is designed to
imprint this �u � r2 correlation within the electron
bunch, with the coefficient given in Eq. (1).

In a general case, the conditioning might be performed
at low energy near the injector where the bunch is still
relatively long. For short-wavelength FELs, the bunch is
typically compressed and accelerated after the injector.
Both effects scale the conditioning, but in the absence of
particle mixing, do not alter its correlation character.
Acceleration from �0 (‘‘energy’’ at injector) to �u (‘‘en-
ergy’’ in undulator) reduces the conditioned relative en-
ergy spread, while compression from an initial bunch
length, �z0 , to a shorter final bunch length, �zf , amplifies
the conditioning. The latter is true because the bunch is
shortened after compression and since the longitudinal
emittance is preserved, the energy spread must be in-
creased proportionally, independent of the imprinted r2

correlation. The relative energy deviation, �, at the loca-
tion of the conditioner, before acceleration and compres-
sion, must then be scaled by the acceleration and
compression factors:

� �
�zf
�z0

�u
�0

�
�n �

1

4�u

�N
�u

�u
�r
r2
�
: (3)

This means that, depending on the level of bunch com-
pression, the relative energy spread immediately after a
low-energy conditioner is not necessarily larger than that
at the undulator.

III. A ONE-PHASE SOLENOID CONDITIONER

As an example beam conditioner, and to show the
ultimate limitations of conditioners, we describe here a
simplified system composed of a solenoid magnet and rf
accelerating sections. Its specific limitations, however,
will be completely applicable to all conditioners which
are based on differential acceleration of off-axis particles.
The limitations can be described in terms of an effective
transverse emittance growth and this growth will be
related only to the FEL conditioning requirements, and
not to the specific method of conditioning.

The conditioner is shown in Fig. 1 and is composed of a
solenoid magnet sandwiched between two rf accelerating
sections operated at opposing zero-crossing phases. (A
similar idea was proposed at the end of Ref. [6].) The first
rf section ‘‘chirps’’ the energy along the bunch length,
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and the final section removes the chirp. The conditioning
is generated in the solenoid by the delay of particles with
large amplitudes in x and y. The solenoid strength is set to
produce a +I linear transfer matrix in 6D with the relation
jkjL � n� (n � 1; 2; 3; . . . ), where k � 1

2Bz=�B��, L is
the solenoid length, Bz is its axial magnetic field, and
�B�� is the standard magnetic rigidity ( � p0=e).

The particle coordinates within the bunch at the en-
trance to the system are �x0; x

0
0; y0; y

0
0; z0; �0�, where �0 �

	p=p0, and we assume these variables are initially un-
correlated and have zero mean. For simplicity, we use a
cylindrically symmetric beam with initial Twiss parame-
ters:�x � �y � �, and�x � �y � 0. The Twiss parame-
ters are unchanged, to 1st order, across the solenoid and
across each ‘‘thin’’ rf section. The electrons are also
assumed to be ultrarelativistic. These simplifications are
removed in a general treatment in Sec. V.

The first rf section changes the relative energy devia-
tion of a particle to �1 � �0 � h1z0, where h1 is the linear
rf-induced slope (h � d�=dz). For simplicity, the rf sec-
tions are treated as thin elements which do not alter the
transverse coordinates. After the solenoid, the coordi-
nates are unchanged to 1st order, but a chromatic 2nd-
order aberration is added to the angles with 	x0 �
2T216x0��0 � h1z0� and 	y0 � 2T436y0��0 � h1z0�. All
other 2nd-order transverse aberrations are small in com-
parison for the case jkj�
 1, jkjL � n� [8].

The energy is not changed in the solenoid, but the
longitudinal coordinate is delayed by the helical trajec-
tory according to z1 � z0 � T511x20 � T533y20 (bunch head
at z > 0). Similarly, all other 2nd-order longitudinal
aberrations are small for the case jkj�
 1. The 2nd-
order coefficients of a solenoid with jkjL � n� are related
to each other by T511 � T533 � �T216 � �T436 �
�k2L=2 [8], which, as shown in Sec. V, is an unavoidable
connection for symplectic systems. The final rf section,
h2, changes the energy according to � � �1 � h2z1 �
�h1 � h2�z0 �

1
2 k

2Lh2�x20 � y20�. The second chirp is
chosen equal and opposite to the first, h1 � �h2 � h,
and the final coordinate map across the conditioner, to
second order and for j�0j � jhz0j, becomes
030701-2



PRST-AB 6 P. EMMA AND G. STUPAKOV 030701 (2003)
x � x0; x0 � x00 � k2Lhz0x0;

z � z0 �
1

2
k2L�x20 � y20�; � � �0 �

1

2
k2Lh�x20 � y20�;

(4)

with similar relations in y and y0. The final energy devia-
tion, �, is clearly conditioned (for h > 0) in both planes
but in only one betatron phase (i.e., x0, but not x00). This
system provides spatial (but not angular) conditioning
described by

� � �0 �
1

2
k2Lh��0r

2; r2 �
x20 � y20
��0

: (5)

Two solenoids can also be used, separated by a �=2
transformer to condition both betatron phases, but here
we simplify the description by considering only a one-
phase conditioner.

The bunch-length coordinate, z, in Eqs. (4) also in-
cludes a nonlinear distortion due to the solenoid delay of
large amplitude particles. This can easily be removed,
without changing the energy conditioning, by adding a
four-dipole chicane, or similar section, with R56 �
1=h > 0, after the final rf section, resulting in z � z0 �
R56�0 � z0. The bunch is then restored to its initial length
with no significant change in distribution. This point is
not relevant here, so we ignore this correctable distortion
and instead examine the energy conditioning and the
associated transverse aberrations.

IV. ENERGY CONDITIONING AND
TRANSVERSE EMITTANCE GROWTH

The conditioning coefficient in Eq. (3) can be equated
to that in Eqs. (5) producing the conditioning requirement
for the solenoid system

k2Lh��z0 �
1

2

�u
�r

�zf
�u

� a; (6)

where the solenoid-conditioner parameters are on the left
side and the FEL parameters are on the right, and here we
define the dimensionless conditioning coefficient, a. In
the typical case of a short-wavelength FEL, the condi-
tioning parameter a is large, a
 1 (see numerical ex-
ample below).
TABLE I. FEL and conditioner paramet

Parameter

Electron energy=mc2 in undulator
Undulator period
Radiation wavelength
Undulator beta function (natural focusing)
Final rms bunch length
Conditioning coefficient
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The chirp parameter, h, is more easily interpreted by
relating it to the rms relative energy spread in the
solenoids: ��1 � jhj�z0 . This also makes it clear
that the transverse aberrations in Eqs. (4) are chromatic
(�1 � hz0), and it is useful at this point to quantify the
aberrations in terms of an effective transverse emittance
growth. The rms emittance after the solenoid is calcu-
lated using the first two of Eqs. (4) and the first and second
moments of the particle ensemble:

�2x � h�x� x�2ih�x0 � x0�2i � h�x� x��x0 � x0�i2: (7)

The mean values, x � hxi and x0 � hx0i, are zero since the
initial coordinates are uncorrelated and have zero mean.
The correlation hxx0i is zero for the same reasons, so the x
emittance after the solenoid is

�2x � hx2ihx02i � hx20ih�x
0
0 � k2Lhz0x0�

2i

� �2x0�1� �k2Lh��z0�
2�; (8)

where hx20i � ��x0, hx020 i � �x0=�, and hz20i � �2
z0 , with a

similar form in y. The relative emittance growth after the
solenoid is

�x
�x0

� k2Lh��z0 � a
 1; (9)

which is identical to the conditioning relation in Eq. (6),
providing a direct connection between transverse emit-
tance growth and FEL conditioning requirements.

For parameters of the LCLS [1] shown in Table I [using
a beta function for natural focusing, to be consistent with
Eq. (1)], the relative emittance growth is extremely large
at �x=�x0 � 33. The parameters for theVISA FEL [9] are
also included showing that conditioning may still be
possible at longer wavelengths.

This growth is actually an increase of the projected
transverse emittance integrated over the bunch length.
The second of Eqs. (4) shows that the bunch head
(z0 > 0) is defocused (equating k2Lhz0 � 1=f), while
the bunch tail (z0 < 0) is focused. The significance of
the focusing variation is evaluated by comparing the
focal length, f, at z0 � ��z0 , to �. The ratio is
�=f���z0� � �k2L�h�z0 � �a, which is a very strong
effect (�=jfj 
 1) for short-wavelength FELs, and is
precisely the conditioning coefficient given in Eq. (6).
ers for the LCLS [1] and for VISA [9].

Symbol LCLS VISA Units

�u 28 000 140
�u 3 1.8 cm
�r 1.5 8500 Å
�u 72 0.6 m
�zf 24 100 #m
a 33 1.8
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With a chirped energy spread, the chromatic effects of
the solenoid are equivalent to the effects of an RFQ. It is
interesting to compare this result with that of Ref. [3],
where a completely different conditioner beam line, em-
ploying transverse rf cavities, produced an undesirable
RFQ effect. In fact, as shown in the next section, FEL
beam conditioning in a symplectic beam line always
produces an undesirable RFQ effect, which is extremely
large for short-wavelength FELs, as given in Eq. (9).

V. A GENERAL CONDITIONER

In this section we will show that the transverse emit-
tance growth associated with conditioning is not related
to the specific design outlined in the previous section, but
is a general feature of any conditioner, and is due to the
symplecticity of the map between the entrance to and exit
from the conditioner.

To simplify consideration, we assume that the condi-
tioner does not introduce coupling between the vertical
and horizontal planes, and we consider only the horizon-
tal plane with the initial values of coordinates (x0, x00) at
the entrance, and the final values (x, x0) at the exit.
Consideration of the vertical coordinates y, y0 can be
carried out analogously to x, x0. We will also assume
that the initial and final values of the longitudinal coor-
dinate are the same: z � z0. Instead of using the variables
x0, x00 and x, x0, it is convenient and more general to
introduce new variables u0, v0 and u, v, such that�

u0
v0

�
� Q0

�
x0
x00

�
;

�
u
v

�
� Q

�
x
x0

�
; (10)

where the matrices Q0 and Q are

Q0 �
1������
�0

p

�
1 0
�0 �0

�
; Q �

1����
�

p

�
1 0
� �

�
; (11)

with �0, �0 and �, � the Twiss parameters at the entrance
and exit of the conditioner, respectively. Being symplec-
tic linear transformations, Q and Q0 conserve the sym-
plecticity of the map from (u0, v0) to (u, v). Note that in
linear approximation this map has a form�

u
v

�
� A

�
u0
v0

�
; (12)

where

A �

�
cos sin 
� sin cos 

�
; (13)

with  the betatron phase advance across the conditioner.
Also note that the contribution of the x coordinate
x20=���0� to the parameter r in Eqs. (5) is equal to
u20=�0, and the conditioning requirement Eqs. (5) can be
written as

� � �0 �
1

2
bu20; (14)
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where b � a=�z0 , and the conditioning constant a is
given by Eq. (6).

To derive a general symplectic map which in linear
approximation reduces to the linear map Eq. (12) and also
includes the conditioning given by Eq. (14), we will use a
method of generating functions [10]. We choose a gener-
ating function which depends on initial coordinates u0
and z0 and final momenta v and �, F�u0; z0; v; ��. The
map is defined by the relations

v0 �
@F
@u0

; �0 �
@F
@z0

; u �
@F
@v

; z �
@F
@�

:

(15)

In paraxial approximation all coordinates and momenta
are considered small and we can expand F in a Taylor
series. The linear terms in this expansion vanish because
zero initial coordinates and momenta map to zero final
ones. The expansion begins from the second order terms

F � F2 � F3 � � � � ; (16)

where F2 is a quadratic, and F3 is a cubic function of the
coordinates and momenta. The function F2 should gen-
erate the linear map Eq. (12) for u and v with a unit
transformation for z and �—a direct calculation shows
that

F2 �
1

2
�u20 � v2� tan � u0v sec � �z0: (17)

The function F3 generates 2nd-order abberations in the
system, out of which we choose only a term responsible
for the conditioning:

F3 � �
1

2
bz0u20: (18)

Indeed, using the second of Eqs. (15) with Eqs. (17) and
(18) we find

�0 � ��
1

2
bu20; (19)

in agreement with Eq. (14). At the same time the first and
the third equations of (15) yield

v0 � u0 tan � v sec � bz0u0; (20)

u � v tan � u0 sec : (21)

These equations can be easily solved for u and v:

u � u0 cos � v0 sin � bz0u0 sin ;

v � �u0 sin � v0 cos � bz0u0 cos :
(22)

We emphasize here that the same term in the symplec-
tic map Eq. (18) that is responsible for the conditioning
030701-4
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of the beam also introduces in Eq. (22) the transverse
deflection that varies along the bunch. This also means
that adding a system that ‘‘fixes’’ this deflection down-
stream of the conditioner would inevitably remove the
conditioning itself.

Finally, we will calculate the emittance increase of the
beam due to the conditioning. Using Eq. (7) for the
emittance, with �uu � �vv � 0, we find

�2x � hu2ihv2i � huvi2: (23)

Substituting the map, Eqs. (22), into this yields

�2x � �2x0�1� b2�2
z0� � �2x0�1� a2�; (24)

in agreement with Eq. (8), but now in a general case with
arbitrary phase advance,  , and nonzero initial alpha
function, �0. For the specific conditioner described in
Sec. III, we have  � 2n�, �0 � �, �0 � � � 0, and
Eqs. (22) reproduce the first two of Eqs. (4).

VI. DISCUSSION

We have demonstrated for a general one-phase condi-
tioner that a strong head-tail focusing variation will al-
ways accompany the energy conditioning correlation, and
that this focusing variation is set solely by the FEL
parameters, and not the conditioner. An analogous situ-
ation can be described by considering the addition of a
skew quadrupole to an uncoupled transport line. If the
desired effect (the ‘‘conditioning’’) is an hx0yi correlation,
the skew quadrupole will suffice, but an accompanying
hxy0i correlation will also result and may be an extremely
important side effect, depending on the x-to-y emittance
ratio. The two effects are, of course, scaled by the same
skew-quadrupole strength and are not independent. This
example is a linear one, while energy conditioning is 2nd
order. However, both cases are based on symplectic trans-
formations including coupling between two planes.

A two-phase conditioner is more complicated, but does
not qualitatively change the arguments presented here. If
a second solenoid is added to Fig. 1, with a �=2 trans-
former separating it from the first solenoid, a two-phase
conditioner is formed. The chromatic aberrations, how-
ever, generated in the first solenoid will distort the beam
in the second solenoid and the energy conditioning will
then include large terms higher than 2nd order, which
will likely dominate and spoil the conditioning. A two-
phase system magnifies the projected emittance growth
and also degrades the character of the conditioning itself.

We have also studied various forms of two-phase con-
ditioners and, while not presenting a rigorous proof of it
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here, find the emittance growth much larger than a one-
phase system. An analytical calculation requires care in
retaining the symplectic map to very high order. Tracking
the LCLS case through the two-phase solenoid system
shows a projected transverse emittance growth of
�x=�x0 > 104. We believe this result will be the same for
any symplectic energy conditioner designed for the LCLS
parameters.

Finally, conditioning is even less practical for an un-
dulator with strong FODO-cell focusing [7]. In this case,
the path length increase with increased betatron ampli-
tude [see Eq. (1)] is nearly twice that of natural focusing,
and the energy spread necessary for conditioning is then
twice larger. This effect, in conjunction with the reduced
mean beta function,�u, in a FODO-cell undulator, makes
the conditioning coefficient, a, and therefore the pro-
jected transverse emittance growth, even larger than for
natural focusing.

For these reasons, we conclude that conditioning by
adding an energy correlation with the square of the beta-
tron amplitude is impractical if not impossible in short-
wavelength FELs.
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