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Impedance of a rectangular beam tube with small corrugations
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We consider the impedance of a structure with rectangular, periodic corrugations on two opposing
sides of a rectangular beam tube. Using the method of field matching, we find the modes in such a
structure. We then limit ourselves to the case of small corrugations, but where the depth of corrugation
is not small compared to the period. For such a structure we generate analytical approximate solutions
for the wave number k, group velocity vg, and loss factor � for the lowest (the dominant) mode which,
when compared with the results of the complete numerical solution, agreed well. We find if w� a,
where w is the beam pipe width and a is the beam pipe half-height, then one mode dominates the
impedance, with k� 1=

�������
w�

p
(� is the depth of corrugation), �1� vg=c� � �, and �� 1=�aw�, which

(when replacing w by a) is the same scaling as was found for small corrugations in a round beam pipe.
Our results disagree in an important way with a recent paper of Mostacci et al. [A. Mostacci et al., Phys.
Rev. ST Accel. Beams 5, 044401 (2002)], where, for the rectangular structure, the authors obtained a
synchronous mode with the same frequency k, but with �� �. Finally, we find that if w is large
compared to a then many nearby modes contribute to the impedance, resulting in a wakefield that
Landau damps.
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FIG. 1. (Color) A longitudinal cut of the structure geometry
considered here, showing two periods in the z-y plane (left),
factor when changing from round to rectangular geome-
try. It is the goal of this paper to resolve this discrepancy

and a transverse cut showing the cross section of the structure
(right).
I. INTRODUCTION

In accelerators with very short bunches, such as
is envisioned in the undulator region of the Linac
Coherent Light Source (LCLS) [1], the wakefield due to
the roughness of the beam-tube walls can have important
implications on the required smoothness and minimum
radius allowed for the beam tube. One model that has
been used to study roughness is a cylindrically symmetric
structure with small, rectangular, periodic corrugations.
For such a structure, if the depth-to-period ratio of the
corrugations is not small compared to 1, it has been found
that the impedance is dominated by a single strong mode,
with the wakefield given by W�s� � 2��s�� cos�ks� [s is
the (longitudinal) spacing between drive and test par-
ticles and ��s� is the step function]; in addition, it was
found that the wave number k� 1=

������
a�

p
, with a the

structure radius and � the depth of corrugation, and the
loss factor � � 4=a2 (in Gaussian units) [2,3].

In a recent report Mostacci et al. [4] studied the im-
pedance of a structure with small, rectangular, periodic
corrugations on opposing sides of a rectangular beam
tube (see Fig. 1) using a perturbation approach. For a
beam tube with width w comparable to height 2a the
authors find a mode with a similar frequency dependence
as in the round case, but with a loss factor that is propor-
tional to the depth of corrugation �. If this model is meant
to represent surface roughness with, e.g., �� 1 �m and
a� 1 cm, then their result implies a factor �10�4 smaller
interaction strength than was obtained in the earlier
cylindrically symmetric calculations. Such a result seems
unlikely—we would not expect a huge difference in loss
1098-4402=03=6(2)=024401(10)$20.00 
and to show that a correct calculation for the rectangular
cross section indeed gives a result that differs only by a
numerical factor from the round case.

Another motivation for this work is to understand the
impedance of two corrugated plates, the limit of our
geometry when w becomes large. And although, when
w is not large, the geometry is somewhat artificial, it may
still be a useful model for some vacuum chamber objects
of accelerators, e.g., for the screens in the LHC vacuum
chamber [4]. And third, we note that fabricating a
structure with artificially large corrugations, for the pur-
pose of experimentally studying roughness impedance,
may be much easier for the rectangular than the round
beam pipe.

In this report we calculate the impedance of the rect-
angular structure of Mostacci et al.—but not limiting
ourselves to small corrugations—using the method of
field matching. The solution is written as an infinite
homogeneous matrix equation that we truncate to solve
numerically. Note that our approach is very similar to that
2003 The American Physical Society 024401-1
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used for the analogous cylindrically symmetric problem
in the computer program TRANSVRS [5]. Note also that
recently, Xiao et al. used a similar method to solve the
impedance of the rectangular structure, but with the
corrugated surfaces replaced by dielectric slabs [6].
Next, using a perturbation approach applied to the field
matching equations we find the analytical solution for the
limit of small corrugations. Finally, we compare the
analytical to the numerical results.

II. FIELD MATCHING

We consider a periodic, rectangular structure with
perfectly conducting walls, two periods of which are
sketched in Fig. 1. In the horizontal (x) direction the
structure does not vary, except for walls at x � �w=2.
One period of the structure extends longitudinally to z �
�p=2. This cell can be divided into two regions: region I,
the ‘‘tube region,’’extends to y � �a; region II, the ‘‘cav-
ity region,’’ for z � �g=2, extends beyond y � �a to y �
��a	 ��. An exciting point beam moves at the speed of
light c from minus to plus infinity along the z axis.We are
interested in the steady-state fields excited by the beam
and assume that initial transients have all died down.
Note that we will work in Gaussian units throughout.

We assume that the fields of a mode excited by the
beam have a time dependence ejkct, where k is the mode
wave number and t is time. For either region the fields can
be obtained from two Hertz vectors, �m and �e, which
generate, respectively, TM and TE components of the
fields:

E � r�r��m � jkr��e; (1)

H � r�r��e 	 jkr��m:

Since there is no variation in the x direction we choose it
as the direction of the Hertz vectors. To satisfy the
boundary conditions at x � �w=2 the fields vary as
cosines and sines of kxx where

kx �
m�
w
; (2)

with m an odd integer (see below). The general solution
involves a summation, over all m, of such modes.

Consider modes with horizontal mode number m. In
the tube region, the most general form of the (x compo-
nent of the) Hertz vectors, consistent with the (perfectly
conducting) walls at x � �w=2, and the Floquet condi-
tion in z is


I
mx �

X1
n��1

An sinh�k
I
yny�

	 Bn cosh�k
I
yny�� sin�kxx�e

�j�nz; (3)
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I
ex �

X1
n��1

Cn sinh�k
I
yny�

	Dn cosh�kIyny�� cos�kxx�e�j�nz;

with

�n � �0 	
2�n
p
; kIyn �

����������������������������
�2
n � k2 	 k2x

q
: (4)

Since the structure is symmetric in y about y � 0, the
field components will be either even or odd in y, and the
modes will split into two categories. In the first type An �
Dn � 0 and the resulting modes have Ez � 0 on axis; in
the second type Bn � Cn � 0 and the resulting modes
have Ez � 0 on axis. In either case we are left with only
two sets of unknown constants in region I. Since an on-
axis beam can excite only modes of the first type, it is this
type in which we are interested.

In the cavity region, the most general form of the Hertz
potentials, consistent with perfectly conducting boundary
conditions at z � �g=2 and y � ��a	 ��, is


II
mx�

X1
s�1

Es sink
II
ys�a	��y��sin�kxx�

�sin s�z	g=2��; (5)


II
ex�j

X1
s�0

Fscosk
II
ys�a	��y��cos�kxx�

�cos s�z	g=2��;

with

 s�
�s
g
; kIIys�

��������������������������
k2� 2

s�k
2
x

q
: (6)

Note that in both regions Ey, Ez, and H x depend on x as
cos�kxx� and, therefore, the boundary conditions on the
walls at x��w=2 are automatically satisfied.

We need to match the tangential electric and magnetic
fields in the matching planes, at y � �a:

EIz;x �

�
EIIz;x: jzj< g=2;
0: g=2< jzj< p=2;

(7)

H I
z;x � H II

z;x: jzj< g=2: (8)

Using the orthogonality of e�j�nz over �p=2; p=2� in
region I, and sin s�z	 g=2�� and cos s�z	 g=2�� over
�g=2; g=2� in region II, we obtain a matrix system that
we truncate to dimension 2�2N 	 1� � 2�2N 	 1�,
where N is the largest value of n that is kept. To obtain
modes excited by the beam we need to set �n � k for one
value of n. The frequencies at which the determinant of
the resulting matrix vanishes are the excited frequencies
of the structure.

The relation of the coefficients at the excited frequen-
cies gives the eigenfunctions of the modes, from which
we can then obtain the �R=Q�’s and the loss factors. The
024401-2
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loss factor, the amount of energy lost to a mode per unit
charge per unit length of structure, is given by

� �
jE0j

2

4u�1� vg=c�
; (9)

with E0 the synchronous component of the longitudinal
field on axis, u � �8�p��1

R
jEj2dxdydz, the (per unit

length) stored energy in the mode (the integral is over
the volume of one period of structure), and vg the group
velocity in the mode. Note that the factor 1=�1� vg=c� is
often neglected in loss factor calculations (it appears
to have been neglected in Mostacci et al.). This factor
in the loss factor, which, as we will see, is very important
in structures with small corrugations, is discussed
in Refs. [7–9]. We give new derivations of it in
Appendices A and B; the derivation in Appendix A is
based on a simple energy balance argument, and the one
in Appendix B uses a more formal approach employing
the Lorentz reciprocity theorem. Finally the longitudinal
wakefield is given as

W�s� � 2��s�
X
n

�n cos�kns�; (10)

with ��s� � 0 for s < 0, 1 for s > 0, and the sum is over
all excited modes. Note that in our convention positive
values of s correspond to the region behind the leading
particle. Note also that for a bunch (the induced) voltage
is given by the convolution of the longitudinal wake with
the charge distribution.

In Appendix C we present more details of the calcu-
lation of the modes of the corrugated structure using field
matching. We have written a Mathematica program that
numerically solves these equations for arbitrary corruga-
tion size. The results of this program will be used to
compare with small corrugation approximations pre-
sented in the following section.

III. SMALL CORRUGATIONS

Let us consider the case where the corrugations are
small, but with �� g� p� a� w. In the analogous
cylindrically symmetric structure it was found that (i)
there is one dominant mode (its loss factor is much larger
than those of the other modes), (ii) this mode has a low
phase advance per cell, and (iii) the frequency of the
mode k� 1=

������
a�

p
[3,12]. For our rectangular structure

we look for a mode with the same properties. As was
the case for the cylindrically symmetric problem we also
assume that the fields in the cavity region are approxi-
mately independent of z, and that one term in the expan-
sion of the � vectors, the term with n � 0 and s � 0,
suffices to give a consistent solution to the field matching
equations [3]. Note that, it is true that to match the
tangential fields well on the matching plane may require
many space harmonics (though even then, near the cor-
ners, Gibbs phenomena and the edge condition will result
024401-3
in poor convergence); nevertheless, as with the analogous
cylindrically symmetric problem, the global mode pa-
rameters in which we are most interested—frequency k,
group velocity vg, and loss factor �—can be obtained to
good approximation when keeping only the one (the n �
0, s � 0) term.

Setting  � 0 implies that 
II
mx � 0, and that there are

only three nonzero field components in the cavity region:
EIIz , EIIy , and H II

x . For small corrugations the excited
modes become approximately TM modes. To allow
matching at the interface of regions I and II we end up
with


I
mx � 0; (11)


I
ex � C0 sinh�k

I
y0y� cos�kxx�e

�j�0z;

and


II
mx � 0; (12)


II
ex � jF0 coskIIy0�a	 �� y�� cos�kxx�:

Let us sketch how we match the fields: We equate Ez
and H x for the two regions at y � �a; we multiply the
first equation by ej�0z and integrate over one period in z,
and then we integrate the second equation over the gap in
z. When we divide the resulting equations one by the
other, the constants C0, F0, drop out, and we are left
with an approximation to the dispersion relation, one
valid in the vicinity of the synchronous point (the sub-
script 0 for � is understood):����������������������������

�2 � k2 	 k2x

q
coth�

����������������������������
�2 � k2 	 k2x

q
a�

�
4 sin2��g=2�

gp�2

����������������
k2 � k2x

q
tan�

����������������
k2 � k2x

q
��: (13)

To properly keep track of the relative size of the terms
in further calculations, we assign to each parameter an
order using the small parameter (: let a, w, be of order 1;
�, g, p, of order (2; and k, �, of order 1=(. To find the
synchronous frequency we let � � k in Eq. (13) expand
the equation to lowest order in (, and then set ( � 1. The
result is

k2m �
kxp
� g

coth�kxa� (14)

(the subscript m is included here to remind us of the m
dependence). Note that, if a� w (and p� g) then k�
1=

�������
w�

p
, which is of the same order as the result that was

found for the cylindrically symmetric problem. Note also
that, for the limit g � p, the dispersion relation and the
synchronous frequency here agree with those given in
Mostacci et al.

For the group velocity we take the partial derivative of
Eq. (13) with respect to �, and rearrange terms to obtain
024401-3



FIG. 2. (Color) The function F�*� (solid line) and the approxi-
mation 4*e�2*, valid for * * 1 (dashed line).
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1� @k=@� � 1� vg=c. After expanding in (, keeping
the lowest order term, and finally setting ( � 1 we obtain�

1�
�vg�m
c

�
�

2�kxg
p

�
sinh2�kxa�

sinh�kxa� cosh�kxa� � kxa

	
:

(15)

Note that, as in the cylindrically symmetric problem,
�1� vg=c� � �. The loss factor of our structure

�m �
2�
wa

F�kxa�; (16)

with

F�*� �
*

sinh�*� cosh�*�
: (17)

The function F�*� and an approximation for large * are
shown in Fig. 2. Note that for � in the MKS units of
(V=pC=m), one multiplies Eq. (16) by the quantity
Z0c=�4��, with Z0 � 377 �. Note also that our result is
independent of �, unlike the result of Mostacci et al.

The total longitudinal wakefield is given by Eq. (10).
Note that, if w & a (* * 1) then one mode dominates the
wake, just like in the round case. (For example, if * � 1,
FIG. 3. (Color) For the case of two corrugated p
with kr �

������������������
p=�a�g�

p
and Zr � �=�a2krc�.
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then the amplitude of the first, m � 1 term is 20 times
larger than that of the next,m � 3 term in the wake sum.)
If, however, w� a, then more than one mode will con-
tribute to the impedance of the structure; in the limit of
w! 1 (two corrugated plates) there will be a continuum
of modes contributing to the impedance. The impedance
is given by the Fourier transform of the wake. Its real part
is

ReZ � �
X
m

�m��!� kmc� 	 ��!	 kmc��: (18)

Consider now the limit of two corrugated plates
(w! 1). The mode spectrum becomes continuous and
the sum in Eq. (18) can be replaced by an integral

ReZ �
�

a2

Z 1

0
d*F�*�

�
�
�
!� c

������������������������������
p
a�g

* coth�*�
r �

	 �
�
!	 c

������������������������������
p
a�g

* coth�*�
r �	

:

(19)

The integral can be solved numerically, with the use of
the relation

R
dxg�x��f�x�� � g�x�=jf0�x�j�x�x0 where

f�x0� � 0. The result is shown in Fig. 3(a); note that
the axes are normalized to kr �

������������������
p=�a�g�

p
and Zr �

�=�a2krc�. We see a continuous spectrum of modes be-
ginning at wave number kr, with average 1:14kr and rms
0:18kr. The corresponding wakefield becomes a damped
oscillation [see Fig. 3(b)]. We see an effective Q� 10.
Note that W�0	� � �2=�4a2� (to be discussed more in a
later section).

Finally, we should point out that it has been observed
for the case of the cylindrically symmetric problem that,
if the small corrugations are replaced by a thin dielectric
layer of thickness �, and if the correspondence is made
that the dielectric constant ( � p=�p� g�, then the re-
sults for the two problems are the same [3,13,14].
Recently the modes in a rectangular structure of Fig. 1,
but with the corrugated surfaces replaced by dielectric
slabs, have been obtained by Xiao et al., also using a field
lates (w! 1): Re�Z� (a) and the wake (b),

024401-4
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matching approach [6]. If we take their results, letting the
thickness of the dielectric layers (�) be small, we obtain
our results for k, vg, and �when we make the correspond-
ence ( � p=�p� g�.

A. Comparison with numerical results

To test the validity of the analytical approximations in
the case of small corrugations, we compare with numeri-
cal results obtained by the Mathematica field matching
program (the method of solution is described in
Appendix C). Consider as an example a square beam
tube (w=a � 2) with p=a � 0:05, g=a � 0:025, and
�=a � 0:025, and let us consider the lowest (m � 1)
mode. In the field matching program we take S � 4 and
N � 4, i.e., five space harmonics are kept in the cavity
region and nine in the tube region. (We find that, for the
example geometry, keeping more terms has no significant
effect on the results.)

We begin by comparing the dispersion curve (see
Fig. 4). Shown are the field matching result (the solid
curve) and the approximation, Eq. (13) (the dashes). We
see that the two agree well except far from the synchro-
nous phase. The cross plotting symbol locates the syn-
chronous point, with kp � 0:200�, a result which is 7.5%
larger than the analytical value of Eq. (14). It is interest-
ing to note that this dispersion curve is almost identical to
the one obtained (also by field matching) for the same
geometry but in a round beam pipe [3]. As for the loss
factor, we find that it is a factor 0.84 as large as the
analytical approximation, Eq. (16).

These results confirm the validity of the analytical
approximations for the structure with small corrugations,
provided that the depth of corrugation � is not small
compared to the corrugation period p. However, in
Ref. [3] it was shown that for the analogous round struc-
FIG. 4. (Color) A dispersion curve example: shown are the
numerical result (solid line), the synchronous point (the cross
plotting symbol), and the approximation, Eq. (13) (dashed
line). Also shown is the speed of light line (dotted line).
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ture the corresponding analytical formulas break down
when � becomes small compared to p: as � decreases the
frequency first increases then decreases as compared to
the analytical result; meanwhile the loss factor continu-
ally decreases. When � is small compared to p the im-
pedance is no longer well characterized by a single
resonance and is best described by a different model
[15]. As expected, we find the same kind of behavior in
our rectangular structure. If, for example, we reduce � in
our example problem by a factor of 2, we find that the
frequency becomes 18% larger, and the loss factor 30%
smaller, than the values given by the analytical formulas.

B. Discussion

Our result for the loss factor, Eq. (16), is independent of
the depth of corrugation �. However, for a given bunch, as
the depth of corrugation � decreases to zero (while keep-
ing �=p fixed), we expect the wakefield effect to also
decrease to zero. How does this happen? To answer this
we first need to keep in mind that it is the induced voltage
of the bunch—the convolution of the wake with the
longitudinal charge distribution—and not the wake itself
that is the physically measurable quantity; it is this quan-
tity that needs to vanish in the limit �! 0. Then, we note
that as � decreases to zero, the impedance of our structure
shifts up in frequency (the mode frequency k increases).
As a result, for a fixed bunch shape, the convolution that
gives the induced voltage tends to zero (at least as fast as
1=k) when �! 0. Note that the same type of behavior is
found, for example, for the wake of a thin dielectric layer
on a round, metallic tube, as the layer thickness decreases
[13,14], and for the resistive wall wake, as the conductiv-
ity increases [16,17].

As to the value of the loss factor obtained here: con-
sider that there is a general relation that holds for the
wake directly behind the driving particle

W�0	� �
2

�

Z 1

0
ReZ�!�d! � 2

X
m

�m; (20)

a relation that does not depend on the specific boundary
conditions at the wall. To discuss it, consider first the
analogous cylindrically symmetric problem. It was ear-
lier found that, as long as the corrugations are small and
the depth � * p, the contribution of one mode dominates
the wake sum. In this case, it was found that, as here,
W�0	� (or �) is independent of � [3]. If the corrugations
are replaced by a thin dielectric layer, W�0	� does not
depend on the dielectric properties (neither � nor ()
[13,14]. In the same way, if the corrugations are replaced
by a lossy metal, W�0	� will not depend on the conduc-
tivity [16]. And in all three cases the answer is the same:
W�0	� � 4=a2. [In fact, this relation is also valid for the
(steady-state) wake of a periodic accelerator structure,
with a the iris radius [18,19].]
024401-5



FIG. 5. (Color) The sum of the loss factors a2
P
m �m [�

a2W�0	�=2] as a function of �a=w (solid line). Also shown
are the contribution of the first mode, a2�1 (dashed line), and
the approximation 8��a=w�2 exp��2�a=w� (dotted line).
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We expect the same type of behavior to hold in a
corrugated, rectangular structure, i.e., that W�0	� de-
pends only on the cross-section geometry of the beam
pipe. In Fig. 5 we plot, for our rectangular structure,
a2W�0	�=2 � a2

P
m �m, as a function of�a=w (the solid

curve). Also shown is the contribution of only the first
(m � 1) term (dashed curve), and the approximation
8��a=w�2 exp��2�a=w� (dotted curve). Note that, for
�a=w small, many modes contribute to the sum; for
�a=w * 1, one mode dominates. As with the cylindri-
cally symmetric case, W�0	� must still be correct if we
replace the corrugated surfaces by thin dielectric slabs, or
by lossy metal plates. We know of no published result for
W�0	� in our rectangular geometry to compare with;
nevertheless, Henke and Napoli found W�0	� between
two resistive parallel plates [20], which becomes the limit
of our geometry as w! 1. Their result, a2W�0	�=2 �
�2=8, agrees with our calculation for �a=w! 0 and
confirms our result.

IV. CONCLUSION

We studied the impedance of a structure with rectan-
gular, periodic corrugations on two opposing sides of a
rectangular beam tube using the method of field match-
ing. We described a formalism that, for arbitrary corru-
gation size, can find the resonant frequencies k, group
velocities vg, and loss factors �. In addition, for the case
of small corrugations, but where the depth of corrugation
is not small compared to the period, we generated ana-
lytical perturbation solutions for k, vg, and � for the
dominant mode. We then compared, for such a structure,
numerical results with the analytical formulas and found
good agreement.

In general, we found that, for the structure of interest,
the results are very similar to what was found earlier for a
structure consisting of small corrugations on a round
beam pipe: if w� a, where w is the beam pipe width
024401-6
and a is the beam pipe half-height, then one mode dom-
inates the impedance, with k� 1=

������
a�

p
(� is the depth of

corrugation), �1� vg=c� � �, and �� 1=a2. If, however,
w is large compared to awe find that many nearby modes
contribute to the impedance, resulting in a wakefield that
Landau damps.
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APPENDIX A: DERIVATION OF LOSS FACTOR
BASED ON ENERGY BALANCE

Consider first a cavity of frequency ! with the electric
field of an eigenmode E�r�ej!t. The energy in the eigen-
mode is denoted by U. If a point charge q passes through
the cavity, it excites this mode to the amplitude As (where
As is a complex number), so that after the passage through
the cavity the electric field of the mode will be
AsE�r�ej!t, and the energy lost by the charge is equal to
jAsj2U. In quantum language, this is spontaneous radia-
tion of the charge into the mode under consideration
which is indicated by the subscript s. It is clear that As
is proportional to the charge of the particle q.

To calculate the amplitude As, let us consider a situ-
ation when, before the charge enters the cavity, the latter
already has this mode excited by an external agent (rf
source) to the amplitude A0. Because of the linearity of
Maxwell’s equation, after the passage of the charge, the
field in the cavity will be equal to the sum of the initial
mode A0 and the spontaneously radiated mode As, with
the energy given by jAs 	 A0j

2U. The change of the
energy �W in the cavity is

�W � jAs 	 A0j
2U� jA0j

2U

� �AsA0 	 c:c:�U	 jAsj
2U; (A1)

where c.c. denotes a complex conjugate. Let us consider
the limit of small charges, q! 0, then we can neglect the
last term on the right-hand side of Eq. (A1), which scales
as q2, and keep only the first term that is linear in q,

�W � �AsA0 	 c:c:�U: (A2)

Discarding the term / q2 means that we neglect the beam
loading effect.

We can now balance the energy change �W with the
work done by the external field A0 during the passage of
the charge. This work is equal to the integral of the
electric field Ez�z� along the particle’s orbit

�W � �qReA0

Z
dzEz�z�e

j!z=v

� �
qA0

2

Z
dzEz�z�ej!z=v 	 c:c: (A3)

Comparing Eq. (A2) with Eq. (A3) we conclude that
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As � �
q
2U

Z
dzEz�z�ej!z=v: (A4)

Hence we found the amplitude of spontaneous radiation of
the particle in terms of the integral along the particle’s
orbit of the electric field.

The energy lost by the particle (loss factor) is

jAsj
2U �

q2jVj2

4U
; (A5)

where the voltage V �
R
dzEz�z�ej!z=v.

Let us now apply the same approach as above to the
excitation of a mode that propagates with the speed of
light in a waveguide. To deal with a mode of finite energy
we consider a wave packet, and assume that the packet has
a length L, as shown in Fig. 6 below.

It propagates in the pipe with the group velocity vg.
The energy in the mode U can be related to the energy
flow P (the integral of the Poynting vector over the cross
section and averaged over time) if we note thatU=L is the
energy per unit length; hence

U �
PL
vg
: (A6)

Now, the particle is synchronous with the wave and
remains at the same phase, so it sees the same longitu-
dinal electric field Ez which we denote by E0. The integral
in Eq. (A4) can be written as

Z
dzEz�z�ej!z=v ! cTE0; (A7)

where T is the interaction time between the wave and the
particle. This is the time that the particle remains within
the wave; since the wave is moving at velocity vg and the
particle is moving at c it follows that

T �
L

c� vg
: (A8)

Hence, for the amplitude of the radiated wave we find

As � �
q
2U

E0
cL

c� vg
; (A9)

and the energy W radiated by the particle
L

FIG. 6. The shape of the wave packet of the synchronous
mode. The packet has a long plateau of length L and short
edges.
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W � A2
sU �

q2

4U
E2
0

c2L2

�c� vg�
2 : (A10)

To find the energy radiated per unit length of the
path, we divide W by the length of the interaction path
Lc=�c� vg�, which gives

dW
dz

�
q2

4u
E2
0

c
�c� vg�

; (A11)

where u � U=L is the energy per unit length of path.
Finally, since the loss factor � � q�2dW=dz, we arrive at
Eq. (9).

APPENDIX B: DERIVATION OF LOSS FACTOR
USING THE LORENTZ RECIPROCITY

THEOREM

Let us consider a point charge moving with relativistic
velocity in the positive direction along the z axis of the
structure. To calculate the energy radiated by the charge
into synchronous modes we will use the approach devel-
oped by Vainshtein [10]. This approach gives an explicit
expression for the amplitudes of the traveling wave
modes excited by an (arbitrary) current distribution
j�r�ej!t oscillating at frequency !, where r � �x; y; z�.

Let the index w denote an eigenmode with the fre-
quency ! propagating in the direction of the particle’s
motion. The electric and magnetic fields of eigenmode w
are Ew�r�ej!t and H w�r�ej!t, respectively. An external
current j�r�ej!t in the waveguide excites this mode with
amplitude Cw�z� so that the electric field E and the
magnetic field H in the mode are

E�r� � Cw�z�Ew�r� H �r� � Cw�z�H w�r�: (B1)

The coefficient for Cw can be related to the current
density j�r� by means of the Lorentz reciprocity theorem
[11]:

Z
dS � �E �H �

w 	 E�
w �H � � �

4�
c

Z
dVj � E�

w:

(B2)

Here the integral on the left-hand side is taken over the
surface enclosing the volume, and the integration on the
right-hand side goes over the volume of the pipe between
two cross sections, at z � z1 and z � z2. The equation for
Cw reads [10]

Cw�z� � �
1

Nw

Z z

�1
dz0

Z
dSj�r� � E�

w�r�; (B3)

where Nw is the norm of the mode
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Nw � �
c
4�

Z
dS � �Ew �H �

w � E�
w �H w�; (B4)

with the integral in Eq. (B4) taken over the cross section
of the waveguide. One can show that the norm is equal
to 4 times the energy flow (averaged over time) in the
mode, Pw: Nw � 4Pw [10]. The field Ew can be repre-
sented as

Ew�r� � Ew�x; y�e�jkz�!�z; (B5)

where Ew�x; y� gives the transverse distribution of the
electric field in mode w, and kz�!� is the wave number
(a function of the frequency).

We now calculate the Fourier components of the
current corresponding to the point charge moving with
velocity v � c. The current density has only a z compo-
nent

jz�r; t� � qc��x���y���z� ct�: (B6)

Fourier transforming this current yields

1

2�

Z
dtjz�r; t�e�j!t �

q
2�

��x���y�e�j!z=c: (B7)

Inserting this expression into Eq. (B3) gives the following
result for the amplitude Cw:

Cw�z� �
q

2�Nw
E0

Z z

�1
dz0ejz

0k�!��!=c�

� �
jqE0

2�Nw

ejzk�!��!=v�

k�!� � !
c � j0

; (B8)

where E0 � �E�
w;z�0; 0� � Ew;z�0; 0� is the longitudinal

electric field of the mode on the particle’s path [we have
chosen, for convenience, Ew;z�0; 0� to be purely imagi-
nary]. As is seen from Eq. (B8), the function Cw has a
singularity at the synchronous mode frequency !s which
satisfies the equation

!s � ck�!s�: (B9)

Note that the term �j0 in the denominator of Eq. (B8)
indicates an infinitesimally small imaginary part that
shifts the pole slightly off the real axis.

Let us now calculate the energy radiated by the particle
per unit time into the synchronous mode. First, we find
the longitudinal electric field Ez�z; t� on axis by inverse
Fourier transforming the quantity CwE0e

�jk�!�z	j!t. Note
that k�!� is an odd function of !; hence there are always
two solutions for !s with opposite signs. Using Eq. (B8)
we find

Ez�z; t� �
Z 1

�1
d!CwE0e�jk�!�z	j!t

� �
jqE2

0

2�Nw

Z 1

�1
d!

e�jz !=v	j!t

k�!� � !
c � j0

: (B10)
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Expanding the denominator in the integrand about the
pole,

k�!� �
!
c
� j0 � �!�!s�

�
dk
d!

�������!�!s

�
1

c

�
�j0

� �!�!s�
�
1

vg
�

1

c

�
�j0; (B11)

where the group velocity of the mode, vg � d!=dkj!�!s
(it is easy to see that the pole is located above the real !
axis). In front of the particle, z > ct, we can close the
integration path of Eq. (B10) by an infinite half circle in
the lower! plane, and since there are no poles inside such
an integration contour, the integral vanishes. Hence the
field in front of the particle is equal to zero.

The field behind the particle, z < ct, can be obtained
by shifting the integration path above the real axis,
Im! > 0. The contribution from the poles should be
interpreted as the radiation field associated with the syn-
chronous modes. It is straightforward to find this contri-
bution by calculating the two residues at ! � �!s:

Ez�z; t� �
2qE2

0

Nw

�
1

vg
�

1

c

�
�1
cos

�
!s
c
�z� ct�

	
: (B12)

As might be expected, the field behind the particle oscil-
lates sinusoidally with the frequency and the wave num-
ber equal to that of the synchronous mode w.

Since the electric field in front of the particle is zero,
the effective electric field that acts on the charge is equal
to half of the field behind it, Eeff �

1
2 Ez�z � ct� 0�. The

energy lost by the particle per unit length of path can be
calculated as

dW
dz

� �qEeff �
q2

Nw
jE0j

2

�
1

vg
�

1

c

�
�1
: (B13)

This result agrees with Eq. (A11) (note that Nw � 4Pw,
and u � Pwvg) and it also gives Eq. (9) for the loss factor
� � q�2dW=dz.

APPENDIX C: FIELD MATCHING, THE
GENERAL SOLUTION

In Sec. II we presented Hertz vectors and wave num-
bers for regions I and II, and also the four equations that
need to be matched at the interface y � �a. We continue
with the notation introduced there: We multiply the
matching equations for Ez and Ex by ej�n0 z and integrate
over �p=2; p=2�; and we multiply the matching equa-
tions for H z and H x by sin s0 �z	 g=2�� and
cos s0 �z	 g=2�� and integrate over �g=2; g=2�. We
obtain the infinite set of equations:
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�C0
nkk

I
ynw� B0

nm��n� cosh�k
I
ynb� �

g
p

X
s

Nns��F
0
skk

II
ysw	 E0

sm� s�;

sin�kIIys�� � B0
n cosh�kIynb� �

g
p

X
s

MnsE0
s sin�kIIys��;

�E0
skkIIysw	 F0

sm� s� cos�kIIys�� � 2
X
n

Msn�B0
nkkIynw� Cnm��n� sinh�kIynb�;

�1	 �s0�F
0
s cos�k

II
ys�� � �2

X
n

C0
nNsn sinh�k

I
ynb�: (C1)

Here

B0
n; C0

n � jBn; jCn; E0
s; F0

s �

�
Es; Fs: s even;
jEs; jFs: s odd;

(C2)

�
Nns
Mns

�
�

�
�n
 s

�
2

��2
n �  2

s�g

�
sin��ng=2�: s even;
cos��ng=2�: s odd;

(C3)

and �ss0 the Kronecker delta.
This system of equations can be written as a homogenous matrix equation:

��
G�H2 � I2� �GH

�GH G

�
	

�
N 0
0 M

��
P�Q2 	 R2�=S �PQ

�PQ=S P

��
NT 0
0 MT

�	�
B00

C00

�
� 0 (C4)
with superscript T indicating the transpose of a matrix.
The diagonal elements of diagonal matrices are Gn �
coth�kIynb�=�kk

I
ynw�, Hn � m��n, In � kkIynw; Ps �

2g tan�kIIys��=�pkk
II
ysw�, Qs � m� s, Rs � kkIIysw, and

Ss � �1	 �s0�. Note that the system matrix is real. The
expansion coefficients are B00

n � � sinh�kIynb�C0
n and

C00
n � sinh�kIynb��kkIynwB0

n �m��nC0
n�.

To solve the matrix equation we truncate to dimension
2�2N 	 1� � 2�2N 	 1�, where N is the largest value
of n that is kept. Therefore, subscript n, representing space
harmonic number in the tube region, runs from �N to
N ; subscript s, representing space harmonic number in
the cavity region, runs from 0 to S, the largest value kept.
Note that the values N , S, should be chosen so that
�2N 	 1�=p � �S 	 1�=g. The system matrix U is a
function of �0 and of k. To find synchronous modes, we
need to first set, for one space harmonic n0, �n0 � k and
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then numerically search for the value of k for which the
determinant of U becomes zero. The value n0 should be
taken to be the nearest integer to kp=�2��. To find values
of the dispersion curve, we, for various values of �n0
[where again n0 is the nearest integer to kp=�2��], nu-
merically search for the value of k for which the deter-
minant of U becomes zero.

Once we have found the frequency we can find the
eigenfunctions, from which we obtain the synchronous
component of the longitudinal electric field E0:

jE0j
2 � k2jB0

nskx � C0
nsk

I
yj
2 (C5)

(where ns represents the synchronous space harmonic)
and the energy per unit length u. For example, the stored
energy in region I is given by
uI �
1

32�p

X
n

fB02
n 2k2k2�a	 �k4� 	 k2xkI2y 	 k2x�2

n� sinh�2kIyna�=kIyn�

	 C02
n �2k2k2�a	 �k2kI2y 	 k2�2

n� sinh�2k
I
yna�=k

I
yn� � 4B0

nC
0
nkkx�n sinh�2k

I
yna�g; (C6)

with k2� � k2 � k2x, with a corresponding equation giving
1998 (Stanford Linear Accelerator Center, Menlo Park,
the energy stored in region II. Note that for small corru-
gations, uII � uI. The quantity 1=�1� vg=c� is obtained
by first calculating the dispersion curve, and then finding
the slope at the synchronous point numerically. Knowing
jE0j

2, u, and 1=�1� vg=c� we can finally obtain the loss
factor �.
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