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Two-stream instabilities in intense charged particle beams, described self-consistently by the
nonlinear Vlasov-Maxwell equations, are studied using a 3D multispecies perturbative particle
simulation method. The recently developed Beam Equilibrium, Stability and Transport code is used
to simulate the linear and nonlinear properties of the electron-proton (e-p) two-stream instability
observed in the Proton Storage Ring (PSR) experiment for a long, coasting beam. Simulations in a
parameter regime characteristic of the PSR experiment show that the e-p instability has a dipole-mode
structure, and that the growth rate is an increasing function of beam intensity, but a decreasing function
of the longitudinal momentum spread. It is also shown that the instability threshold decreases with
increasing fractional charge neutralization and increases with increasing axial momentum spread of the
beam particles. In the nonlinear phase, the simulations show that the proton density perturbation first
saturates at a relatively low level and subsequently grows to a higher level. Finally, the nonlinear space-
charge-induced transverse tune spread, which introduces a major growth-rate reduction effect on the
e-p instability, is studied for self-consistent equilibrium populations of protons and electrons.
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I. INTRODUCTION

In periodic focusing accelerators and transport systems
[1–4], when a second charge component is present, it has
been recognized for many years, both in theoretical
studies and in experimental observations [5–18], that
the relative streaming motion of the high intensity
beam particles through a background charge species can
provide the free energy to drive the classical two-stream
instability, appropriately modified to include the effects
of dc space charge, relativistic kinematics, presence of a
conducting wall, etc. A background population of elec-
trons can result by secondary emission when energetic
particles strike the chamber wall or through ionization
of background neutral gas by the beam ions. A well-
documented example is the electron-proton (e-p) two-
stream instability observed in the Proton Storage Ring
(PSR) [12–14], although a similar instability also exists
for other ion species, including (for example) electron-
ion interactions in electron storage rings [15–18].

At the high beam currents and charge densities of
practical interest, it is increasingly important to develop
an improved theoretical understanding of the influence
of the intense self-fields using a kinetic model based
on the nonlinear Vlasov-Maxwell equations [1,19–22].
Recently, the �f formalism, a low-noise, nonlinear per-
turbative particle simulation technique for solving the
Vlasov-Maxwell equations, has been developed for in-
tense beam applications [23,24]. The 3D multispecies
nonlinear �f formalism has been implemented in the
Beam Equilibrium, Stability and Transport (BEST) code
[25], which has been applied to a wide range of important
collective processes in intense beams [1,25–27]. In this
paper, we study the electron-proton two-stream instabil-
1098-4402=03=6(1)=014401(8)$20.00 
ity numerically using the nonlinear �f method, with
particular emphasis on the parameter regime character-
istic of the PSR experiment [12–14] for a long, coasting
beam. Following a brief description of the nonlinear �f
method in Sec. II, we present the simulation results in
Sec. III. In particular, the dependences of the instability
growth rate on beam intensity, fractional charge neutral-
ization, and longitudinal momentum spread are investi-
gated in detail. The nonlinear phase of the instability is
studied as well. Finally, in Sec. IV, we present a detailed
description of the nonlinear space-charge-induced trans-
verse tune spread, which provides an effective damping
mechanism for the instability that can significantly re-
duce the growth rates of the unstable modes.

II. NONLINEAR �f FORMALISM FOR THE
VLASOV-MAXWELL SYSTEM

The theoretical model employed here is based on the
nonlinear Vlasov-Maxwell equations [1]. We consider a
thin, continuous, high intensity ion beam �j � b�, with
characteristic radius rb propagating in the z direction
through background electrons �j � e�, with each compo-
nent described by a distribution function fj�x;p; t�
[1,5,20,22] in the phase space �x;p�. The charge compo-
nents �j � b; e� propagate in the z direction with charac-
teristic axial momentum �jmj
jc. While the nonlinear
�f formalism outlined here is readily adapted to the case
of a periodic applied focusing field [28], for present
purposes we make use of a smooth-focusing model in
which the applied focusing force is described by Ffoc

j �
��jmj!2


jx?, where x? � xêex � yêey is the transverse
displacement from the beam axis, and !
j � const is
the effective applied betatron frequency for transverse
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oscillations. In the electrostatic and magnetostatic approximations, we represent the self-electric and self-magnetic
fields as Es � �r��x; t� and Bs � r� Az�x; t�êez. The nonlinear Vlasov-Maxwell equations can be approximated by
[1,5]
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Detailed descriptions of the theoretical model can be
found in Refs. [1,25]. In the nonlinear �f formalism
[23–27], we divide the total distribution function
into two parts, fj � fj0 � �fj, where fj0 is a known
equilibrium solution �@=@t � 0� to the nonlinear
Vlasov-Maxwell equations (1) and (2), and the numerical
simulation is carried out to determine the detailed non-
linear evolution of the perturbed distribution function
�fj. This is accomplished by advancing the weight func-
tion defined by wj � �fj=fj, together with the particles’
positions and momenta. The equations of motion for the
particles, obtained from the characteristics of the non-
linear Vlasov equation (1), are given by

dx?ji

dt
� ��jmj�

�1p?ji;

dzji
dt

� vzji � 
jc� ��3
j m�1

j �pzji � �jmj
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c

r?Az

�
:

(3)

Here the subscript ‘‘ji’’ labels the ith simulation particle
of the jth species. Furthermore, the dynamical equations
for wji are [23,25–27]
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(4)

where �� � ���0 and �Az � Az � Az0. Here, the
equilibrium solutions (�0, Az0, fj0) solve the steady-state
(@=@t � 0) Vlasov-Maxwell equations (1) and (2). Awide
variety of axisymmetric equilibrium solutions to Eqs. (1)
and (2) has been investigated in the literature. The per-
turbed distribution �fj is obtained through the weighted
Klimontovich representation [1]

�fj �
Nj

Nsj

XNsj
i�1

wji��x� xji���p� pji�; (5)

where Nj is the total number of actual jth species par-
ticles, and Nsj is the total number of simulation particles
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for the jth species. Maxwell’s equations are also ex-
pressed in terms of the perturbed fields and perturbed
density according to

r2�� � �4�
X
j

ej�nj; r2�Az � �
4�
c

X
j

�jzj;

(6)

where

�nj �
Nj
Nsj

XNsj
i�1

wjiS�x� xji�;

�jzj �
ejNj

Nsj

XNsj
i�1

vzjiwjiS�x� xji�:

(7)

Here, S�x� xji� is a shape function distributing particles
on the grids in configuration space [25].

The nonlinear particle simulations are carried out by
iteratively advancing the particle motions, including the
weights they carry, according to Eqs. (3) and (4), and
updating the fields by solving the perturbed Maxwell’s
equations (6) with appropriate boundary conditions at the
cylindrical, perfectly conducting wall. Even though it is
a perturbative approach, the �f method is fully non-
linear and simulates completely the original nonlinear
Vlasov-Maxwell equations. Compared with conventional
particle-in-cell simulations, the noise level in �f simu-
lations is significantly reduced. The �f method can also
be used to study detailed linear stability properties, pro-
vided the factor �1� wji� in Eq. (4) is approximated by
unity, and the forcing terms in Eq. (3) are replaced by the
unperturbed force. Implementation of the 3D multispe-
cies nonlinear �f simulation method described above is
embodied in the BEST code [25–27] developed at the
Princeton Plasma Physics Laboratory. On the IBM SP
supercomputer at the National Energy Research Scientific
Computing Center, the BEST code typically advances
4:2� 1011 particles � time steps when simulating the
e-p two-stream instability in the Proton Storage Ring
experiment.

III. SIMULATION OF THE TWO-STREAM
INSTABILITY

In high intensity accelerators and storage rings, there
exist many discrete collective eigenmodes (excitations) of
the ion beam. Among them, the dipole surface mode can
exhibit instability when a background electron population
014401-2
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is present [1,5–14]. This instability is basically of the
two-stream type and is strongest when the ions are rela-
tively cold in the propagation direction. The directed
velocity difference, Vb � Ve, between the beam ions
and the background electrons provides the free energy
for the collective modes to grow. The instability observed
in the Proton Storage Ring [12–14] is believed to have
this two-stream characteristic. We have simulated the
two-stream instability using the BEST code, which self-
FIG. 1. Plots of the normalized equilibrium self-field poten-
tial profiles.
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consistently solves the nonlinear Vlasov-Maxwell equa-
tions using the �f method. The simulation results pre-
sented here are for system parameters typical of the PSR
experiment for a long, coasting beam. The background
distribution functions fj0�r;p� under quasi-steady-state
conditions �@=@t � 0� are assumed to be bi-Maxwellian
with temperature Tj? � const in the x-y plane, and tem-
perature Tjk � const in the z direction, i.e.,
fj0�r;p� �
n̂nj

�2�mj�
3=2�5=2

j Tj?T
1=2
jk

exp

�
�
�pz � �jmj
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2�3
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�
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�
�
p2
?=2�jmj � �jmj!2


jr
2=2� ej��0 � 
jAz0�

Tj?

�
:

(8)
Here, n̂nj is the particle number density on axis �r � 0� of
the jth species, and �0 and Az0 are equilibrium self-field
potentials, which are coupled with Eq. (8) through the
nonlinear Maxwell equations
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In the simulations, we take �b � 1:85, me=mb �
1=1836, !
b � 40 MHz, rw � 5 cm, Ve � 0, and !
e �
0 (corresponding to axially stationary electrons). The
system parameters for the coasting-beam ‘‘baseline’’
case in the present study are taken to be !̂!2

pb=2�
2
b!

2

b �

0:079, Tb?=�bmbV
2
b � 3:61� 10�6, Te?=�bmbV

2
b �

5:86� 10�7, and fractional charge neutralization f �
n̂ne=n̂nb � 0:1, corresponding to an average proton current
of 35 A in the PSR experiment. Here, !̂!pb �
�4�n̂nbe2b=�bmb�

1=2 is the on-axis �r � 0� relativistic pro-
ton plasma frequency. The equilibrium self-field poten-
tials �0 and Az0 as functions of the radial coordinate r,
obtained by numerically solving Eqs. (8) and (9), are
plotted in Fig. 1.
The equilibrium density profiles n0j �r� �j � b; e� for the
protons and the electrons
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Z
d3pfj0�r;p; t�
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�
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�jmj!2


jr
2=2� ej
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;

can be calculated self-consistently from the solutions for
�0�r� and Az0�r�:

Previous numerical studies for the baseline case
[25,27] have shown that the e-p two-stream instability
has a dipole-mode structure with azimuthal mode
number l � 1. It is important to emphasize that the
simulations are based on first principles—the nonlinear
Vlasov-Maxwell equations. Unlike an instability analysis
based on the beam centroid model where only the dipole
mode is allowed, all possible mode excitations are al-
lowed in the simulations. Simulations using typical oper-
ating parameters in the PSR experiment [12–14] for a
long, coasting beam indicate that the l � 1 dipole mode is
indeed the most unstable mode. Detailed properties of the
linear phase of the instability for the baseline case, such
as the dependence of the instability growth rate on the
electron density profile and the normalized axial wave
number kzVb=!
b (kz � 2�n=L � n=R, where R is the
ring radius, and n is the mode number), have been nu-
merically investigated and reported in Refs. [25,27]. The
numerical results were found to be in good agreement
with the experimental observation in PSR and qualita-
tively consistent with the analytical results obtained for
uniform-density beams [5,6].

In the present study, we have carried out detailed
numerical investigations of the e-p instability for a
wide range of beam intensities and fractional charge
neutralization. The space-charge intensity varies
from moderate to strong, corresponding to 0:008 �
!̂!2
pb=2�

2
b!

2

b � 0:158, where !̂!2

pb � 4�n̂nbe2b=�bmb is
the on-axis �r � 0� ion plasma frequency squared. The
fractional charge neutralization f � n̂ne=n̂nb is allowed to
vary from 5% to 25%, where n̂ne and n̂nb are the electron
014401-3



FIG. 2. Maximum growth rate versus normalized beam den-
sity for different values of initial axial momentum spread of
the beam ions.
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and beam ion number densities on axis �r � 0�. In Fig. 2,
for the case where f � n̂ne=n̂nb � 0:15, the maximum
growth rate in the simulations is plotted versus the nor-
malized beam density n̂nb=n̂nb0 for different values of
initial axial momentum spread. Here, n̂nb0 � 9:41�
108 cm�3 corresponds to an average current of 35 A
in the PSR experiment (the baseline case with
!̂!2
pb=2�

2
b!

2

b � 0:079).

It is evident from the results shown in Fig. 2 that the
growth rate is an increasing function of normalized beam
density n̂nb=n̂nb0, but a decreasing function of the longitu-
dinal momentum spread, which qualitatively agrees with
previous analytical results [7]. A larger longitudinal mo-
mentum spread induces stronger Landau damping by
parallel kinetic effects and therefore reduces the growth
rate of the instability, whereas higher beam intensity
provides more free energy to drive a stronger instability.

In addition to the effects of longitudinal Landau damp-
ing by the beam ions, we are also able to simulate the
stabilizing effects due to the nonlinear space-charge-
FIG. 3. Density threshold for the two-stream instability as a
function of beam axial momentum spread for different values
of fractional charge neutralization.
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induced tune spread, because the simulations are carried
out for realistic beams with radially varying equilibrium
density profiles. As a result of the presence of several
important damping and growth-rate reduction mecha-
nisms, an instability threshold is observed in the simu-
lations. Plotted in Fig. 3 is the instability threshold in
terms of the normalized beam density n̂nb=n̂nb0 as a func-
tion of momentum spread �pbk=pbk for different values
of fractional charge neutralization f. Evidently, larger
momentum spread and smaller fractional charge
neutralization imply a higher density threshold for the
instability to occur. For a specified value of f, if
��pbk=pbk; n̂nb=n̂nb0� fall below the curves in Fig. 3, then
there is no two-stream instability.

Finally, in Fig. 4, we simulate an unstable case to its
fully nonlinear phase. This case corresponds to n̂nb=n̂nb0 �
2, !̂!2

pb=2�
2
b!

2

b � 0:079, f � 0:1, and �pbk � 0 � �pek

at t � 0: In Fig. 4, the time history of the density pertur-
bations at a fixed spatial location is shown for both
species. There are basically two phases for the evolution
of the instability. The first phase is the linear stage
where the density perturbations for both species grow
FIG. 4. Linear and nonlinear phases of the e-p two-stream
instability. Plotted is the time history of density perturbation
for the (a) protons and (b) electrons at a fixed spatial location.
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exponentially. However, due to the large mass ratio be-
tween the protons and the electrons, the density pertur-
bation amplitude for the electrons is much larger than that
for the protons. When the linear growth saturates, the
saturation level for the electron density perturbation is
therefore much larger. The saturation level for the elec-
tron density perturbation shown in Fig. 4 is about 8%,
whereas the saturation level for the proton density is very
small (less than 0:1%).

The second phase of the instability is the nonlinear
phase, starting approximately at t � 500=!
b, during
which the electron density perturbation level stays nearly
constant around the 8% level. In other words, in the non-
linear phase the electron density perturbation shows no
extra dynamical behavior other than the initial nonlinear
saturation. This is probably because the initial saturation
level for the election density perturbation is already quite
large compared with the proton density perturbation. On
the other hand, in the nonlinear phase the proton density
perturbation grows first slowly and then very fast after
t � 1400=!
b to a high level, considerably larger than
that of the electron density perturbation. This simulation
result suggests that the late-time growth of the e-p in-
stability observed experimentally in PSR has likely
passed the initial linear growth and saturation phase,
and entered the second stage of strong nonlinear growth
evident in Fig. 4. It also points to the possible physical
mechanism proposed by Channell [29] that due to the
large mass ratio, the electron density perturbation quickly
saturates long before the proton density perturbation be-
comes sizable, and the large electron density fluctuation
level then provides a newly developed background force
that drives the proton density perturbations to a large
level on a longer time scale [29].
IV. NONLINEAR SPACE-CHARGE-INDUCED
TUNE SPREADS AND THEIR EFFECT ON

GROWTH-RATE REDUCTION

It has long been recognized that transverse tune spread
can have an important damping effect on various types of
beam instabilities [9,10]. In many cases, instabilities can
be completely suppressed by the transverse tune spread. In
accelerator experiments, tune spreads are often intro-
duced through the machine chromaticity as a result of
the beam momentum spread in the longitudinal direction.
However, the tune spread induced by nonlinear space-
charge effects is often neglected. As the beam intensity
of contemporary accelerators increases, the transverse
tune spread due to the nonlinear space-charge force be-
comes increasingly large and in some cases can dominate
the tune spread induced by the longitudinal momentum
spread. As mentioned earlier, the growth rates of the e-p
two-stream instability observed in the PSR experiment
and in the numerical simulations are generally signifi-
cantly smaller than theoretical predications based on a
014401-5
centroid model or a kinetic model using the Kapchinskij-
Vladimirskij (KV) distribution [5]. This difference exists
for arbitrary momentum spread when the beam intensity
is above the instability threshold. One of the physical
effects that contributes to this difference is the space-
charge-induced tune spread which is not incorporated in a
centroid model or a kinetic KV model with a flattop
density profile. When the beam density profile is bell
shaped rather than flattop, particles experience different
local transverse oscillation frequencies at different radial
locations due to the nonlinear space-charge potential. The
corresponding spread in transverse oscillation frequency
has been shown to reduce the instability growth rate in
Sec. Vof Ref. [5]. It is clear from the analysis in Ref. [5]
that any tune spread associated with nonlinearity in the
space-charge field will provide a growth-rate reduction
mechanism. However, a non-self-consistent model equi-
librium close to a step function is adopted in Ref. [5] in
order to analytically carry out the derivation. For the
self-consistent bell-shape beam density profile used in
the present numerical simulations, it is not possible to
carry out a similar quantitative analysis because there are
no analytical expressions for the eigenmode structure
and corresponding dispersion relation. Nevertheless, the
qualitative features of the growth-rate reduction mecha-
nism are expected to be the same, and it is still useful to
obtain a measure of the space-charge-induced tune
spread. In this section, we estimate the space-charge-
induced tune spread for self-consistent equilibrium pop-
ulations of protons and electrons, in a parameter regime
typical of the PSR experiment.

To simplify the analysis, we use cylindrical polar
coordinate �r; &� in the transverse plane. This is be-
cause the equilibrium beam profiles are axisymmetric
�@=@& � 0� and the canonical angular momentum is
conserved. Therefore, we describe the transverse tunes
(oscillation frequencies) in terms of the tunes for the
�r; &� motion. For the axisymmetric equilibrium de-
scribed by Eqs. (8) and (9), the transverse equations of
motion for a single particle of species j �j � e; b� are

�jmj��rr � r _&&2� � �jmj!2

jr�

ej

�
@�0�r�
@r

� 
j
@Az0�r�
@r

�
� 0; (10)

P& � �jmjr
2 _&& � const; (11)

where �0�r� and Az0�r� are the equilibrium self-field
potentials determined from Eqs. (8) and (9). Examples
of self-consistent equilibrium solutions are plotted in
Figs. 1. For present purposes, we consider the class of
particle orbits that pass through the beam axis �r � 0�
with P& � 0 and _&& � v&=r � 0. In this case, the radial
orbit equation in Eq. (10) reduces to

�rr � ~!!2

j�r�r � 0; (12)
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where ~!!
j�r� is the local depressed transverse betatron
frequency defined by

~!!
j �

�
!2

j �

ej
�jmjr

�
@
@r
�0�r� � 
j

@
@r
Az0�r�

��
1=2
:

(13)

Note from Eq. (13) that ~!!2

j�r� is a known function of r

once �0�r� and Az0�r� are determined from Eqs. (8) and
(9). Plotted in Fig. 5 are ~!!
b�r�=!
b and ~!!
e�r�=!
b
versus r=rw for several values of normalized beam inten-
sity n̂nb=n̂nb0. Here n̂nb0 � 9:41� 108 cm�3 is the density
for the baseline case corresponding to an average current
of 35 A in the PSR experiment. The fractional charge
neutralization f � n̂ne=n̂nb is taken to be 10% in Fig. 5.

Evidently, the local transverse oscillation frequency for
the protons is a minimum at the beam center �r � 0� and
decreases with increasing beam intensity. Because 
e �
0 and !
e � 0 are assumed, the local transverse oscil-
lation frequency of the electrons is due to the space-
charge force only, and maximizes at the beam center,
and increases with increasing beam intensity. For the
baseline case with n̂nb=n̂nb0 � 1:0, the maximum local
tune depression for the protons is 1� ~!!
b=!
b � 0:4%
at r � 0, where the local transverse oscillation frequency
of the electrons also reaches its maximum value of
~!!
e=!
b � 28:5.
FIG. 5. Local transverse oscillation frequencies for the
(a) protons and (b) electrons.
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The distribution of particles as a function of ~!!
j can
be related to the equilibrium density profile by

Fj� ~!!
j�d ~!!
j �
1

Nj
2�rn0j �r�dr; (14)

which gives

Fj� ~!!
j� �
2�r� ~!!
j�n
r� ~!!
j��

Nj
d ~!!
j�r�=dr�r�r� ~!!
j�

: (15)

Here r � r� ~!!
j� is the inverse of the function ~!!
j �
~!!
j�r�, andNj � 2�

Rrw
0 rn0j �r�dr is the axial line density

of the jth species. Plotted in Fig. 6 are Fb� ~!!
b�
and Fe� ~!!
e� for different values of normalized beam
intensity.

From the plots, we note that a larger beam intensity
corresponds to a larger spread in ~!!
j for both species,
and the distribution functions Fj� ~!!
j� vary significantly
for different beam intensities in the range of 0:1 �
n̂nb=n̂nb0 � 2:0. After determining the distribution
Fj� ~!!
j�, the average transverse oscillation frequency
�!!
j can be determined from

�!!
j �
Z

~!!
jFj� ~!!
j�d ~!!
j; (16)

and the fractional rms frequency spread �~!!
j= �!!
j from
FIG. 6. Plots of the distributions function Fj� ~!!
j� for the
(a) protons and (b) electrons.
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FIG. 7. Average transverse oscillation frequencies versus nor-
malized beam intensity for the (a) protons and (b) electrons.

FIG. 8. Effective space-charge-induced frequency spread
plotted verse normalized beam intensity for the (a) protons
and (b) electrons.
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j�d ~!!
j

q
�!!
j
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In Figs. 7 and 8, the average oscillation frequency and
rms frequency spread are plotted versus normalized beam
intensity for the case where f � n̂ne=n̂nb � 0:1. As ex-
pected, higher beam intensity results in a larger tune
depression and frequency spread for the protons and a
larger oscillation frequency for the electrons. While the
frequency spread for the electrons is much larger than
that of the protons, it stays relatively constant for differ-
ent beam intensities. In the baseline case, the tune de-
pression and frequency spread for the protons are
1� �!!
b=!
b � 1:8% and �~!!
b= �!!
b � 0:52%. For
the electrons, the average frequency and frequency spread
are �!!
e=!
b � 21:9 and �~!!
e= �!!
e � 24%.

In summary, at the high beam intensities in the PSR
experiment, the space-charge-induced frequency spread
in the transverse particle orbits can be large, particularly
for the electrons. During the linear growth phase of the
instability, it is expected that this frequency spread ac-
counts for the much lower growth rates of the e-p insta-
bility observed in the simulation studies and in the PSR
experiment relative to those calculated from a centroid
model or a kinetic KV model with a flattop density profile.
014401-7
V. CONCLUSIONS

In conclusion, a 3D multispecies nonlinear perturba-
tive particle simulation method has been developed to
study the electron-ion two-stream instability described
self-consistently by the Vlasov-Maxwell equations.
Important properties of this instability were investigated
numerically and are found to be in qualitative agreement
with theoretical predictions [5–7] and the PSR experi-
ment [12–14]. Numerically, the instability threshold was
found to decrease with increasing fractional charge neu-
tralization and increase with increasing axial momentum
spread of the beam particles. In the nonlinear phase, the
simulation results showed that the instability first satu-
rates at a relatively low level and subsequently grows to a
much larger level. The results suggest that due to the large
mass ratio, the electron density perturbation quickly sat-
urates long before the proton density perturbation be-
comes sizable, and the large electron density fluctuation
level then provides a newly developed background force
that drives the proton density perturbation to a large level
on a longer time scale [29]. Finally, the nonlinear space-
charge-induced transverse tune spread, which provides
an important mechanism for reducing the growth rate
of the instability, was analyzed for self-consistent equi-
librium populations of the protons and the electrons.
Investigations of the long-time nonlinear evolution of
014401-7
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the e-p instability, together with the inclusion of electron
production mechanisms and the effects of finite bunch
length, are important extensions of the present simulation
studies, carried out for a long, coasting beam. We will
continue our investigations in these areas and report new
results in future publications.
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