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L. INTRODUCTION

Very fast transverse instabilities have been observed in
the Los Alamos Proton Storage Ring (PSR) [1-3] and, for
coasting beams, in the AGS Booster [4]. Using the
Booster data and the cold, coasting beam approximation
for the instability growth rate, a transverse resistance of
order 10 MQ)/m between 70 and 120 MHz is required to
explain the observations. This is a large number for a ring
with 200 m circumference and 6 cm pipe radius. In the
PSR a broad band transverse resistance of order 1 M{)/m
is needed to match the observed growth rates.

A transverse, bunched beam instability has been seen
in the PSR. There are several curious features, described
in Sec. II, which strongly argue that the instability is due
to coupled electron-proton oscillations. Electron cloud
driven instabilities were observed in the ISR [5,6] and
are known or suspected in several positron rings. These
include the KEK photon factory [7], CESR [8], KEKB
[9,10], and PEP-II [11]. For these machines the bunch
length is relatively short, and much theoretical and nu-
merical work has been done to explain the observations
[7,12-16]. They have also been seen in the PS [17] and
SPS [18] with proton beams. For the PSR and Oak Ridge
Spallation Neutron Source (SNS) the bunches are long

TABLE I. Machine parameters for the PSR and SNS.

Parameter PSR SNS
Circumference 90 m 248 m
Kinetic energy 797 MeV 1000 MeV
Nominal Q,, O, 3.19, 2.12 6.3, 6.3
Beam pipe radius 5 cm 10 cm

rms emittance (x,y) (8, 12) mmmrad (30, 30) mm mrad
h =1 rf voltage 15 kV (18 kV max) 40 kV

v, 3.1 5.25

High intensity 8 uC 32 uC
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and a natural starting point is the application of coasting
beam dispersion relations [5,6,19-21]. These dispersion
relations have been applied to the PSR [1,22,23]
and, recently, to the proposed J-PARC project [24].
Simulations of both coasting [25,26] and bunched beams
[24,27,28] have been started. Studies based on beam
breakup models [29] as well as studies of behavior well
beyond threshold [30] have also been done.

This paper aims to provide an understanding of and
insights into the electron cloud instability in the PSR that
will be useful for a timely estimate of the impact on SNS.
Parameters for the two machines are shown in Table 1.

IL. OVERVIEW OF EXPERIMENTAL DATA

The experimental characteristics of the PSR instability
may be summarized as follows.

(1) The central frequency of the instability f, increases
with intensity as f,. o /I [1].

(2) The PSR instability is controlled, in practice, by
applying a sufficiently high rf voltage V ;. For fixed bunch
length 7, the maximum number of stored protons N,
scales linearly with V; [3].

(3) The threshold value of the rf voltage for a given
intensity increases when some unchopped beam is in-
jected into the gap [3].

(4) A broad band transverse resistance of order
1 MQ/m is needed to match the observed growth
rates [1].

(5) For a fixed rf voltage the maximum number
of stored protons depends only weakly on bunch
length [1,31].

(6) Sustained, coherent oscillations are observed below
the loss threshold for a well-conditioned ring.

(7) At moderate to high intensities an intense electron
flux at the wall is observed as the bunch passes [32].

(8) Over accumulated operating time, for a fixed bunch
intensity, the threshold rf voltage decreases [33].
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(9) Increases in vacuum pressure and losses have a
marginal effect on the stability threshold.

The first two items are difficult to reconcile with an
impedance-driven instability since a fixed impedance
should drive a given range of frequencies and given a
fixed impedance the threshold intensity should scale lin-
early with momentum spread (or synchrotron frequency)
and hence as /V.

Item (3) would be relevant to an impedance-driven
instability if the beam in the gap were adequate to keep
the offending resonator driven at a sufficient level. Data
show that the threshold voltage doubles when ~3% of the
injected turns are unchopped. In this case the ratio of the
instantaneous current in the middle of the gap to the peak
current is less than 2%.

Item (4) is difficult to reconcile with a machine circum-
ference of C = 90 m and an average pipe radius of 5 cm.

Item (5) is at odds with both narrow and broad band
impedance-driven stability models, since reducing the
bunch length reduces the momentum spread in the beam.

Item (6) suggests that there is a difference between the
linear threshold of the instability and the intensity re-
quired for beam loss.

Items (7) and (8) [23,32,34] are consistent with
the model that has evolved to explain items (1)—(6),
namely, that the instability is driven by electrons [1-4].

Figure 1 shows the threshold rf voltage as a function of
beam current for different dates and a variety of injected
bunch lengths. The injected bunch length is set by the
width of the chopper pulse and, since the linac beam has
nonzero momentum spread, is a lower limit on the bunch
length in the ring. The curves are nearly straight [item (2)]
and independent of bunch length [item (5)]. The histori-
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FIG. 1. (Color) Threshold rf voltage versus beam intensity. The
threshold rf voltage is the smallest rf voltage for which the
beam is stable. The historical curve represents the situation
before the direct H~ injection upgrade and the extended run
during 2001. Threshold curves near the end of the 2001 run for
injected bunch lengths of 200, 260, and 290 ns are shown for
comparison.
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FIG. 2. (Color) Evolution of the instability for a 4.4 uwC/pulse
beam. The red trace is the beam current, the blue trace is a
vertical beam position monitor difference signal, and the green
trace is the electron current into the detector. All traces have
the same time reference so one may consider all three detectors
to have the same position in the ring. From bottom to top, the
traces were obtained 120, 200, and 280 wus after the end of
accumulation.

cal threshold voltage lies above the curves obtained later
in the run [item (8)]. The tune of the machine is quite
stable, and the reduction in threshold voltage over time
might be due to a reduction in secondary yield due to
conditioning by electrons.

Evolution of the instability is shown in Fig. 2. Notice
that the electron signal peaks after the instability has
risen, suggesting that the electron cloud responsible for
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FIG. 3. (Color) Mountain range plot of transverse position
along a PSR bunch (red) and the beam current (blue). The total
time was 490 us, increasing vertically, with every 30th turn
plotted. The rf voltage was 10% above the threshold for fast
losses.
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starting the instability is not present near the detector.
Other electron detectors show an observable signal before
the instability begins. The electron signal represents the
electron flux into the wall and gives an indication of the
cloud density. This will be addressed in Sec. IIL

Figure 3 shows the beam current and a mountain range
plot of transverse position along the bunch. The position
was obtained by integrating the sum and difference
pickup signals and taking the ratio. The signal grows
from noise but the amplitude saturates. These data are
for a full bunch length of 275 ns and V,; = 15.3kV. Data
have also been taken for shorter bunches. Persistent os-
cillations are present as well. The oscillations set in when
V¢ is about 10% above the fast loss threshold for bunch
lengths between 200 and 275 ns.

III. FORMATION OF THE ELECTRON CLOUD

The properties of the electron cloud are fundamental to
the question of beam stability. An initial electron popu-
lation is created by beam loss, residual gas ionization, and
various processes related to the stripping foil [1,2,35].
The initial population interacts with the beam and, via
secondary emission processes, is amplified. For short
bunches the problem has been addressed by several au-
thors [12,36—38]. For PSR and SNS the bunches are long
and an electron trapped by the beam performs = 25
transverse oscillations during a single bunch passage
[39]. For electrons that exist within the beam pipe before
the bunch arrives, and for those created by residual gas
ionization, the electron transverse amplitude remains
small during the bunch passage and multiplication via
secondary emission is unlikely. On the other hand, free
electrons created by losses have a transverse amplitude
equal to the beam pipe radius when the instantaneous
beam current is large and strike the beam pipe with
appreciable energy. These processes are illustrated in
Fig. 4 for typical PSR parameters.

offset (mm) and current (A)

0 0.05 0.1 015 02 025 03 0.35
time (microseconds)

FIG. 4. (Color) Proton beam current (blue) and positions for

captured (green) and loss created (red) electrons. The beam
pipe radius is 50 mm (violet).
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The dynamics illustrated in Fig. 4 are amenable to both
analytic estimates and simulations. First we estimate the
energy with which an electron can strike the wall. The
electron equation of motion is approximated by

Zol(t)

d’y _
2mB y* + o’

Me i

6]

where y is the vertical position of the electron, (z) is the
instantaneous proton beam current, 8 = v/c for the pro-
tons, Zy = 377 (), and o is the rms radius of the proton
beam. Here we neglect the electric field due to the other
cloud electrons. We consider motion with an amplitude
comparable to the beam pipe radius b and introduce an
effective frequency w,(#) so that the oscillator equation
J + w2(t)y = 0 has the same frequency as Eq. (1). To
estimate w, take

( ) . EZOI([)
@ell) = 27 Bm, (02 + 2b%/mw)

2

which interpolates between small and large amplitude
motion and agrees with the numerical integration of
Eq. (1) to <5%.

For the harmonic oscillator the adiabatically conserved
action is J = E/w,(t) where E is the total energy. Now
suppose a situation similar to the red electron line in
Fig. 4. At t = 0.2 us the electron nearly hits the lower
wall at y = —b. Half an oscillation period later the
electron bounce frequency has changed by Aw, and the
electron would reach an amplitude of y = b(1 —
Aw,/2w,) if the upper wall was absent (Aw, <0 for
trailing edge electrons). The increase in amplitude yields
the energy with which the electron strikes the wall.
Substituting units, the electron strikes the wall with an
energy

b \2
Euie = —mme’( ) /2. @)

The strike energy is positive on the trailing edge of the
bunch (@, < 0) and Eq. (3) is valid only when the elec-
tron frequency does not have a large fractional change per
period, |&,| < w?. Equations (2) and (3) predict Ey e =
55 eV for the strike energy. From the PSR simulation the
electron has an energy of 45 eV for the first wall strike.
Notice that a small error in vertical steering will cause the
grazing and strike to occur on the same side of the beam
pipe. For this case the strike energy is ~100 eV hence
amplification of the electron cloud by secondary emission
is even more likely. In comparison, typical numbers for
the ISIS pulsed spallation source give E ;. = 10 eV for
a centered beam hence no secondary amplification is
expected.

Secondary emission involves the collisional liberation
of electrons from within the first few tens of nanometers
of the surface. Other processes such as backscatter and
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rediffusion are also present. A useful experimental mea-
sure is the secondary emission yield (SEY) 6(E). For a
normally incident electron with kinetic energy E, 6(E) is
the average number of electrons leaving the surface due to
all processes. Figure 5 shows 6(E) for titanium nitride-
coated stainless steel. The samples were manufactured by
the BNL vacuum group under the direction of Hseuh. The
measurements were performed by Henrist of the CERN
vacuum group. Notice that §(0) = 0.8 and is due to back-
scattering. The peak yield varies by =10% and the peak
value of 6(E) for unbaked, unconditioned, uncoated
stainless steel is around 2.5.

To model the effect of a given curve the secondary
yield is parametrized as

S(E/Emax)

8(E) = Roe E/Er + Ripp + Sy,
( ) 0€ inf max o +(E/Emax)

;- @

The terms proportional to Ry and R;,; in Eq. (4) ap-
proximate the contribution from reflected electrons while
the last is due to true secondaries. For non-normal in-
cidence the entire secondary yield is multiplied by

T(e) — ea5(1 7c050)’

where cosf =1 for normal incidence and a4 = 0.5.
Electrons emitted off the surface have a range of energies
and angles. For true secondaries the energy distribution is
modeled by
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FIG. 5. (Color) Secondary emission yield for titanium nitride-
coated stainless steel from identically manufactured samples.
The samples were manufactured by the BNL vacuum group
under the direction of Hseuh. The measurements were per-
formed by Henrist of the CERN vacuum group. The surfaces
have not been baked or conditioned in any way. The solid lines
are data and the markers are a fit of Eq. (4) to the blue curve. Of
all the fits, the one shown had the largest rms deviation from
the data, 0.025.
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Elastically reflected electrons have an energy equal to the
incident energy and rediffused electrons have an energy
distribution which is uniform between zero and the in-
cident energy. The conditional probability for rediffusion
P, . is an input parameter.

This model has been implemented in the computer
code CSEC (Cylindrically Symmetric Electron Cloud).
With the wall conditions specified the simulation pro-
ceeds as follows. Initially, electron macroparticles are
created at the wall. These particles are actually parallel
filaments which are long compared to the pipe radius and
parallel to the pipe axis. Only transverse motion is con-
sidered. At each time step the electric fields are calculated
assuming constant density in the longitudinal direction.
The macroparticles are produced at regular time intervals
(hundreds to thousands) along the bunch and the charge
on each macroparticle is proportional to the instantane-
ous beam intensity. The average charge liberated per
meter per second is an input parameter. The beam and
pipe are round and the cloud field is calculated assuming
cylindrical symmetry. However, individual electron mac-
roparticles have both radial and azimuthal velocities to
include the effects of angular momentum. A drift-kick
algorithm is used to update the macroparticles. When a
macroparticle hits the wall the reflection probability,
P, =[Ryexp(—E/E,) + Ryyslexp(ay[1 — cosh]), is cal-
culated and a uniform random deviate r1 between 0 and
1 is chosen. If r1 < P, the macroparticle is reflected and
its charge is unchanged. Another random deviate is cal-
culated to choose between elastic and rediffused reflec-
tion and the velocity off the wall is obtained.

When r1 > P, the macroparticle charge is multiplied
by

1 S S(E/Emax)
1—P, s -1+ (E/Emax)s.

The macroparticle charge is compared with upper (Q %)
and lower (Qp,) values, which are input parameters. If
the charge is less that Q;, the macroparticle is dropped.
If the macroparticle charge is larger than Q,,,, the macro-
particle is split into smaller macroparticles so that each
has a charge smaller than Q.. For each of the macro-
particles a random deviate 72 between O and 1 is chosen
and the secondary energy is calculated by

E—p( 1 11/2
N S(l—r2 ) '

The velocity of the macroparticle is set to the electron
velocity corresponding to E.

Given the speed of the particles off the wall, the angle
between the wall normal and the velocity is chosen ac-
cording to cosf = /r3 where r3 is a uniform deviate
between 0 and 1, corresponding to an angular distribution
dN/dQ) « cos#.
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FIG. 6. (Color) Beam line density (purple) and total electron
cloud line densities for the PSR obtained with CSEC (blue) and
POSINST (red).

This simulation has been benchmarked against the
code POSINST [40—42] for a PSR test case. Figure 6 shows
the total line density for both electrons and protons. The
blue line is the output of CSEC. The red line is POSINST
output using the full model for the energy spectrum of
the rediffused electrons. Figure 7 shows the electron
current into the wall for CSEC and POSINST. For some
parameters a 50% discrepancy is apparent but in the
following we will show that this is small within the
present context.

Table II shows the results of nonlinear least squares
fitting of Eq. (4) to the curves in Fig. 5. For all but one
case the best fit asymptotic reflection probability was
negative, so we set R, = 0. The worst fit, with an rms
error of 0.025, is shown in Fig. 5. The other SNS simula-
tion parameters are an rms beam radius of o =3 cm, a
primary electron production rate of 2 X 10® electrons

POSINST ——
CSEC ——

electron current (mA/cm2)

o = N W » O O N 0 © O

o
o

0.7 0.8 0.9 1 1.1 1.2
time (microseconds)

FIG. 7. (Color) Beam line density (AU) and electron current
into the wall for the PSR with CSEC (blue) and POSINST (red).
The beam line density, in arbitrary units, is shown to illustrate
the relative timing.
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TABLE II. Fitted secondary yield parameters for TiN curves
in Fig. 5. The asymptotic reflection probability was set
to Ryy = 0. The last row gives typical errors for the least
squares fits.

Sample Ry E, s O max E ax
0 0.66 112 1.50 2.01 317
1 0.56 129 1.56 2.20 321
2 0.50 141 1.47 1.99 433
3 0.65 60 1.56 2.22 258
5 0.50 68 1.47 2.13 331
6 0.49 157 1.50 1.88 347
Error 0.01 20 0.01 0.02 7

per meter per turn, and a bunch population of 2 X 10'#
protons.

Simulation results for SNS are shown in Figs. 8 and 9.
Figure 8 is the most relevant for stability analysis. To see
this consider a round, uniform beam with line density A,
and radius a,, and a uniform electron cloud with line
density A, and radius a,. Let y be the (small) offset
between the beam and cloud centroids. The force per
unit length on the proton beam is

Fo— 1 YA A1y, A, 5)
P 2meymin(a?, a?) 2mey a} min(a3/al, 1)

The last term on the right of (5) is the electron line
density within the beam and, since a,, is nearly constant
along the beam, a linear response model should use the
electron line density within the beam.

Figure 9 shows the electron current into the wall. When
integrated with respect to time one gets the electron dose
per unit area. Table III gives the total electron dose as well
as the average electron strike energy and the dose with
strike energy greater than 100 eV.

35 T T T

30

25

20

15

10

line density in beam (nC/m)

3 3.5
time (microseconds)

I

FIG. 8. (Color) SNS line charge densities for the beam and
electron cloud within » = o for each of the six secondary yield
curves in Fig. 5.
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FIG. 9. (Color) SNS electron current into the wall for the
simulations shown in Fig. 8. The charge deposited ranges
from 40 to 700 pC/cm?/turn.

Over time, electrons striking the wall reduce the sec-
ondary yield. This process, known as conditioning, is
a standard tool in rf and microwave engineering.
Conditioning using the beam has proved beneficial in B
factories, light sources, the SPS, and is important for the
LHC. Figure 1 shows the benefit of conditioning for the
PSR. Figure 10 shows data obtained from the articles by
Henrist et al. [43] and Kijima et al. [44]. The Henrist data
are for clean copper. The Kijima data are for a variety of
materials. In particular, the curve for the oxygen free
high conductivity copper (OFHC) surface was rinsed
with water and then electron conditioned with no bake
in between.

For all curves in Fig. 10 an electron dose of 0.1 C/cm?
reduces the peak secondary yield below 1.8. For all the
SEY curves in Fig. 5 the peak secondary yield is greater
than 1.8 and one can reasonably expect that reducing the
peak SEY to 1.8 would yield smaller densities than any
shown in Fig. 8. To estimate the time required for such
conditioning consider the dose with Eg ;. > 100 eV in
Table IIL Typical values are = 15pC/cm?/turn.
Simulations show that this value varies by about 50%
over the last 400 turns of the 1200 turn SNS cycle, so
the average dose per SNS cycle is 4.5 nC/cm?/cycle.

TABLE III. Parameters relevant to conditioning for TiN
curves in Fig. 5.

Eguike Dose Dose > 100 eV
Sample V) (pC/cm?/turn) (pC/cm?/turn)
0 24 700 43
1 36 350 39
2 61 41 10
3 24 700 45
5 49 110 22
6 56 78 17
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FIG. 10. (Color) Data obtained from Henrist et al [43] and
Kijima et al. [44] by using a ruler to measure the data points on
the published graphs. The Henrist et al data is labeled curve
23-03 in their Fig. 1. The data from Kijima et al are all for
Egixe = 600 eV. Kijima’s Figs. 10, 11, and 12 were for OFHC,
Cu-plated stainless steel, and Nb, respectively.

Dividing this into 0.1 C/cm? and taking a 60-Hz rep
rate gives a conditioning time of 106 h.

The SNS beam must be stable at reasonably high
intensity for such conditioning to take place. In the fol-
lowing sections we consider what is known about the PSR
and use various theoretical tools to extrapolate to the SNS
parameter regime.

IV. LINEAR STABILITY THEORY

The stability eigenvalue problem for positron bunches
in the KEKB-LER and protons in the CERN-SPS has
been considered in [15,16]. A key parameter is the num-
ber of electron oscillations during the bunch passage,
which is fairly small for both machines. In this case
one can get good results using traditional basis expan-
sion techniques [45] while maintaining a manageable
matrix size.

For the PSR and SNS consider the beam position
monitor traces in Fig. 2. The peak oscillation frequency
is about f..« = 200 MHz and the bunch length is about
7, = 200 ns. Using Perevedentsev’s notation [16], the
smallest matrix which would allow for this fidelity in-
volves a sum over all € and k=0 with |[€| + 2k <
2fmaxTp = 80. This yields a 3321 X 3321 matrix. The
eigenvalues would need to be calculated and the matrix
size increased until convergence was found. Note that
these matrices are dense with no special symmetry prop-
erties and a generic routine is needed [46].

An alternate technique is to model the longitudinal
dynamics using a square well potential [47-49].
Particles coast longitudinally within the bunch and are
reflected at both the head and the tail. The accompanying
line density is a boxcar distribution and the longitudinal
velocity distribution is independent of position within the
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bunch. With this special distribution we will find that the
dimension of the eigenvalue problem scales linearly with
the number of electron oscillations within the bunch,
which keeps the matrices manageable.

For zero chromaticity, the vertical equation of motion
for a single proton is

dzyp _
de?

_(Q(z) + Q%)yp + 2Q0AQsc(yp - }_7,7) + Q%;ye'
(6)

In Eq. (6) y, is the proton coordinate, 6 is the machine
azimuth which will be used as the timelike variable, Q is
the bare betatron tune, AQ,. is the incoherent space-
charge tune shift, and y, is the centroid position of the
electron cloud which depends on both 8 and longitudinal
position within the bunch. The linear approximation for
the space-charge force is equivalent to taking the
Kapchinskij-Vladimirskij distribution for the transverse
phase space density and is discussed in the Appendix.

The strength of the electron cloud interaction is deter-
mined by the parameter

eA,
2 2 72y’
2meywyym, max(ag, a;)

0} -

)

where A, is the magnitude of the electron line density, w
is the angular revolution frequency, a, is the radius of the
electron cloud, a,, is the radius of the proton beam, vy is
the relativistic factor of the beam, and m, is the proton
mass. Notice that Q, is the betatron tune the protons
would have in the absence of other focusing forces. Let
the longitudinal coordinate within the bunch be ¢ = w7
with 0 < 7 < 7,. As the bunch passes the electrons re-
main at a fixed value of 6 and the electron centroid obeys

025 ,.(¢, 0) _ 0y.(¢, 6) _
g T O ZayT = 0%,(¢,6), (8)
0Y($,v,60)  IY _dU()aY
30 Y9¢ de ov
where

7.0 = [ dop()¥(,v.0)

with p(v) the normalized velocity density,

fio dvp(v) = 1.

Also, the approximation Qf = Q3 + Q3 has been used in
calculating the coefficients on the right-hand side of (11).

014203-7

where the boundary conditions are ¥,(0, ) =0, and
945.(0,0) = 0. In Eq. (8) the transverse electron oscil-
lation frequency is given by

e)lp ©)

2megwim, max(az, ay)’

0 -

in analogy to (7), and the spread in electron oscillation
frequency is parametrized by a = Q,/20Q, with Q, being
the effective quality factor of the electron cloud. Factors
contributing to this spread include variations in a,, via
variations in the lattice functions, and the dependence of
the electron frequency on the electron’s amplitude. Taking
only lattice variations we estimate Q, = 2 for both PSR
and SNS. Integrating Eq. (8) one obtains the electron
centroid,

0;

56,00 =5 [75,(810)5in(010 — §)e 84y,

(10)

where 02 = Q2 — a®. Given Egs. (6) and (10) one re-
quires the equation for the centroid of the transverse
proton position as a function of 6, ¢, and the longitudinal
momentum coordinate v = dd¢/df. Call this function
y,(0, &, v).

The equation for y, is found by making the substitution

d d
+

d_ 9 9 _dU(@) I
Y

Yoe  dd ov

in Eq. (6), where U(¢) is the longitudinal potential asso-
ciated with the square well. For parameters relevant to
a synchrotron, the betatron tune shifts will be small
compared to the betatron tune hence we can define
Vp(d, v, 0) = Y(h, v, 0) exp(—iQy6) and neglect second
derivatives of Y. One obtains

0500

= MOV (6,0,0) = V(. 0) + 1525 [( f’ 7($', 0)sin(Q[d — ¢ e 14 ¥1dg,

0

(1)

A. Action-angle approach

The Hamiltonian for longitudinal motion is H =
v2/2 4+ U(¢) where U(¢) is a square well with walls at
¢ =0 and ¢ = ¢ [50]. As a proton executes a single
longitudinal oscillation it encloses a phase space area of
A = 2|v|}. Define the action-angle variables I and i.
Since [ is constant and ¢ increases by 27 during each
oscillation, A = 277. In the action-angle variables the
longitudinal Hamiltonian is H = (71/¢)%/2. With this
Hamiltonian di/d = |v| so we expect ¢ = ¢p3(h)/ 7
where the sawtooth function is given by §(¢) = || for
|f| < 7r and for other values §(y) = §(¢y + 27). A ca-
nonical transformation of Goldstein’s third type may be
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used to verify the coordinate change [51]. F5(¢, v) =
—v¢3()/m where ¢ = wy7,. The old and new coordi-
nates are related via

dF;
v

¢ =——"=ds)/m

and

__9F _
1= e olvl/m.

Assume a time evolution x = x(J, i) exp(—iAQ#H) and
consider the eigenvalue problem,

( i1 oY (i, I)
»
- digf WALHW) — SOV, 1plu()]

(12)
The total wake potential is given by
WL () = ~200A0..5(6) + 03 QQe O¢)sin(@p)e.
(13)

Next expand Y (i, I) as

i Y, (Dei.

n=—00

Y( 1) =

Use Fourier orthogonality to isolate Y, (7) and define
7= [T arv,welu)
0

Since ¢ depends only on ¢ and not on /, the second line of
(12) depends only on the values of ¥, Isolate the values of
Y, on the first line of (12) and define

VY
T+ 6y

where 8, is the Kronecker delta. This yields the final
dispersion relation,

A

_¢ 0
TQOD(AQ + AQsc: k) mZO Rk,mAm

(14)

A1+ 84p) =

The dispersion integral is given by

= [~ deete)

T 1
wov—kmv/d (1>

with v = AQ + AQ,. and the impedance matrix is

Ry == [T apcostkn) [ au/ costmp w1 (dLy — w')/m

Q2

= —27Q0AQ Sx (1 + 810)/ b + 23
where

Glkm) = j‘w m fl/f dXeiklpHmXH;/ﬁX)(iQﬂx)&/w.
0 0

For space charge R, ,, is diagonal

dvp(v)
AQ + AQ,. — kvw/¢’

This has the form of a coasting beam dispersion relation.
Consider a wave with frequency w,. The value of k which
creates modulations at this frequency is k = w,7,/7.
Substituting this value and generalizing to an arbitrary
coherent tune shift AQ, yields

dvp(v)
AQ + AQSC - er‘

With AQ, = AQ,. this is the dispersion relation for
space-charge waves of frequency Q, on a coasting beam

1=AQ0 a7

1=AQ, (18)

014203-8

5 Im[G(k, m) + G(—=k, m) + G(k, —m) + G(—k, —m)],

(16)

| with current equal to the peak current in the bunched
beam.

For definiteness take AQ, = AQ,. and a parabolic
momentum distribution with p(v) = (3/40)(1 — v*/9?)
for |v| < . Equation (18) predicts a threshold for coher-
ent oscillations which is given by

AQSC
Q.v

Consider the PSR threshold for N, =4 X 10"* with
Vi = 15kV and 7, = 220 ns. Substituting these values
in the last equation one obtains F = 1.52. Using design
parameters for the SNS at 2 MW one obtains F = 0.42.

The space-charge threshold also scales differently
from the observed behavior in PSR. Assuming that the
bunch shape remains constant (i.e., parabolic) as the rf
voltage and bunch length are changed, the space-charge
threshold is given by

N, = KV,sa*7}, (19)

where K depends on beam energy, betatron tune, and

=F=2/3
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other machine constants. The maximum number of stored
protons scales linearly with rf voltage but the scaling
with bunch length does not agree with the observations.

Up to this point the calculation is equivalent to that
presented in [49]. We go on to include the effects of the
electron forces. Toward this end consider velocity distri-
butions of the form [52]

W = [ors = 3 — S (20)
PY Poj:1v2 + a? L r(v? + af)’

j=1

where @;;; > a; > 0, and the C;’s are obtained using
simple matrix techniques. The shape of the distribution
depends on the values of aj; chosen, with distributions
approaching Gaussians being easy to construct. One such

formula is

a? =20%[M + VM(j — D]In(1 + VM)/M

for j=1,2,...,M. For M > 10 the fine cancellation
implied by Eq. (20) appears to require more than 16 bytes
of numerical precision and we will generally use M = 5.
The dispersion integrals (15) are given by

f‘” p(v)dv M C;

__ I @
—ov—kmv/¢d Svtilka/dla;

To compare these results to those of the Gaussian distri-
bution consider the coasting beam dispersion relations
AQ, = 1/D(v, 1) where ¢ = 7 and v varies over the real
numbers. Figure 11 shows threshold curves for M =5,
parabolic, and Gaussian distributions with o(v) = 1.

Substituting expression (21) for the dispersion integrals
into the eigenvalue problem (14) yields

BEa— ORI

M
A, =
Siv+imma; /qb

where

I5 polt'e
0.9 - parabola -
0.8 Gauss

0.7 -
0.6 -
0.5 -
0.4
0.3 -
0.2 -
0.1 -

Im(AQy)

FIG. 11. (Color) Coasting beam thresholds for an M = 5 dis-
tribution, a Gaussian distribution, and a parabolic distribution
all with o(v) = 1.
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V4 =——— ' R
P27 Qo1+ 8,,0) P

To proceed set
M
= ZA’"
j=1

Insert this expression into the previous matrix and de-
mand equality for each value of j, without the sum. This
results in

M o

.mar
VA, = —l?a A+ C; Z Z ApiZy,  (22)
k=1 p=0

For practical applications the infinite sum over p needs
to be truncated and a value of M chosen. We will take M =
5 and test convergence with a simple model. Set w7, =
27r/35 and w,7, = 57. The beam current and electron
line density are chosen to give a cold, coasting beam tune
shift of

Q 0;
20,

AQy=AQ, + = 0.10 + {00.05.

Plots of Im(AQ) for the most unstable mode versus the
rms tune spread in the central line [Q,o(v)] for various
truncation values as well as those obtained from Eq. (18)
are shown in Fig. 12. Notice that the coasting beam
dispersion relation gives a reasonable threshold estimate
for the eigenvalue problem using the larger number of
modes, 0 = p = 105. Also notice that the red line takes a
dip in the vicinity of Q,o(v) = 0.015. This dip is quite
important since an accurate solution of Eq. (11) must
approach the beam breakup limit as o(v) — 0. For the

0.01 T

0,105

4,6
0.008 coast |
20.006 -

E
0.004 ]
0.002 ]
0 ! ! !
0 0.02 0.04 0.06 0.08 0.1

Qgo(v)

FIG. 12. (Color) Growth rate versus frequency spread for a
simple model. The red and green traces are solutions to
Eq. (22) with the (0, c0) summation limits on p replaced by
(0105) and (4,6), respectively. The blue trace is the coasting
beam threshold from Eq. (18).
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beam breakup limit the amplitude of the oscillation
grows as In|y| < +/6 and as the beam breakup limit is
approached the growth rates of all modes go to zero ([47],
Fig. 12).

For parameter regimes appropriate to the PSR and
SNS, w,7,/7 > 1 and we will sum for |p — w,7,/7| <
N. Also, for comparison to a real beam, appropriate
bunch lengths and momentum spreads need to be ob-
tained. For this we equate rms bunch length the rms
momentum spread in the real and modeled beams. For
the PSR a typical, real bunch length is 250 ns. When
modeled by a square bunch we set 7, = 177 ns. To avoid
confusion we will refer to the bunch length of the square-
modeled bunch as the bunch length. Figure 13 shows
results for a bunch charge of 6.4 ©C and a range of PSR
parameters.

The threshold voltage increases with increasing elec-
tron density, and also increases as the bunch gets shorter.
The latter observation is consistent with Eq. (19). We note
that Im(AQ) = 0.015 gives an equivalent transverse re-
sistance of about 1 M{)/m.

Figure 14 shows the threshold rf voltage versus space-
charge tune shift for a bunch length of 177 ns and a bunch
charge of 7 uC. The plot was made by varying AQ,. in
Eq. (13) while leaving the second term in the wakefield
fixed. Space charge clearly increases the threshold voltage
which also is consistent with (19). This result is different
from the increase in threshold current with space-charge
tune shift reported in [47]. The set of wake potentials
used in [47] led to coupling between low lying modes,
even with large space-charge tune shift. The wake poten-
tials used here change sign several times allowing for
coupling between high order modes. Since space charge
reduces the distance between high order modes, space
charge reduces the wake induced tune shift needed for
coupling.

0.03

0.025

0.01

0.005

0 20 40 60 80 100
RF voltage (kV)

FIG. 13. (Color) Maximum growth rate versus rf voltage for

PSR with 6.4 uC and various values of bunch length and
electron line density.
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threshold RF voltage (kV)

0 0.02 0.04 0.06 0.08 0.1
AQge

0.12 0.14 0.16

FIG. 14. (Color) Threshold rf voltage for PSR as a function of
space-charge tune shift with 7, = 177 ns. The nominal value is
AQ, = 0.143.

Figure 15 shows thresholds for various electron line
densities and compares the matrix analysis with the
coasting beam estimate. The good agreement between
the two techniques suggests that a coasting beam estimate
based on a more accurate momentum distribution [p(v)]
would yield a better estimate of behavior in the PSR.
Figure 16 shows threshold estimates for a parabolic dis-
tribution. While the threshold estimates for small beam
current are comparable in Figs. 15 and 16, the threshold
voltage increases more rapidly with beam current in
Fig. 16. This is a consequence of the dispersion diagrams
shown in Fig. 11. The M = 5 dispersion curve has ex-
tended “wings” while the dispersion curve for the para-
bolic distribution goes to zero before a real tune shift of
2¢. This implies that the parabolic threshold is more
sensitive to the space-charge tune shift, so a fair approxi-
mation to the threshold voltage can be obtained from

25 T T T T T T

15 + + + B

1 2 3 4 5 6 7 8
beam charge (microcoulombs)

threshold voltage (kV)

FIG. 15. (Color) Threshold voltage versus bunch charge for
PSR with 7, = 177 ns, Q, = 2.5, and electron line densities
of 0.1, 0.5, and 1.0 nC/m. The symbols are the thresholds for
M =5 and N = 5. The solid line is the estimate using the
coasting beam dispersion relation, Eq. (18), and the M = 5 tune
distribution.

014203-10



PRST-AB 6

M. BLASKIEWICZ et al.

014203 (2003)

70 T T T T T

A
.5
60 - 0

0
0
1

c

historical

50

40

30

threshold voltage (kV)

20

10

0 I I I I I I
1 2 3 4 5 6 7 8

beam charge (microcoulombs)

FIG. 16. (Color) Threshold voltage versus bunch charge for
PSR with 7, = 177 ns, Q, = 2.5, and electron line densities
of 0.1 , 0.5, and 1.0 nC/m. This estimate used the coasting
beam dispersion relation, Eq. (18), and a parabolic momentum
distribution with the same rms width as for Fig. 15. The
threshold curve for historical PSR data is shown for compar-
ison. For the data, the momentum spread from the LINAC is
present even with zero rf voltage.

Eq. (19). Also notice that Eq. (19) implies that threshold
voltage increases as bunch length decreases. The factor of
3 discrepancy between theory and experiment shown in
Fig. 16 becomes worse as the bunch length is reduced.
Also notice that the calculated threshold voltage is a weak
function of the average electron line density, which is
at odds with the conditioning effects implied by Figs. 1
and 10.

Figure 17 shows results for the 2 MW SNS with the
nominal space-charge tune shift AQ, = 0.11 and all

50 T T T T T T
5002
45 3002 + @
_ 40 F —+ 500,5 .+
=>
= 35
>
g30r
S 25
ie]
S 20
5
o 15
e
- 10 o [ ] . (1
5| S oo ¢ & o
0 1 1 1 1 1 1
5 10 15 20 25 30

beam charge (microcoulombs)

FIG. 17. (Color) Threshold voltage versus bunch charge for
SNS with various values of equivalent bunch length (ns) and
electron line density (nC/m), with Q, = 3. The crosses are the
output of the eigenvalue code with M =5 and N = 10. The
solid line is the coasting beam estimate using the M = 5 tune
distribution. The circles are the coasting beam estimate using a
parabolic momentum distribution with the same rms width.
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three estimate techniques. For nominal parameters the
equivalent rectangular bunch length is 500 ns and, with
A, = 2 nC/m, the beam is stable with a harmonic 1 volt-
age of 10 kV. The design voltage is 40 kV.

B. Nonlinear space-charge forces

For the PSR the transverse beam profile is roughly
Gaussian. SNS target requirements dictate a transverse
density that is nearly constant within the beam and a
sharp beam edge. This implies that the transverse ampli-
tude dependence of the space-charge tune shift in the PSR
is significantly larger than in the SNS. The impact of this
difference on instability threshold estimates for the PSR
is the subject of the present section.

Consider a coasting beam instability and take the
evolution variable to be time (z). Consider only one trans-
verse dimension (y, v = y). Take the fractional momen-
tum deviation, 8§ = (p — py)/py, to be the longitudinal
momentumlike coordinate and 6 to be the longitudinal
position coordinate. The equation for the electron cent-
roid is approximated as

5.00,1) .05,

Py 0 or w5, = 3e). (23)

For no momentum spread the proton centroid obeys

2
o wugy | 3,00 + 033, = 035, 5, @9

Set  j,=79,explik(wgt — 0) + iw.r] and J, =
9. explik(wot — 6) + iw.f]. Assume that |kwy — w, —
w,| < w,/0,sothaty, = —iQ,,. Additionally assume
that |, — wg| < wg so that coupling to the other beta-
tron sideband can be ignored. Then w.— wg=
iw%,Q,/ZwB is the coherent frequency shift of the pro-
tons. Next consider momentum spread in the absence of
collective forces. For a particle with momentum offset §
its kth betatron sideband occurs at a frequency

w(8) = kwo(l = n8) — (1 = né + £d)wy,

where y = 1/y* — 1/y?, £ is the normalized chromatic-
ity, and wg is the betatron frequency for an on-momen-
tum particle in the absence of collective effects [S3]. The
frequency spread in the beam is given by the momentum
distribution, p(8), and the relation

Swg(8) = Nkwy — wg)d + éwgd =~ —nw, 6.

We may now use the formalism in [52] to estimate the
effects of nonlinear space charge on stability thresholds.
Considering the results of the previous section we take a
parabolic momentum distribution with half-width at base
O max»> and numerically calculate Eq. (33) in [52]. Figure 18
shows stability diagrams for a generic coherent tune shift
and various amounts of space charge. The parameter W =
8w g(8max)/ @y is the normalized frequency spread in the
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0.45 T T T T T T
0.4
0.35 - -

0.3 —

0.25 | —

0.2 —

0.15 | .

0.1 | .

0.05 | .
0 1 1 1 1 !

-5 -4 -3 -2 -1 0 1 2
Re(AQy/W)

Im(AQy /W)

FIG. 18. (Color) Threshold diagrams for various values of
AQqmax/W and highly nonlinear space charge with g/k =
3/5. Tune shifts corresponding to points below a given curve
are stable for that value of AQg pma/W.

sideband due to momentum spread, and the curves are
labeled according to the central space-charge tune shift
via AQq. max/W. These curves assume a round beam with
transverse density proportional to (r2,, — *)*> with non-
linearity parameter g/x = 3/5 [52]. This regime corre-
sponds to a soft upper limit for space-charge tune spread
in real beams and yields a tune shift with betatron am-
plitude () that is given by

6 $ 2
AQ@C()A)) = AQsc,max|:1 - B( Y ) :| (25)

A
y max

For our purposes the width of the tune distribution is
W= 8max|7]|Qe- By any measure, AQsc > Qer/ZQﬁa
so the coherent tune shift is AQ, = iQ,Qp/ZQB.
Figure 19 shows threshold voltage versus beam current

120 T T T T T T T
180, 1 +
+ 9.1 +
100 | n 90,025 + 7
S historical
3 +
< 80 -
(o))
ol
g 60 .
ke, n +
o
g a0 N + -
£ +
- +
20 | + + + + .
0 1 1 1 1 1 1

1 2 3 4 5 6 7
beam charge (microcoulombs)

©
©

FIG. 19. (Color) PSR threshold voltage versus bunch charge for
rms bunch lengths of 180 and 90 ns and electron line densities
of 1 and 0.25 nC/m, with an rms emittance of 8.5 mm mrad.
The symbols are for maximal space-charge tune spread with
q/x = 3/5 and the solid line is the historical PSR data.
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for long and short bunches with maximal space-charge
tune spread.

For both bunch lengths the threshold voltage with non-
linear space charge is no larger than the threshold assum-
ing linear space-charge forces. Also notice that the
threshold voltage for the short bunch is significantly
reduced when the electron line density is reduced. The
value of 0.25 nC/m was in fact calculated using CSEC
with a 7 uC bunch and wall parameters consistent with
partially conditioned stainless steel. The large reduction
in threshold voltage due to reduced A, is in sharp contrast
to the results in Fig. 16.

The possibility that threshold voltage is a strong func-
tion of electron survival during the gap has been sug-
gested before, and the conjecture that it influences the
dependence of threshold voltage on bunch length has been
made [1,31]. There are other experimental facts that have
not been included in the calculations leading to the fig-
ures. The electron line density surviving the gap is a
strong function of bunch current [33]. Also, the threshold
scaling like 79 in Fig. 1 is different from earlier observa-
tions, which showed something more like T;l [1,2]. That
is to say the fact that the curves for different bunch
lengths are essentially identical in Fig. 1 does not indicate
a fundamental symmetry of the physics. Finally, from
Fig. 2 it is clear that the electron cloud responsible for
the onset of the instability does not always occupy the
entire ring.

By including these sorts of effects it might be possible
to fit both the intensity and bunch length scaling in PSR.
Instead, we will remember that the model used here is
fairly rough and attack the problem using simulations.

V. SIMULATIONS
A. Description of algorithms

The parameter regimes appropriate to the PSR and
SNS make a direct particle in cell calculation of the
electron cloud instability difficult. In this section we
develop some phenomenological equations of motion
which contain the various interactions in simplified
form that allow for greater computational speed.
Consider a single proton macroparticle. The continuum
version of its equations of motion is taken to be

d*r
T (26)
d’y
d@zp = _szp + Csc(er T)[yp - )_’p(ﬁ, T)]
+ F),,e(yp, 0, 7), 27)
d?x
dgz" = —Qx,. (28)

The longitudinal coordinate is arrival time, 7, and the
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motion is simple harmonic with synchrotron tune Q,. The
vertical motion has bare tune Q,, with transverse, linear
space-charge forces and a vertical force on the proton due
to the electron cloud F, .. The assumption of linear trans-
verse space charge increases computational speed. From
Figs. 18 and 19 this approximation could significantly
underestimate threshold current for PSR. The horizontal
motion is unperturbed with betatron tune Q,. Neglecting
the horizontal collective forces roughly halves the simu-
lation time though they could easily be included. The code
actually allows for nonzero chromaticity, but its effect is
negligible for PSR and SNS parameter regimes.
Electron macroparticles are assumed to have trans-

verse motion only. When the macroparticle is inside the
pipe

&y,

W = Fy,p(yer 9, T) + KFy,e(ye’ 0! T)r (29)

d’x,
dr?

The vertical force on an electron macroparticle is due to
both the protons F, , and the electron cloud «F), .. When
nonzero, the parameter k accounts for the mass ratios as
well as the fact that the proton timelike variable is taken
to be azimuth (), while the electrons evolve in real time
during the passage of the proton bunch. Horizontal elec-
tron motion is analogous to the vertical for motion in
a drift (I; = 1). For motion in a dipole magnet the hor-
izontal/longitudinal Larmor motion is neglected and
I, = 0. Wall interactions will be discussed later.

The continuum version of the collective force on the
electrons due to the protons is taken to be

_ e, (0, 1) [a(0)/aolx (6, T) — x,
P 2megm, min{a(0)?, |[a(0)/ag]X,(0, 7) — x,|*}
(31)

The actual beam radius a(f) is allowed to vary with
azimuth as appropriate to a strong focusing machine.
This means that x,, is actually the normalized position
coordinate and 6 is the phase advance divided by the tune.
The proton beam is assumed to be round which simplifies
the electron update equations. The value a(6) is an input
function, not derived from the beam characteristics, with
a(8) = a(6 + 2m). The range of values of a(@) reprodu-
ces the variation in electron bounce frequency for the
actual lattice calculated using variations in both the hor-
izontal and vertical beam dimensions.

To get the collective force on the protons due to the
electrons the average and mean square positions of the
cloud are obtained for each azimuth and each time step
along the bunch. Let the macroparticles be denoted by
index j, then

Id[Fx,p(yeJ 0’ T) + KFx,e(yer 0, T)] (30)

Zj Ae,jye,j

ye(e’ T) = e 5,
Zj AL’]

(32)
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Z.j /\e,j[ye,j - ye(e, 7.)]2
2 Ae,j '

The average and variance are then multiplied by ay/a(6)
and [ay/a(6)]?, respectively, to account for the normal-
ized proton coordinates. The macroparticles can have
different charges (actually line densities) due to interac-
tions with the walls. The force on the protons due to the
electrons is

o020, 7) = (33)

e (0,7)
Fy (v, 0,7)= [

)_7(3(0, T) —Yp j|
2megm,yw} '

03(0,7) +1%,(0,7) — x,I*
(34)

The initial conditions of the electron cloud and sec-
ondary emission are considered as follows. For each
azimuth at which the beam is updated, usually 10 times
per betatron oscillation, the electron cloud is generated by
taking N, electron macroparticles with random positions
within the pipe and zero velocity. Each macroparticle has
the same initial line density and their sum is an input
parameter, A,. A given macroparticle is evolved by
Egs. (29) and (30) until it strikes the wall with energy
E. Upon striking the wall Eq. (4) is evaluated and that
macroparticles charge is multiplied by the secondary
emission yield 6(E). After the charge is updated the
macroparticle remains in the same location, but with
zero velocity. This neglects the complications associated
with the secondary energy distribution and should have a
small effect on the proton dynamics.

To discretize the equations of motion we take ~10 Q,
equally spaced thin lenses in machine azimuth to imple-
ment the collective forces. Between collective kicks the
transverse and longitudinal proton motions are approxi-
mated by rotation matrices. Consider the implementation
of the collective forces at a given thin lens. Choose a
longitudinal smoothing length 7, and a longitudinal bin
size 67 = Tye,/N,. Generally 7,/67 = 10 and w,7, < 1,
where w, is the maximum value of the electron bounce
frequency within the bunch. Use linear interpolation to
calculate estimates of A,(7) and A,(7)y,(7) on the N,
grid points. Smooth these arrays using S(r) =
(1 + 4|¢l/7,) exp(—4|tl/7,)/ T, which involves one expo-
nentiation and O(N,) additions and multiplications when
the convolution is expressed as an autoregressive filter.
The smoothed values A,(7) and y,(r) (obtained by
division) are used to drive the electron cloud via
Egs. (29)-(31). As the proton bunch passes, Egs. (32)
and (33) and the electron line density A,(7) are stored
in arrays. Then Eq. (34) is used to get the transverse kicks
on each of the proton macroparticles.

B. Results

The simulation code has five purely numerical parame-
ters and 14 physical parameters. Fiducial values for these
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TABLE IV. Nominal simulation parameters for the PSR

and SNS.

Parameter PSR SNS
Circumference 90 m 248 m
Revolution period 357 ns 945 ns
Beam Kkinetic energy 797 MeV 1000 MeV
Betatron tunes Q,, O, 3.16, 2.14 6.2, 6.2
Pipe radius 5 cm 10 cm
Beam radius (a) 1.5 cm 2.8 cm
Maximum synchrotron tune Q;, 7.1 X 10™* 9.4 X 107*
Maximum bunch charge 8 uC 32 uC
O max 2.0 2.0
Eomax 300 eV 300 eV
Full bunch length 270 ns 700 ns
Tocak/ Lave 2.9 2.0
Aw, /o, [via a(6)] 0.5 0.5
A, 1 nC/m 2nC/m
Updates/turn 20 60
Proton macroparticles, M, 6 X 10° 5% 10°
Electron macroparticles, M, 20 20
Smoothing length, 7, 0.25 ns 0.25 ns
Longitudinal bins, T, /¢ 64 000 64000

are given in Table I'V. To characterize the evolution during
the simulation consider the average value of the coherent
amplitude on turn n, Y(n). Define

pp(0,7) =((1/0,)(dy,/do)),

in direct analogy to y,(6, 7). For turn n

[om= drA,Q2mn, 7)[y3(27n, 7) + pi(2mn, 7))
Jo= drA,(2mn, 7)

[Y(nP =

(35)

Figure 20 shows the evolution of Y for the SNS and
PSR parameters in Table II. The PSR is unstable and
losses on the tail of the bunch are apparent in Fig. 21.
There is no simulation flag associated with a proton hit-

3.5 T T T T
PSR —

3 SNS —— |

25

2

Y (mm)

1.5

1

0.5

0 1 1 1 1
0 200 400 600 800 1000

time (turns)

FIG. 20. (Color) Evolution of Y for PSR and SNS parameters in
Table I1

014203-14

60 T T T T T T T

-80 I I I I I . I
0 50 100 150 200 250 300 350

time (ns)

FIG. 21. (Color) Macroparticles and smoothed offset for the
last turn of the PSR simulation using parameters in Table IL
The vertical aperture is shown too.

ting the pipe wall so behavior after the beam gets outside
the pipe is unphysical. Figure 22 shows the PSR current
pulse and the dipole density, /(7)y,(7). The rms ampli-
tude of 3 mm would produce an easily measurable insta-
bility signal. The same parameters for SNS are plotted in
Fig. 23. The dipole density corresponds to the Y ~
0.5 mm amplitude displayed by SNS throughout the
simulation. There is no sign of instability in this case.
The PSR parameters in Table II correspond to a mar-
ginally stable beam in the actual PSR, while the simula-
tion predicts a strong instability. Simulations of the PSR
for other intensities, bunch lengths, and rf voltages have
been done. In general, the onset of the instability roughly
corresponds to the coasting beam estimates for parame-
ters in the middle of the bunch. This is not the same as
equating rms quantities, since the longitudinal profile of
the PSR beam is typically quite peaked. The simulations
also show some evidence of nonlinear saturation, which is
not surprising given Eq. (34). However, for such non-
linear saturation to play a fundamental role in the PSR

300 T T T
200 |
100 -

0

-100

I(A), Iy(A mm)

-200

-300 | T

-400 I I I I I I I
0 50 100 150 200 250 300 350

time (ns)

FIG. 22. (Color) Instantaneous current and dipole density for
the 200th turn of PSR simulation using parameters in Table IL
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FIG. 23. (Color) Instantaneous current and dipole density for
the 1000th turn of SNS simulation using parameters in Table IL

it would be necessary to observe the linear threshold of
the instability at intensities well below those required for
beam losses. This would be especially true for short
bunches and it is not observed in the actual machine.

For SNS, the rms bunch length is a good indicator of
peak current. The simulations agree fairly well with the
thresholds show in Fig. 17.

VL. CONCLUSIONS

Electron cloud instabilities in the PSR and SNS have
been explored. Estimates of the SNS cloud density have
been made using measured secondary yield data. For 2 X
10'* protons per bunch we expect less than 5 nC/m of
electrons to survive the gap. Similar simulations have
been done for the PSR and agree well with experiments.
Linear stability theory has been applied to the PSR and
SNS. For the PSR, the linear model tends to predict
instability for lower currents than are actually observed.
This may in part be due to our conservative approxima-
tions. For the SNS with 2 X 10'* protons per bunch, the
linear theory predicts that a harmonic-one rf voltage of
15 kV should be adequate to stabilize the beam for an
electron density of 5 nC/m. The harmonic-one design
voltage for SNS is 40 kV. Simulations of the electron
cloud instability have been performed. For SNS, the
simulations are in fair agreement with the predictions
of the linear stability analysis. With 2 X 10'* protons
per bunch and a 60 Hz repetition rate, conditioning rates
for electrons with more than 100 eV of kinetic energy are
(0.1 = 0.5) C/cm?/week for the unconditioned surfaces
considered here. A dose of 0.1 C/cm? should reduce the
peak secondary yield to 1.8 or less.
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APPENDIX: MOTIVATION FOR THE LINEAR
SPACE-CHARGE TERM

To motivate the linear space-charge term in Eq. (6)
consider the coupled Vlasov-Maxwell equations for a
beam in a straight channel with uniform, linear focusing.
We use (x, y, z) and (p,, p,, p;) as the phase space coor-
dinates and clock time ¢ as the evolution variable, with
F(x,y,2 Py Py, P> t)dxdydzdp,dp,dp, denoting the to-
tal charge in the phase space volume dxdydzdp,dp,dp..
The particle velocity is dr/dt = v = p/ym and q is the
charge per particle.

The Vlasov equation is given by

oF oF oF

¥ +v o + g{E(r, 1) + v X B(r, 1)} p 0, (Al
where E(r, 7) and B(r, ¢) are the electric and magnetic
fields as a function of position and time.

Since Maxwell’s equations are linear we may split the
electric and magnetic fields in the form E = E; + E|,
where E is the electric field for a perfectly conducting
pipe and E; = E — E; is the field due to wall impedance,
electron cloud, quadrupoles, and rf cavities. Similarly we
set B= B, + B;. We will call E; and B, the space-
charge fields. To proceed we work in the Lorentz gauge

dA

Ey=-vo -, A2
0 v Y (A2)
B, = V X A, (A3)
2p = L7 _p (A4)
2ot €
1 9’A
VzA = ?W - /-LOJ, (AS)
od
A= A
v PR (A6)
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Let vy = Zv, be the velocity of the synchronous particle
and make the approximation

(AT)

This is equivalent to neglecting the transverse beam
velocity and, for longitudinal wavelengths A, results in
a fractional error of order (a/yA,)* [54]. To the same
order of approximation take

= Zvyp(r, 1).

E0+VXBO%E0+U02XBO. (AS)
With these approximations
D
Eo(r, 1) + vX By(r, 1) = — V_z (A9)
Y

Note that (A9) holds for both transverse and longitudinal
fields. The equation for @ is given by
2 2 132
Gps 2o LPE_F0_ 189
€ c° 0t 9z vy 0z
where ¥V | = (9/dx, 9/dy) is the gradient with respect to
the transverse variables. Neglecting the derivatives with
respect to z and ¢ is equivalent to assuming that longitu-
dinal variations in the rest frame of the bunch have a
length scale much larger than the vacuum chamber ra-
dius. Note that Egs. (A7)—(A10) form the basis for several
space-charge simulation codes [55].
We are interested in the transverse forces so we split the
space-charge terms

~0, (A10)

/

1 X —X
—- V102 0)=— | @x px, 1)t
Vi (xy % 1) 2776()] xJ_p(XJ_ Z )|XJ_ _X/llz
+ image terms,
(A11)

where x| = (x, y) is the two-dimensional transverse po-
sition vector, and we absorb the image terms into E;
and B;.
Both the lattice and image parts of E; and B, can have
a nonlinear dependence on x,. We will neglect these
nonlinearities here. Also we will make a uniform focus-
ing approximation so that the net force in Eq. (Al) is
given by
P
{E(r, 1) +v X B(r, 0} = — = — kxi — kyy§
Y
+ Z2E.(z — vot) + 2E,(2, 1)
+ 3,z 1),
(A12)

where hats denote unit vectors, k, and k, are the quadru-
pole focusing terms, E.(z — vyt) is the longitudinal elec-
tric field in the smooth approximation, and £ is the
E + v X B field due to images and wall impedance.

Redefine the longitudinal variables to be 7 = z — vyt
and 8 = (p, — po)/po. Define

Vo(8, %, 1) = fdzpldleF(xl,pl,Z, 5, 1).
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Integrating Eq. (A1) over the transverse variables yields

6‘1’0 6 6‘1’0 qEZ(Z) a\PO d\IfO
_— U0—2 = + - =
at y* 0% po 06 dt

=0, (Al3)

where we define the longitudinal, convective derivative.
The transverse motion is decoupled and we take the time
independent solution W,(z, §) = G[82/2 + U(Z)], where
G defines the stationary longitudinal distribution and
dU/dz = —y*qE./ pyv,. Define two more moments

D(z, 6,1) = fdQPLdleXlF(le P1.Z 6,1, (Al4)

Pz 6,1 = [dzpldleplF(Xl,pl,Z, 5,1). (Al5)

Multiplying Eq. (A1) by x; and using integration by parts
yields
daD 1

Al
dt  ym (AL6)

The key to obtaining (A16) is to notice that the integral of
all terms proportional to dF/dp vanishes, since the co-
efficients of these terms do not depend on p. Multiplying
Eq. (A1) by p and proceeding similarly gives

—_— = = %fdledzplF(Xl, P12 S, [)VCI)(XJ_, z, [)
- q)?kxDx(Z) 6; t) - qj}kyDy(Z) 5) t)
+ IREE 1) + $E,(E DIW(Z, O).
(A17)
The first term on the right of (A17) is due to space charge,

TSC(Z’ 5’ t) = - %[dledZPJ_F(XJ_’ PL, Z! 6r t)

XVO(xy,7 1) (A18)

The terms on the second and third lines are variants of
well-known expressions, see, e.g., [56]. However, we have
been somewhat sloppy with the § dependence in the terms
proportional to k, and k. To include these terms to
leading order, as well as the effects of closed orbit curva-
ture and to change the timelike variable to 6, the reader
only needs to check that the head-tail phase shifts are
appropriate in the final equations. The point here is to deal
with T,; the aforementioned subtleties will be neglected.

To continue, notice that the integration with respect to
p. in Eq. (A18) affects only F so we may consider

F(x),2 81 = [dzplF(XL P, % 6,1

We will now employ first order perturbation theory with
F =Ry(x,,2)W,(z 8) + F|(x, 7 8, 1). Splitting the un-
perturbed distribution into this product form assumes
that the transverse motion does not influence the longitu-
dinal motion. Substituting the perturbation in Eq. (A18)
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and using (A1l)

x| — x| .
T (z, 6,1 = +K[d2x’lp1(x’l,2, t)fdle = Lo Fo(x1, 2 9)
x| _X_]_l
2. F 5 2.0 X, —X) Iz
+ K d .X'J_F]()C_L,Z, 5, t) d X |_7,2p0(xl, Z), (A19)
X XJ_l

where k = q/2me€yy?. The zeroth order terms are neglected, but vanish identically when the full equation is considered.
The second order terms have been dropped. The next assumption is to take a uniform, elliptical density for the
unperturbed distribution.

1 o2 )
Ry(x, y, Z):{’”’““'“ i @ ta=l (A20)

0 otherwise.
Strictly speaking a, and a, should vary with Z due to the variation in space-charge defocusing along the bunch.
Substituting this expression into (A19) and noticing that F, is zero for x?/a2 + y?/ a§ > 1 gives

«'/ay y'/ay)
a

Tﬂz&ﬂ=—xfﬂﬂm@L10 2

\P()(Z, 5) + deZXLFI(Xl; Z, 6, Z)M[dﬁ’\lfo(i, 3/)
X ¥ a, ta,

(A21)

Substituting the definition for D and taking only the x |
component gives [3] R. Macek, in Workshop on Space Charge Physics in High
Intensity Hadron Rings, AIP Conf. Proc. No. 448 (AIP,
= _ = p New York, 1998), p. 116.
TX’SC(Z’ 8,1) = x:Dy(z, 3, 1) de\PO(Z’ %) [4] M. Blaskiewicz, iII)l Workshop on Instabilities of High
Intensity Hadron Beams in Rings, AIP Conf. Proc.
No. 496 (AIP, New York, 1999), p. 321.

[5] H.G. Hereward, CERN Report No. 71-15, 1971.

—@%@mfwm@aa (A22)

where k, = «/(a? + a,a,) and similarly for D, To obtain [6] E. Keil and B. Zotter, CERN Report No. CERN/ISR-TH/
the space-charge term in Eq. (10) notice that y, = D, /W, 71-58, 1971.
and that Y is obtained by heterodyning y,. Therefore, [7] M. Izawa, Y. Sato, and T. Toyomasu, Phys. Rev. Lett. 74,
define X(z, 8, 1) = D,/V¥,. Since d¥,/dr = 0 the equa- 5044 (1995).
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(1997).
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2 ~
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K o . . . .

+ 5 X(, 8, 1) d51‘1’0(2, 51) N. Huang, T. Ie1r1,.N. IlQa, T. Kan.ntanl,.K. Kanazayva,

ym S. Kato, K. Kikuchi, E. Kikutani, H. Koiso,

Ky

_ ymfdslx(z’ 5., t)\I’O(Z, 51). (A23) Kubo, S. Kurokawa, T. Mitsuhashi, M. Masuzawa,

T.

T. Matsumoto, S. Michizono, T. Mimashi,
T. Nakamura, Y. Ogawa, K. Ohmi, Y. Ohnishi,
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D
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