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The root-mean-squared (rms) envelope equations are derived and analyzed for an unbunched intense
charged-particle beam in an alternating-gradient focusing field and a cylindrical conducting pipe. All
higher-order image-charge effects from the cylindrical pipe are expressed in terms of so-called
multiple moment factors in the rms beam envelope equations, and the multiple moment factors are
evaluated. Numerical results show that for vacuum phase advance �v < 90�, the image-charge effects
on the matched and slightly mismatched beam envelopes are negligibly small, at all orders, for all
beams with arbitrary beam density profiles (including hollow density profiles) as well as for arbitrary
small apertures (including beams with large aspect ratios). However, the main unstable region for the
envelope evolution with image-charge effects, which occurs for 90� <�v < 270�, depending on the
value of the normalized beam intensity SK=", is found to be narrower than its counterpart without
image-charge effects.
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Recently, Allen and Reiser [20,21] extended Sacherer’s
2D results to include the image-charge effects due to the

the self-electric and self-magnetic fields are calculated
for an unbunched beam with elliptic symmetry and an
I. INTRODUCTION

High-intensity accelerators with alternating-gradient
focusing systems have many applications in basic scien-
tific research and nuclear physics. These applications
include heavy ion fusion [1,2], nuclear waste treatment
[3], and spallation neutron source [4]. In the research and
development of high-intensity accelerators, a key issue is
to minimize the aperture of the transport system for
intense charged-particle beams, while preventing the
beams from developing large-amplitude charge density
and velocity fluctuations as well as subsequent emittance
growth and halo formation [4–15]. In order to understand
the collective behavior of charged-particle beams, it is
important to examine the beam envelope evolution under
the influence of both the beam space charge and the
image charges induced on the conducting walls of accel-
erator structures.

Intense charged-particle beams in alternating-gradient
focusing systems have been investigated since the late
1950s. One of the earliest works on the beam envelope
equations can be found in Ref. [16], in which the well-
known two-dimensional (2D) Kapchinskij-Vladimirskij
(KV) equations were derived for a uniform beam density
in free space. In 1965, Lapostolle [17] gave the three-
dimensional (3D) envelope equations for a uniform beam
density in free space, and his results could be applicable
for bunched beams. In 1971, Sacherer [18] and Lapostolle
[19] extended the previous 2D and 3D results to the
arbitrary beam density cases in free space. Sacherer’s
2D results, which describe the root-mean-squared (rms)
beam envelopes for all elliptical beams with arbitrary
beam densities, assume the same form of the KV
equations.
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cylindrical conducting pipe. They analyzed the first-order
image-charge effects. Their results showed that the first-
order image-charge effects do not affect the beam enve-
lope evolution until the beam is very close to the wall
of the cylindrical conducting pipe. The expressions for
the first-order image-charge contributions in the rms
beam envelope equations in [20,21] were identical to
those obtained in an earlier paper by Lee, Close, and
Smith [22].

In general, there are two approaches in treating the
density distribution of a nonequilibrium beam. One ap-
proach uses a rigorous normal-mode analysis (i.e., small-
signal theory) [23,24] to describe the density evolution in
a charged-particle beam. The normal-mode analysis is
useful for understanding the collective oscillations and
instabilities in the beam. The other approach makes use of
the assumption of a self-similar beam density distribution
[7–9,11,17–21]. While the self-similar beam density
distribution is not rigorous and, in general, not self-
consistent, it has proven to be a useful model in the
many previous derivations of rms beam envelope equa-
tions [7–9,11,17–21]. The rms beam envelope equations
based on the self-similar model are very useful in the
design of beam optics. Although the beam density usually
does not remain in the prescribed self-similar form, the
rms envelope equations still give a quite accurate descrip-
tion of an intense beam, provided the actual beam emit-
tances, which can be either measured in the beam
experiment or computed in the self-consistent simulation,
are used (see, for example, Ref. [25]).

In this paper, we extend Allen and Reiser’s 2D envelope
equations to include all higher-order image-charge ef-
fects from the cylindrical conducting pipe. In particular,
2003 The American Physical Society 014201-1
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arbitrary transverse dependence in the self-similar beam
density model [7–9,11,17–21]. The rms envelope equa-
tions are derived, including all higher-order image-
charge effects, from the cylindrical conducting pipe.
Numerical results show that for vacuum phase advance
�v < 90�, the image-charge effects on the matched and
slightly mismatched beam envelopes are negligibly
small, at all orders, for all beams with arbitrary beam
density profiles (including hollow density profiles mea-
sured recently in the heavy ion injector experiment at
Lawrence Berkeley National Laboratory [26]) as well as
for arbitrary small apertures (including beams with large
aspect ratios). However, the main unstable region for the
envelope with image-charge effects, which occurs for
90� <�v < 270�, depending on the value of the normal-
ized beam intensity SK=", is found to be narrower than
its counterpart without image-charge effects [11].

The organization of the present paper is as follows. In
Sec. II, 2D envelope equations are derived, including all
higher-order image-charge effects. In Sec. III, the mul-
tiple moment factors in the envelope equations are eval-
uated. In Sec. IV, the higher-order image-charge effects
on the matched beam envelopes are investigated by
numerically solving the 2D envelope equations for arbi-
trary beam densities, including a hollow beam density
profile, in a cylindrical conducting pipe. In Sec. V, the
image-charge effects on the slightly mismatched beams
and beam envelope instability are numerically analyzed.
Conclusions are presented in Sec. VI.
II. BEAM ENVELOPE EQUATIONS WITH
IMAGE-CHARGE EFFECTS

We consider an unbunched elliptical beam propagating
in an alternating-gradient focusing field and a cylindrical
metal pipe with radius R, as shown in Fig. 1. The beam
has an envelope a�s� in the x direction and an envelope
x
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FIG. 1. Elliptical unbunched charged-particle beam in a
cylindrical conducting pipe.
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b�s� in the y direction, where s � z. The beam drift
velocity in the z direction is vz � �bc, where c is the
speed of light in vacuum. In the present analysis, we
assume that the beam centroid motion is stable and on
the z axis, and ignore the beam centroid motion.
Following the analysis of Sacherer [18], we express the
beam density in a self-similar beam model as

n�x; y; s� � n
�
x2

a2
�
y2

b2

�
: (1)

The general rms envelope equations can be expressed as
[18]
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In Eqs. (2) and (3), hi denotes the moment operator with
respect to the particle beam distribution; ~xx �

��������
hx2i

p
and

~yy �
��������
hy2i

p
are the rms envelopes in the x and y directions,

respectively;

"x � 4
hx2ih�dx=ds�2i � hx�dx=ds�i2�1=2; (4)

and

"y � 4
hy2ih�dy=ds�2i � hy�dy=ds�i2�1=2 (5)

are 4 times the beam rms emittances in the x and y
directions, respectively; s � c�bt is the axial distance;
� is the potential distribution generated by the beam
space charge including image-charge effects of the cy-
lindrical conducting pipe; �q�s� � qB0

q�s�=��bm�bc� is
the focusing parameter of the alternating-gradient focus-
ing system; ~BBq � B0

q�s��yx̂x � xŷy� is the alternating-
gradient quadrupole magnetic field with B0

q�s� � B0
q�s�

S�, where S is the period of the field, m and q are the rest
mass and charge of the particle, respectively; K �
2q2Nb=�

3m�2
bc

2 is the generalized beam perveance;
Nb �

R
1
�1

R
1
�1 n�x; y; s�dxdy is the number of charged

particle per unit length along the z direction; � � �1�
�2
b�

�1=2 is the relativistic factor of the beam.
In order to derive an explicit expression for the poten-

tial �, we solve Poisson’s equation
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under the paraxial approximation with the boundary con-
dition �jr�R � 0. Here �r;  ; z� is the corresponding
cylindrical coordinate system. Using Green’s function
technique, it is readily shown that the solution to Eq. (6)
can be expressed as

� � �free ��image; (7)
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where
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du�����������������������������������
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p Z T
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is the free-space contribution of the beam,
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is the image-charge contribution from the cylindrical
metal pipe, and the function T is defined by

T �
x2

a2 � u
�

y2

b2 � u
: (10)

The space-charge terms in the envelope equations can
be simplified by using Eqs. (7)–(10). The results are�

x
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and �
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�
� Nbq�Ifreey � Iimage

y �; (12)
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~xx
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and
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~yy
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(14)
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are the space-charge contributions in free space [18], and

Iimage
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are the image-charge contributions from the cylindrical
conducting pipe. Here,
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is a multiple moment factor related to the beam density
profile.

Substituting Eqs. (11)–(17) into Eqs. (2) and (3), we
obtain the envelope equations of the following form:
d2X

ds2
� �q�s�X� 2K
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Y3 ; (19)
where X � 2~xx and Y � 2~yy.
Unlike the previous results obtained by Allen and

Reiser [20,21], which include only the l � 1 contribution,
the present envelope Eqs. (18) and (19) are complete,
including both the l � 1 contribution and all of the
higher-order image-charge effects with l � 2.

III. EVALUATION OF MULTIPLE MOMENT
FACTORS

The multiple moment factor Nl contains the informa-
tion about the higher-order image-charge effects in the
envelope equations (18) and (19). We can assess these
effects by evaluating Nl as a function of l. In particular,
we consider the following parabolic density profile [11]:

n �

8><
>:
n0 � (n0



1� 3

�
x2

a2 �
y2

b2

�
2
�
; x2
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0; x2

a2
� y2

b2
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(20)

where

Nb �
Z 1

�1

Z 1

�1
ndxdy � !abn0 � const; (21)
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and (n0 is independent of x and y and satisfies �n0 �
(n0 � n0=2.

In Eq. (20), (n0 � 0 means that the beam density is a
constant across the beam profile, (n0 > 0 indicates that
the beam density decreases monotonically from the cen-
ter of profile to its edge and represents a Gaussian-like
beam profile, and (n0 < 0 implies that the beam density
increases monotonically from the center of beam profile
to its edge and represents a hollow beam profile such as
that observed in the heavy ion injector experiment at
LBNL [26].

Using Eq. (20) and the moment definition, we can
obtain the simplified expressions of envelopes X and Y.
They are written in the form of

X2 � a2
�
1�

1

2
g
�

(22)

and

Y2 � b2
�
1�

1

2
g
�
: (23)

In addition, substituting Eqs. (20) and (21) into Eq. (17),
we obtain

Nl � 2

�
�2l�!

4l�l!�2

�
2
�

1

l� 0:5g

�
2l
�
1� 2gl=�l� 3�

l� 1

�
2
; (24)

where

g �
(n0
n0

: (25)

Note in Eq. (24) that N1 � 1=8 � 0:125 is independent of
the factor g.

Figure 2 shows a plot of Nl as a function of l for three
cases corresponding to g � 0, 0:5, and �0:5. In Fig. 2,
N1 � 0:125 for all three cases, as expected. For l � 2,
0 1 2 3 4 5
l

0.00

0.05

0.10

0.15

N
l

g = 0.0
g = 0.5
g = - 0.5

FIG. 2. The dimensionless multiple moment factor Nl versus l
for several densities with g � 0, 0.5, and �0:5.
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however, the value of Nl decreases with increasing l and
depends strongly on the factor g (i.e., on the choice of
the density profile). In addition, for a given value of l > 1,
Nl increases with g; that is, the value of Nl is lower at
g � �0:5 than at g � 0:5. However, this does not neces-
sarily mean that the image-charge effects of a hollow
beam are weaker than those of a solid beam because the
beam envelopes X and Y given by Eqs. (22) and (23)
increase considerably with decreasing g. The physics
of image-charge effects is contained in X and Y.
Obviously, the values of X and Y are higher at g � �0:5
than at g � 0:5, which implies that the image-charge
effects of a hollow beam are stronger than those of a
solid beam.
IV. IMAGE-CHARGE EFFECTS ON RMS
MATCHED BEAMS

In this section, we investigate numerically the image-
charge effects on a matched beam using the analytical
results obtained in Sec. II, and show that for vacuum
phase advance �v < 90�, the higher-order image-charge
effects on the matched beam envelopes are negligibly
small for all beams with arbitrary beam density profiles
(including hollow density profiles) as well as for arbitrary
small apertures (including beams with large aspect
ratios). We pay special attention to a hollow beam ob-
served in a recent heavy ion beam experiment [26].

For present purposes, we assume that the rms emittan-
ces "x and "y are constant, i.e., "x � "y � ", and that the
beam density profile is given in Eq. (20). We also assume
that the alternating-gradient transport system is pre-
sented a step-function lattice (in Fig. 3) defined by [11]
FIG. 3. Plot of the normalized step-function lattice �q�s�
versus normalized propagating distance s=S for + � 0:5.

014201-4
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�q�s� �

8>>>><
>>>>:

��q0; 0 � s=S < 0:25+;
0; 0:25+ � s=S < 0:5�1� 0:5+�;
��q0; 0:5�1� 0:5+� � s=S < 0:5�1� 0:5+�;
0; 0:5�1� 0:5+� � s=S < 0:5�2� 0:5+�;
��q0; 0:5�2� 0:5+� � s=S < 1;

(26)

where �q0 is a constant and + (0<+< 1) is the filling
factor. The strength of the alternating-gradient focusing
field can be measured in terms of the vacuum phase
advance �v. For step-function lattice defined in Eq. (26),
the vacuum phase advance �v satisfies [11]

cos�v � cosh’1�cos’1 � ’2 sin’1�

� ’2 sinh’1�cos’1 � 0:5’2 sin’1�; (27)

where

’1 � 0:5S+
��������
�q0

p
(28)

and

’2 �
1� +
+

’1: (29)

In the numerical analysis of the beam envelope
equations (18) and (19), it is convenient to use the dimen-
sionless parameters and normalized variables defined by
ŝs � s=S, ~aa � X=

������
S"

p
, ~bb � Y=

������
S"

p
, K̂K � KS=", R̂R �

R=
������
S"

p
, and ~��q�s� � S2�q�s�. For example, Fig. 4 shows

the matched beam envelope functions ~aa�s� � ~aa�s� S�
and ~bb�s� � ~bb�s� S� for �v � 800, K̂K � 10, + � 0:5, g �
�0:5 for beam propagation in free space as well as in a
cylindrical conducting pipe with R̂R � 4:0. It is evident in
Fig. 4 that the image-charge effects, including the con-
tributions from all orders, are negligibly small for a
hollow beam whose maximum envelopes are very close
FIG. 4. Plot of the normalized envelope functions ~aa and ~bb
versus normalized propagating distance s=S for �- � 800, K̂K �
10, g � �0:5, + � 0:5, and R̂R � 4:0.
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to the wall of the cylindrical pipe ( ~aamax � ~bbmax � 3:25
and R̂R � 4:0).

We have carried out comprehensive numerical studies
of the image-charge effects on the matched envelope
functions for different beam density profiles, including
beams with large aspect ratios. The numerical results
show that for vacuum phase advance �v < 90�, the total
image-charge effects, including higher-order ones, do not
affect significantly the matched beam envelopes for ar-
bitrary beam density profiles and arbitrarily small aper-
tures (conducting pipes).

V. IMAGE-CHARGE EFFECTS ON SLIGHTLY
MISMATCHED BEAMS AND ENVELOPE

INSTABILITIES

In a real device, it is almost impossible to obtain a
precisely matched beam because there exist some pertur-
bations on the beam propagation. These perturbations
may cause beam envelope instabilities, and the unstable
beam envelopes may result in particle beam losses. A
perturbation on the matched beam results in a mis-
matched beam in the alternating-gradient focusing sys-
tem. The beam envelope instability has already been
investigated in free space [11–15]. However, the image-
charge effects of the cylindrical conducting pipe on the
mismatched beams and the beam envelope instability
have not been studied until the present paper. In this
section, the envelope equations (18) and (19) are solved,
assuming "x � "y � ", for slightly mismatched beams to
find the unstable regions in the parameter space.

In order to obtain slightly mismatched beam enve-
lopes, following the method employed in Ref. [11], the
initial conditions for ~aa�s� and ~bb�s� at s � 0 are chosen to
be

~aa�0� � ~aa0�1� (� (30)

and

~bb�0� � ~bb0�1� (�; (31)

where ~aa0 and ~bb0 are the matched beam envelopes at s �
0, and ( is chosen to be in the region of 0 � j(j � 0:01.
Here, ( represents the perturbations caused by the noise
in the beam. Therefore, the initial perturbation to the
matched beam envelope is assumed to be as small as
1%. In the numerical calculations, the particle beams
are allowed to propagate over 40 periods. Further increas-
ing the number of the propagation periods does not affect
the determination of the unstable regions. In order to
determine the unstable regions for beam envelopes, we
run the envelope code and observe if the beam envelopes
are stable or unstable for given parameters, instead of
calculating the eigenvalues of the transfer matrix.

Figure 5 is a plot of K̂K � KS=" versus �v, showing
the unstable regions of the slightly mismatched beam
envelopes for + � 0:5 and g � 0 for three cases
014201-5



FIG. 7. Oscillations of the normalized beam envelope ~aa �
X=

������
S"

p
for both free-space and cylindrical conducting pipe

cases at K̂K � 10:0, �v � 130�, and A � ~aa0=R̂R � 0:9, corre-
sponding to a point in Fig. 5 where the envelopes are unstable
in both free space and cylindrical pipe.

FIG. 5. Plot of the unstable regions in the dimensionless
parameter space for the beam envelope evolution with + �
0:5 and g � 0 for three cases corresponding to (a) R � 1 (free
space), (b) A � ~aa0=R̂R � 0:75, and (c) A � ~aa0=R̂R � 0:90. Here,
the shaded region is the unstable region for the beam envelope
evolution with image-charge effects and A � ~aa0=R̂R � 0:90.
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corresponding to (a) R � 1 (free space), (b) A �
~aa0=R̂R � 0:75 (with cylindrical conducting pipe), and (c)
A � ~aa0=R̂R � 0:90 (with cylindrical conducting pipe). As
can be seen from Fig. 5, the unstable regions for all three
cases start around �v � 90�. The solid lines indicate the
boundary of the unstable region with image-charge ef-
fects from the cylindrical pipe for A � ~aa0=R̂R � 0:90,
whereas the dashed lines represent the boundary of un-
stable region without image-charge effects in free space.
The unstable region with image-charge effects for A �
~aa0=R̂R � 0:90 is shaded in Fig. 5. Although the lower
boundaries for the three cases almost coincide, there is
an observable difference between their upper boundaries.
FIG. 6. Oscillations of the normalized beam envelope ~aa �
X=

������
S"

p
for both free-space and cylindrical conducting pipe

cases with K̂K � 10:0, �v � 120�, and A � ~aa0=R̂R � 0:9, corre-
sponding to a point in Fig. 5 where the envelopes in free space
are unstable but the envelopes in cylindrical conducting pipe
are stable.
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The unstable region for cylindrical pipe case (i.e., with
image-charge effects) is obviously narrower than that
in the free-space situation (i.e., without image-charge
effects).

Figure 6 shows the oscillations of ~aa � X=
������
S"

p
for both

free-space and cylindrical conducting pipe cases at K̂K �
10:0, �v � 120�, and A � ~aa0=R̂R � 0:9, which corre-
sponds to a point in Fig. 5 where the envelopes in free
space are unstable but the envelopes in cylindrical con-
ducting pipe are stable. Figure 7 shows the oscillations
of ~aa � X=

������
S"

p
for both free-space and cylindrical con-

ducting pipe cases at K̂K � 10:0, �v � 130�, and A �
~aa0=R̂R � 0:9, which corresponds to a point in Fig. 5 where
the envelopes are unstable in both free space and cylin-
drical conducting pipe. Figure 7 indicates that the unsta-
ble growth rate of the beam envelopes in free space is
greater than that in cylindrical pipe. The results for free
space agree with those obtained by Qian and Davidson in
Ref. [11], in which they showed an unstable region for
90� <�v < 170�. It should be mentioned that the unsta-
ble regions are not sensitive to both+ and g for the case of
a cylindrical conducting pipe, which is similar to the fact
that the instability in the free-space case is insensitive to
+ as noted by Qian and Davidson [11].

VI. CONCLUSIONS

In this paper, rms envelope equations were derived and
analyzed for unbunched intense charged-particle beams
in an alternating-gradient focusing field and a cylindrical
metal pipe. All higher-order image-charge effects from
the cylindrical pipe were expressed in terms of so-called
multiple moment factors in the rms beam envelope equa-
tions, and the multiple moment factors were evaluated.
Numerical results showed that for vacuum phase advance
�v < 90�, the image-charge effects on the matched and
slightly mismatched beam envelopes are negligibly
014201-6
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small, at all orders, for all beams with arbitrary beam
density profiles (including hollow density profiles) as well
as for arbitrary small apertures (including beams with
large aspect ratios). However, the main unstable region
for the envelope evolution with image-charge effects,
which occurs for 90� <�v < 270�, depending on the
value of the normalized beam intensity SK=", was found
to be narrower than its counterpart without image-charge
effects.
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