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Analysis of helical quadrupole focusing channel
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A helical quadrupole focusing channel has continuous field symmetry and a stronger focusing power
compared with a conventional FODO focusing channel. The good field symmetry allowed us to
construct an explicit transfer matrix under the paraxial approximation. In the present paper, we report
the paraxial analysis of the helical quadrupole focusing channel and compare its characteristics with
those of a conventional FODO focusing channel.
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where k is 2�=L and L is the period of the magnetic field
(the period of a pole is 2L). Each field component in the

FIG. 1. r dependence of the radial part of both helical and
pure quadrupole fields: Br, B�, Bz, and Bquad.
I. INTRODUCTION

A helical quadrupole focusing channel (HQFC), a
variation of a quadrupole focusing channel, consists of
a long quadrupole field continuously twisted along the
beam axis. Because of the dense population of the focus-
ing element, the focusing power of a HQFC is stronger
compared with a conventional FODO channel. The elec-
trostatic version of a HQFC has been analyzed [1,2] and
tested [3–5]. The magnetic version of a HQFC has been
treated as a series of rotating quadrupole slices [6] and
analyzed using the Hamiltonian form [7]. However,
analysis as beam optics was not achieved by LeCouteur
[7]. Accurate analysis requires treatment of a field distri-
bution that satisfies the Maxwell equation. Nonlinear
effects are also discussed here using numerical simula-
tions. This means that the model of the rotating quadru-
pole slices is just a linear approximation of the helical
quadrupole, and is valid only around the axis; the field
deviates from the quadrupole distribution with increase
of the radius. A valid range of the model and an analytic
solution with a 4D linear transfer matrix for a HQFC
under paraxial approximation are discussed in the follow-
ing sections. Simulation results including nonlinear ef-
fects are also shown in a later section.

II. HELICAL QUADRUPOLE FIELD

While the following discussions can be applied to both
magnetic and electric helical quadrupoles, we will use
notations for magnetic helical quadrupoles. In a free
space, the helical quadrupole field satisfying the
Maxwell equation is expressed by the following form
using a modified Bessel function:

��r; �; z� �
�0

k
I2�kr� sin�2�� kz� (1)

and B � �r�; (2)
1098-4402=03=6(1)=014001(7)$20.00 
cylindrical coordinate system is given as follows:

Br�r; �; z� � ��0I
0
2�kr� sin�2�� kz�; (3)

B��r; �; z� � �2�0
I2�kr�
kr

cos�2�� kz�; (4)

and Bz�r; �; z� � �0I2�kr� cos�2�� kz�: (5)

Figure 1 shows the r dependences of the three components
of the helical quadrupole field together with the Br com-
ponent of the pure quadrupole. Around the center axis,
the helical quadrupole field can be approximated by a
rotating quadrupole with an angle of kz

2 rad. This paraxial
approximation corresponds to the linear approximation.
In order to examine the valid range of the linear approxi-
mation, we obtained the following expansions by Taylor
series:

Br � �
�0

4

�
kr�

�kr�3

6
�O�r5�

�
sin�2�� kz�; (6)
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�
kr�

�kr�3

12
�O�r5�

�
cos�2�� kz�; (7)
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and Bz �
�0

8

�
�kr�2 �

�kr�4

12
�O�r6�

�
cos�2�� kz�:

(8)

For a good linear approximation, the nonlinear terms in
the Br, B�, and Bz components have to be negligible
compared with the pure quadrupole component. If a
10% deviation is allowed for either the Br or the B�
component, the maximum r coordinate rbore has to keep
the following condition:

rbore & 0:12L: (9)

The same limitation for the Bz component is given by

rbore & 0:032L: (10)
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III. TRANSFER MATRIX OF HELICAL
QUADRUPOLE FOCUSING CHANNEL

A linearized transfer matrix of the HQFC is derived in
this chapter. The stability condition for the matrix was
deduced by eigenvalue analysis.

A. Cell matrix

Considering the rotating characteristics of the HQFC’s
magnetic scalar potential, a transfer matrix from location
sa to sb MHQ�sbjsa� can be written as

MHQ�sbjsa� � R
�
ksa
2

�
MHQ�sb � saj0�R

�
�
ksa
2

�
; (11)

where matrix R is a rotation matrix. Using the translation
operator Eq. (11), a transfer matrix of the HQFC
MHQ�soutjsin� can be divided into the products of small
cell matrices:
MHQ�soutjsin� �
YN�1
i�0

MHQ�si�1jsi� �
YN�1
i�0

R
�
ksi
2

�
MHQ�si�1 � sij0�R

�
�
ksi
2

�

� R
�
ksout
2

�"YN�1
i�0

R
�
�
k�si�1 � si�

2

�
MHQ�si�1 � sij0�

#
R
�
�
ksin
2

�
; (12)

where fsiji � 0; . . . ; N; s0 � sin; sN � soutg is a division of the region �sin; sout�. Applying an equal weight division and a
limit operator, we obtain

MHQ�soutjsin� � R
�
ksout
2

�
lim
N!1

"YN�1
i�0

R
�
�
k�si�1 � si�

2

�
MHQ�si�1 � sij0�

#
R
�
�
ksin
2

�

� R
�
ksout
2

�
lim
N!1

"YN�1
i�0

R
�
�
k4 s
2

�
MHQ�4sj0�

#
R
�
�
ksin
2

�
; (13)

where 4s is the length of slice 4s � �sout � sin�=N. Considering that a thin helical quadrupole is equivalent to a thin
quadrupole under linear approximation, the transfer matrix can be rewritten as

MHQ�soutjsin� � R
�
ksout
2

�
lim
N!1

"YN�1
i�0

R
�
�
k4 s
2

�
MQ�4sj0�

#
R
�
�
ksin
2

�
; (14)
where MQ�4sj0� is a transfer matrix of a thin quadrupole.
The matrix Mcore is introduced to denote the infinity
matrix product in Eq. (14) as follows:

Mcore�s� � lim
N!1

"YN�1
i�0

R
�
�

ks
2N

�
MQ

�
s
N
j0

!�
: (15)

The infinite matrix product Mcore is the product of the cell
matrix R��ks=2N�MQ�s=Nj0�. Because the infinitesimal
matrices R��ks=2N� and MQ�s=Nj0� become the identity
matrix with the limitation N ! 1, both �s=N�2 and
higher terms of the infinitesimal matrices are not re-
quired to calculate the infinite matrix product. Thus, the
higher order terms of MQ�s=Nj0� in the eigenvalue prob-
lem of the cell matrix are neglected hereafter. The ex-
plicit representations of R��ks=2N� and MQ�s=Nj0� in
the transversal phase space (x; x0; y; y0) are given by

R
�
�

ks
2N

�
�

0
BBB@

cos ks2N 0 sin ks2N 0
0 cos ks2N 0 sin ks2N

� sin ks2N 0 cos ks2N 0
0 � sin ks2N 0 cos ks2N

1
CCCA; (16)

and MQ

�
s
N
j0

�
�

0
BBB@

1 s
N 0 0

�K s
N 1 0 0

0 0 1 s
N

0 0 K s
N 1

1
CCCA; (17)

where K, q, and p are the field gradient of the quadrupole
field ( � qk�0=4p), the charge, and the momentum of
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the particle, respectively. Because the sign of the parame-
ter K can be chosen without loss of generality, hereafter
we will assume that K is positive.

B. Eigenvalue analysis and stability condition

The eigenvalue and the eigenvectors of the infinity
product in Eq. (15) are derived from those of the cell
matrix. The eigenvalue problem of the cell matrix in-
dexed by s=N is defined as

�̂�i�s=N�x̂xi�s=N� � R
�
�

ks
2N

�
MQ�s=Nj0�x̂xi�s=N�: (18)

Using the eigensolutions of Eq. (18), the eigensolutions
of the infinity product Mcore can be described as follows:

xi � lim
N!1

x̂xi�s=N�; �i � lim
N!1

�̂�i�s=N�
N: (19)

After some mathematical operations, we obtained the
eigensolution of the matrix Mcore as follows:

��1; �2; �3; �4� � �e�i!Hs; e�i!Hs; e�i!Ls; e�i!Ls�; (20)

where !H and !L are
��������������������
k2=4� K

p
and

��������������������
k2=4� K

p
, re-

spectively. The set of the eigenvectors is
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X � �x1;x2;x3;x4�

�

0
BBB@
i 2!H

k
2K
k
1
0

�i 2!H
k

2K
k
1
0

k
2K
0

�i !L
K

1

k
2K
0
i !L
K
1

1
CCCA; (21)

where the vector set X forms the basis of the eigenspace.
When both !H and !L are real, the solutions are
periodic and the corresponding motion of a particle is
stabilized. Thus the stability condition is given by

0 � K �
k2

4
�

�2

L2
: (22)

The transfer matrix MHQ can be constructed by �i and X
as follows:

MHQ�soutjsin� � R
�
ksout
2

�
Mcore�sout � sin�R

�
�
ksin
2

�
;

Mcore�s� � X

0
BBB@
�1

�2
0

0
�3

�4

1
CCCAX�1: (23)

Explicit representation of Mcore�s� is given by
Mcore�s� �

0
BBBBBB@

Cp
L
g� �gpSp �

Sm
gm
� Sm

gm
L
g� �Cm � Cp�

� �
L

g
gp
Sp Cp 0

Sp
gp

�
Sp
gp

L
g� �Cp � Cm� Cm

L
g� �

Sp
gp
� gmSm�

0 � Sm
gm

�
L

g
gm
Sm Cm

1
CCCCCCA;

Cp � cosgp �ss; Cm � cosgm �ss; Sp � singp �ss; Sm � singm �ss; �ss �
�s
L
; gp �

������������
1� g

p
;

gm �
������������
1� g

p
and g � K

�
L
�

�
2
: (24)
IV. BEAM SIZE IN THE HELICAL QUADRUPOLE
FOCUSING CHANNEL

A. Matched beam boundary
By definition, the shape of the phase space boundary of

a matched beam is conserved after the transfer of one
period of a HQFC. Because of the x-y coupling, the
analysis has to be performed in a 4D phase space. In order
to build such a boundary, we analyzed the oscillations in
the eigenvector space.

Under the stability condition (22), except for the criti-
cal conditions K � k2=4 and K � 0, the whole eigenval-
ues and eigenvectors were not degenerated. Thus the
eigenvalues and the eigenvectors formed two complex
conjugate pairs:

�1 � �2 � e�i!Hs; x1 � x2 ; (25)

and �3 � �4 � e�i!Ls; x3 � x4 : (26)
where x (overbar) denotes a complex conjugate. In order
to represent a physical phase space vector, we used real
vectors using linear combination of eigenvectors in each
subspace as follows:

xH�AH; �H� � AH�e�i�Hx1 � e�i�Hx1�; (27)

and xL�AL; �L� � AL�e�i�Lx3 � e�i�Lx3�; (28)

where AH; AL and �H; �L are the amplitudes and the
phases in the subeigenspaces, respectively. Because either
set of two parameters (AH; �H) or (AL; �L) covers each
whole real subspace, any real vector can be represented by
a linear combination of the real vectors: xH�AH; �H� and
xL�AL; �L�. These vectors are transferred by the matrix
Mcore�L� along one-period length L as follows:

Mcore�L�xH�AH; �H� � xH�AH; �H �!HL�; (29)

and Mcore�L�xL�AL; �L� � xL�AL; �L �!LL�: (30)
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In other words, a transfer of one period corresponds
to a rotation in the 2D subphase space. In a special
case, a linear combination of xH and xL whose ampli-
tudes AH and AL are constant along the beam axis
paints a hyperplane with moving phases �H and �L.
According to Eqs. (29) and (30), this particular hyper-
plane does not change its shape after the transfer of one
period.
014001-4
Because we are considering a 4D phase space, a general
beam boundary is described as a hyperplane of the 4D
phase space and thus three parameters are required to
describe a surface. Selection of the oscillation phases �H
and �L as the parameters is reasonable. As the last pa-
rameter, we use an amplitude coupling between two
frequency modes that is expressed by trigonometric func-
tions. As a result, one of the matched beam boundaries
can be described by following form:
xbeam�s� �
�
R
�
ks
2

�
�cos�0xH�AH;!Hs� �H� � sin�0xL�AL;!Ls� �L��j�H; �L 2 �0; 2��; �0 2

�
0;
�
2

��
; (31)
where �H, �L, and �0 are the indices of the beam
boundary.

B. Emittance and $ matrix
One of the simplest hyperplanes of a matched beam

boundary is described by a 4� 4 $ matrix [8] in the
following quadratic form:

� x�s� x0�s� y�s� y0�s� ��$�s���1

0
BBBB@
x�s�

x0�s�

y�s�

y0�s�

1
CCCCA� 1;

�$�s��T � $�s�;

(32)

where the superior T denotes the transpose operator. The
$ matrix that corresponds to the boundary Eq. (31) can be
obtained by coordinate transformation from the real
phase space to the eigenspace. Considering the relation-
ship between the real phase space and the eigenspace of
the matrix Mcore�s� in Eq. (23), the coordinate conversion
at the point s can be described as

~vv�s� � X�1R
�
�
ks
2

�
v�s�; (33)

where v�s� and ~vv�s� denote a real phase space vector and
an eigenspace vector, respectively. Replacing the qua-
dratic form in Eq. (32) with the Hermitian form, the
definition of the $ matrix is naturally extended to a
complex ~$$ matrix, which can describe the eigenspace.
From Eqs. (32) and (33), ~$$�s� is derived as

�~$$�s���1 � X�R
�
ks
2

�
�

�$�s���1R
�
ks
2

�
X , $�s�

� R
�
ks
2

�
X ~$$�s�X�R

�
�
ks
2

�
; (34)

where � is the Hermitian operator. Thus we can obtain the
$ matrix from the Hermitian form of the hyperplane in
the eigenspace. Because of the trigonometric functions in
Eq. (31), we can easily write down the Hermitian form as
follows:

~vv�s� �

0
BBBBB@
AHe

�i��H�!Hs� cos�0
AHe�i��H�!Hs� cos�0
ALe�i��L�!Ls� sin�0
ALe

�i��L�!Ls� sin�0

1
CCCCCA;

�~vv�s���

0
BBBBBB@

1
2A2H

1
2A2H

0

0
1
2A2L

1
2A2L

1
CCCCCCA~vv�s� � 1: (35)

Then the explicit form of $�s� can be obtained as
$�s� � R
�
ks
2

�
X

0
BBBB@
2A2H 0

2A2H
2A2L

0 2A2L

1
CCCCAX�R

�
�
ks
2

�

� R
�
ks
2

�
0
BBBBBB@

4 k2�4K
k2 A2H � k2

K2 A2L 0 0 2 k
K A

2
L

0 16 K2

k2
A2H 8 K

k A
2
H 0

0 8 K
k A

2
H 4A2H � k2�4K

K2 A2L 0

2 k
K A

2
L 0 0 4A2L

1
CCCCCCAR

�
�
ks
2

�
: (36)

From the relationship among the Twiss parameters, the emittance and 2� 2 $ submatrices, the following relationships
were derived:

$�s� �
�
$xx�s� $xy�s�
$yx�s� $yy�s�

�
; (37)
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E �
����������������
det$�s�

p
; "x�s� �

��������������������
det$xx�s�

p
;

"y�s� �
��������������������
det$yy�s�

q
; (38)

where E, "x, and "y are 4D emittance, x-x0 subphase space
emittance, and y-y0 subphase space emittance, respec-
tively. The 4D emittance E is a constant, because of
Liouville’s theorem. In a decoupled case, "x�s� and "y�s�
become constants and 4D emittance E is reduced to "x"y.

For a comparison with FODO focusing system, we
considered the symmetric emittance for x and y direc-
tions, and thus the ratio AL=AH was deduced from the
condition "x�s� � "y�s�,

AL

AH
�
2K
k

�
k2 � 4K

k2 � 4K

�
1=4
: (39)

Fortunately the dependence of s does not appear in this
constraint condition.

In order to compare the beam size with the conven-
tional FODO lattice, we introduced the normalized enve-
lope functions '̂' and (̂(. These functions were defined so
as to become the ordinary Twiss parameters when the
phase spaces x and y were decoupled. By calculating the
envelope of Eq. (31) with the condition Eq. (39), the
normalized envelope functions can be obtained as fol-
lows:

'̂'x�s� �
�xenv�s��

2���
E

p

� L
�
G

0
@1� G

�2 cos2ks2��������������
1� G

�2

q �
1� G

�2 sin2ks2��������������
1� G

�2

q
1
A; (40)

(̂(x�s� �
�x0env�s��

2���
E

p �
1

L
G
�

0
@ cos2ks2��������������

1� G
�2

q �
sin2ks2��������������
1� G

�2

q
1
A; (41)

'̂'y�s� � '̂'x

�
s�

L
2

�
and (̂(y�s� � (̂(x

�
s�

L
2

�
; (42)

where G is the dimensionless parameter KL2.
And thus, the index of the maximum beam size  � �

'̂'max=L can be described as

 ��G� �
�
G

0
@

���������������
1�

G

�2

s
�

1��������������
1� G

�2

q
1
A: (43)

The linear approximation condition Eqs. (9) and (10) can
be rewritten by  � as follows:

Eq: �9� !

���
E

p

L
&
0:014
 �

; (44)
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Eq: �10� !

���
E

p

L
&
0:0010
 �

: (45)

V. COMPARISON WITH FODO

A. Linear approximation

In order to compare a HQFC with the FODO lattice that
has four equal length cells (each cell length is L

4 ), the  �

of the FODO lattice has to be considered. For a sym-
metrical FODO, beta functions of x-x0 and y-y0 planes are
described by the same functions with a phase displace-
ment. Using the one-period transfer matrix MFODO start-
ing from the center of focusing cell, the maximum value
of the beta function in x-x0 plane'xmax can be obtained as

 � �
'xmax

L
�

jMFODO xx0 j

L
����������������������������
1� �trMFODO

2 �2
q : (46)

The focusing power of a HQFC is twice as large as that of
a FODO lattice with same K, because a HQFC can be
considered as a superposition of a conventional FODO
and a skewed FODO with longitudinal displacement. We
did not consider a FFDD lattice (a variation of FODO
lattice replacing its drift spaces with the focusing and
defocusing elements) having a magnet population the
same as a HQFC, because the  � value does not have a
significant improvement from a FODO lattice. Figure 2
shows the G dependences of the normalized maximum
beam size

�������
 �

p
for HQFC and FODO. The beam size

curve of a HQFC looks like a half-scaled curve of a
FODO. It is explained by the fact that a HQFC is complex
of a FODO cell and a skewed FODO cell, but the mini-
mum beam size

�������������
 �min

p
is different between two struc-

tures. The minimum beam size of a HQFC is 5% smaller
than FODO’s minimum beam size. The difference of the
minimum beam size between a HQFC and a FODO is
small, but the scale difference of G parameter makes a
big advantage to fabricate a transport channel for higher
momentum particles by HQFC structure with realistic
constraint.
014001-5
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Considering that the maximum magnetic flux density
in iron limits the strength of a quadrupole magnet, the
magnetic flux density on the pole surface Bpole is a useful
index for comparison of magnets. Under the linear ap-
proximation, the relationship between the emittance " ����
E

p
and the maximum magnetic flux density on the pole

surface Bpole can be written as

Bpole �
rbore
rbeam

dBy

dx
xmax �

rbore
rbeam

KB+
�������������
 �L"

p

�
rbore
rbeam

G

L
3
2

B+
����������
 �"

p
; (47)

where B+ is the momentum of the particle. rbeam=rbore is a
relative margin of a beam channel, which is usually less
than 1 because of the vacuum beam pipe. Comparing a
HQFC and a FODO lattice that have the same relative
margins and acceptances, the Bpole of a HQFC is only 30%
of that of a FODO. This significantly decreases the ex-
citation loss.

B. Nonlinear case

Beyond the linear region, the effect of nonlinear terms
must be included. In order to evaluate the nonlinear
effect, we tracked particles numerically in the nonlinear
magnetic field described by Eqs. (3)–(5).

Figure 3 shows the beam size including the nonlinear
effect that is normalized by the initial emittance around
the condition Eqs. (44) and (45). These normalized beam
sizes were obtained from the particle tracking simula-
tions whose initial distribution was the paraxial approxi-
mated matched beam ellipse. At some points in Fig. 3, the
normalized beam sizes blow up with the increase of the
initial beam size. This instability, which causes such a
blowing up, comes from the effect of the nonlinear field at
the perimeter. This instability appears from the low mo-
mentum region (high G region), because of excessive
focusing power. Because the particles beyond the insta-
bility region were lost from the channel bore, the normal-
ized beam sizes are not shown.

In order to examine the relationship between the stable
region width and the linear approximation condition, the
TABLE I. Example of

Muon condition Energy [M
Momentum [M

B+ [T m

Channel parameter Field ty
Field period

Field parameter at center momentum G � K
Field gradien

Acceptance at pcenter "center [m

Minimum acceptance at edge of momentum spread "min [m
"=L [ra
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parameter  �

���
E

p
=L at the higher edge of the stable G

region is compared with Eqs. (44) and (45). Considering
that the initial emittance "0 equals to

���
E

p
of Eqs. (44) and

(45), the critical parameters  �

���
E

p
=L of the initial emit-

tances "0=L� 1:7� 10�2, 8:3� 10�3, and 1:6�
10�3 rad are 2:7� 10�2, 1:2� 10�2, and 2:7�
10�3 rad, respectively. The parameters  �

���
E

p
=L obtained

from Fig. 3 are not constant and the width of the parame-
ter  � related to a change of 10 times of the parameters
 �

���
E

p
=L is about �10%. Therefore, the width of the

stable region is not directly determined by the relative
strength of the nonlinear field. We have to look up the
stable region chart as in Fig. 3 in designing a HQFC.

VI. DISCUSSION AND CONCLUSION

Considering the above results and the existence of the
x-y coupling, a HQFC is suitable for transportation of
high momentum secondary particles by a small aperture
channel. The beam transport channels with 100 mm ra-
dius for the 300 MeVand 1 GeV (B+� 1:3; 3:7 Tm) muon
beams with �50% momentum spread can be considered
as one example. Table I shows the parameters derived
from an assumption of the matched beam and results
shown in Fig. 3, where the magnetic flux density at the
pole tip is limited up to 1.4 T. The nonlinear effects of the
magnetic field of a HQFC are taken into account in Table I.
HQFC and FODO.

eV] 300 1000
eV=c2] 390 1109
] 1.3 3.7

pe FODO HQFC FODO HQFC
L [m] 1.02 0.724 1.71 1.18

L2 11.1 5.00 11.1 5.00
t [T=m] 14.0 12.4 14.0 13.4

rad] 6:16� 10�3 8:29� 10�3 3:65� 10�3 5:10� 10�3

rad] 5:16� 10�3 6:14� 10�3 3:06� 10�3 3:80� 10�3

d] 5:09� 10�3 8:49� 10�3 1:78� 10�3 3:21� 10�3
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The bore radius and the maximum magnetic field as-
sumed in the example can be achieved by conventional
room temperature magnet technology. While a helical
quadrupole with an electromagnet may have difficulties
in the fabrication of helical poles and the coil assembly,
one with permanent magnets should be feasible.

As the result of nonlinear effect of Bessel function
term, the field gradient of HQFC is smaller than
FODO’s. But, a HQFC has about 20% larger acceptances
than a FODO channel in two cases. For a given accept-
ance, a smaller bore radius is sufficient for a HQFC.
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