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Two different parameters for the quantitative description of beam halo are discussed. Both are based
on moments of the particle distribution and represent a convenient and model-independent method for
quantifying the magnitude of beam halo observed in either spatial or phase-space projections. One
parameter is a measure of spatial profile of the beam and has been defined by Wangler and Crandall
previously. The current authors defined a new parameter using kinematic invariants to quantify halo
formation in 2D phase space. Here we expand the development and present detailed numerical results.
Although the spatial-profile parameter and the phase-space halo parameter both reduce to the same
value when the distribution has the elliptical symmetry, in general these parameters are not equal. Halo
in the 1D spatial profiles is relatively easily measured, but is variable as the beam distribution evolves
and can hide as it rotates in phase space. The 2D phase-space halo is more difficult to measure, but it
varies more smoothly as the halo evolves. It provides a more reliable characterization of the halo as an
intrinsic property of the beam.
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that the parameter was indeed a good indicator of the
visually observable halo. However, because of the beam

ence [10]; here we expand the development and present
detailed numerical simulation results.
I. INTRODUCTION

The existence of beam halo is an important character-
istic of high-intensity beams [1–5]. Although by visual
inspection of measured or simulated particle distribu-
tions, we can intuitively identify halo, it is important to
obtain a more quantitative measure of this phenomenon.
We have been investigating parameters based on moments
of the particle distribution that provide a quantitative
description of halo. We are looking for a parameter
that describes halo in a similar vein with the most im-
portant figure of merit of beam quality, the rms emit-
tance. The parameter should reflect the identifying
characteristics of halo and be useful for both theory and
experiment. Our current conclusions and findings are
presented herein.

We find that halo, like rms emittance, is an intrinsic
property of the beam by introducing the halo parameter
H that identifies the amount of halo in a particular beam
distribution. The halo parameter contains additional in-
formation as to the beam state, since we find that it is
possible to have emittance growth without halo growth
(however, halo growth always implies emittance growth).
As with emittance, the halo parameter is invariant under
linear forces. Thus, halo growth is necessarily the result
of nonlinearities.

Wangler and Crandall proposed a quantity for charac-
terization of halo in a 1D spatial projection, called
the beam profile parameter, constructed from the second
and fourth spatial moments of the beam [6]. It is impor-
tant to have a definition of halo in the 1D spatial projec-
tion for which experimental measurements are relatively
easy to obtain. Through simulation studies, they found
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distribution’s phase-space rotations, the observed halo in
1D oscillates, so that halo at different locations along the
beam line is observable in differing degrees. For example,
at some locations the halo may project strongly along the
spatial coordinate and only weakly along the momentum
coordinate, while at others the reverse is true, and the halo
can be hidden in the spatial projection. In most circum-
stances, the beam halo from simulation appears as an
irreversible effect, when observed in the 2D phase-space
distributions. Therefore, it is also important to search for
another definition of halo in the 2D phase-space distri-
butions. In this case the halo is not expected to change as
the beam distribution rotates in phase space, and the halo
parameter in 2D phase space represents a measure of the
halo as an intrinsic property of the beam.

Our approach here is to extend the 1D work to obtain a
halo parameter based on moments of the particle distri-
bution suitable for description of the beam halo in 2D
phase space. In so doing, one is led naturally to the mo-
ment invariants presented by Lysenko [7,8] and Dragt [9].
Specifically, these are polynomial functions of the dis-
tribution moments, which are invariant whenever all the
forces on the beam are linear (including self-forces).
These quantities are known as kinematic invariants and
are the consequence of the linear forces and symplectic
structure imposed by Hamilton’s equations. Any quantity
built from the kinematic invariants would vary only in
situations where nonlinear forces were present, including
nonlinear self-forces. For example, the rms emittance is
known to have these properties and is indeed a kinematic
invariant. We first introduced this idea of halo quantifica-
tion based on kinematic invariants at the PAC2001 confer-
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II. HALO PARAMETERS

There is no clearly defined separation between the halo
and the main core of the beam. Consequently, there has
been some difficulty identifying a suitable quantitative
measure of the halo content of a beam in a model-
independent way. We consider two parameters for quanti-
fying the halo, based on moments of the particle
distribution. Wangler and Crandall originally defined the
spatial profile parameter h for the 1D spatial projections
[6]. We introduce the phase-space halo parameter H for
the 2D phase-space distributions. The halo parameter
generalizes the spatial-profile parameter using kinematic
invariants of the particle distribution in phase space. We
shall also consider separately the different cases of con-
tinuous beams and bunched beams. Different definitions
of h and H are provided for each case.

A. The spatial-profile parameter for continuous beams

A general characteristic of beam halo is the increased
population of the outer part of the beam. The spatial-
profile parameter describes this feature in coordinate
space. Let the coordinates of the ith phase plane be
denoted (qi; pi), where qi and pi are the spatial and
momentum coordinates, respectively. The spatial-profile
parameter, denoted hi, is then defined for continuous
beams as [6]

hi �
hq4i i

hq2i i
2 � 2; (1)

where h�i is the moment operator or average over the
particle distribution. Note that hi involves only spatial
moments of the distribution. The constant in the above
definition is chosen to normalize the parameter so that it
has the value 0 for a Kapchinskij-Vladmirskij (KV) dis-
tribution for which there is no halo. For a Gaussian dis-
tribution hi � 1. Multiparticle simulations show that
significant halo presence in a 1D projection corresponds
to hi > 1 (see Ref. [6]).

Notice that the definition of h is essentially the kurtosis
of the beam where we have used the value 2 instead of 3 in
the standard definition. Kurtosis is typically used to
compare the ‘‘peakedness’’ of a distribution to that of a
Gaussian. Flatter distributions have negative kurtosis
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while sharper ones have positive kurtosis. By using the
value 2 we are essentially normalizing to a uniform
distribution rather than a Gaussian; this seems more
appropriate for beam dynamics.

B. The phase-space halo parameter for continuous
beams

To describe presence of halo in 2D phase space we
introduce the beam halo parameter H. If the motion is
uncoupled between phase planes, the following quantities
are kinematic invariants of motion [9]:

Ii2 � hq2i ihp
2
i i � hqipii2;

Ii4 � hq4i ihp
4
i i � 3hq2i p

2
i i

2 � 4hqip3i ihq
3
i pii:

(2)

Then we define the halo intensity parameter,Hi, in the ith
phase plane, as

Hi �

�������
3Ii4

q
2Ii2

� 2

�

���������������������������������������������������������������������������������
3hq4i ihp

4
i i � 9hq2i p

2
i i

2 � 12hqip
3
i ihq

3
i pii

q
2hq2i ihp

2
i i � 2hqipii

2 � 2: (3)

The constants are chosen for normalization consistent
with that used for the spatial-profile parameter. Thus, in
situations of elliptical symmetry in phase space, Hi will
have a value 0 for the KVdistribution and a value 1 for the
Gaussian distribution. Multiparticle simulations show
that significant halo in the 2D phase-space projection
corresponds to Hi > 1.

C. Comparison of the parameters for beams with
elliptical symmetry

For idealized beam distributions with elliptically sym-
metric isodensity contours in 2D phase space the pro-
jected density function ��q; p	 has the form

��q; p	 � f�q2 � 2�qp� �p2	; (4)

where�,�, and  are the Courant-Snyder parameters and
f��	 is a real, positive function. The moments of this
distribution may be computed analytically in terms of
the moments of f (see the Appendix). For example, we
have
hq2i �
1

2
�
F1

F0
; hp2i �

1

2

F1

F0
; hqpi � �

1

2
�
F1

F0
; hqp3i � �

3

8
�
F2

F0
; hq4i �

3

8
�2 F2

F0
;

hp4i �
3

8
2 F2

F0
; hq2p2i �

�
3�2

8
�

1

8

�
F2

F0
; hq3pi � �

3

8
��

F2

F0
; (5)

where Z Z

F0 �

1

0
f�s	ds; F1 �

1

0
sf�s	ds;

F2 �
Z 1

0
s2f�s	ds; (6)

or, more generally,
Fn �
Z 1

0
snf�s	ds: (7)

Using these relations, we find the following relationship
for the profile and halo parameters:
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TABLE I. Halo parameter values for some common analytic
distributions.

H; h
Distribution Continuous Bunched

Uniform 0 0
Parabolic 1=4 4=21
Gaussian 1 6=7
Hollow 1=4 75=112
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h � H �
3

2

�F2=F0	

�F1=F0	2
� 2: (8)

Thus, for elliptically symmetric distributions satisfying
Eq. (4), the profile and halo parameters are analytically
equivalent. The halo parameter can consequently be con-
sidered a generalization of the kurtosis of a particle beam.
However, more general beam distributions from multi-
particle simulations do not have elliptically symmetric
isodensity contours, especially in the outer regions where
the halo is concentrated, and Eq. (8) is not satisfied.

For an idealized beam with elliptical symmetry, Eq. (8)
has another interesting interpretation. Let " be the emit-
tance associated with any elliptical isodensity contour.
Then we have the following relation:

" � q2 � 2�qp� �p2; (9)

so that �" is the area of the phase-space ellipse identified
by the above equation. The first two moments of the
contour emittance are given by


"" � h"i �

R
1
0 "f�"	d"R
1
0 f�"	d"

; ~""2 � h"2i �

R
1
0 "

2f�"	d"R
1
0 f�"	d"

:

(10)

Therefore, the profile and halo parameters appear as

H � h �
3

2

h"2i

h"i2
� 2 �

3

2

~""2


""2
� 2;

�
3

2

�
�2
"


""2
�

1

3

�
; (11)

where 
"" and �2
" � h�"� 
""	2i � ~""2 � 
""2 are the average

value and variance of ", respectively. Thus for elliptical
symmetry, both parameters are linearly proportional
to the ratio of the standard deviation of the contour
emittance to the squared average value of the contour
emittance.

D. Six-dimensional phase space: bunched beams

Wangler and Crandall provided a different normaliza-
tion constant for bunched beams. The constant 15=7 was
chosen so that the profile parameter hi would be zero for
a uniform density bunch in x; y; z space. The resulting
spatial-profile parameter definition is

hi �
hq4i i

hq2i i
2 �

15

7
: (12)

Likewise, for bunched beams we define the phase-space
halo parameter Hi as

Hi �

���
3

p

2

����
Ii4

q
Ii2

�
15

7
: (13)

Note that the bunched-beam constant 15=7 � 2:143 is
close to the continuous-beam value of 2.
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Next, we investigate the halo parameters for bunched
beams with ellipsoidally symmetric isodensity contours.
For ellipsoidal symmetry in six-dimensional phase space,
the distribution � has the form

��q1; p1; q2; p2; q3; p3	 � qf�zTQz	; (14)

where

z � �q1p1q2p2q3p3	
T; (15)

f is a positive real function, and Q is some symmetric,
positive definite, real 6 6 matrix (generalized Courant-
Snyder parameters). For distributions described by
Eq. (14), it is again possible to compute analytically the
values of the profile and halo parameters, Hi and hi. We
first compute the invariants Ii2 and Ii4. They depend upon
the determinant of Q, having the values

Ii2 �
1

36

F2
3

F2
2

1

detQ
; Ii4 �

1

192

F2
4

F2
2

1

�detQ	2
: (16)

However, the halo and profile parameters depend only
upon the distribution function f

Hi � hi �
9

4

F4 F2
F2
3

�
15

7
: (17)

For the case of ellipsoidal symmetry in 6D space, we find
that both parameters are again equal. Generally, beam
distributions from multiparticle simulations do not have
ellipsoidally symmetric isodensity contours, and Eq. (17)
is not satisfied.

III. NUMERICAL VALUES

To illustrate typical behavior of the profile and halo
parameters we present some numerical values for particu-
lar beam distributions. We include both analytic distribu-
tions commonly used in theoretical developments and
distributions obtained from numerical simulation.

A. Parameter values for common phase-space
distributions

We tabulate the values of the profile and halo parame-
ters for several standard analytic distributions generally
considered not to have significant halo. Table I lists the
124202-3



TABLE II. Profile parameter values for 1D distributions.

Distribution f�x	 h

Triangular f�x	 �
�
�1=�	�1� x=�	 for x 2 �0;���
�1=�	�1� x=�	 for x 2 ���; 0�

2=5

Cusp f�x	 � 1
2� e

�jxj=� 4

Gaussian f�x	 � 1�����
2�

p
�
e���x2	=�2�2	� 1

‘‘Hyper-Gaussian’’ f�x	 �
��
2

p

��1=4	� e
���x4	=�4�4	�

�2�1=4	
4�2�3=4	 � 2 � 0:188

Parabolic f�x	 �
�

3
4L �1� �x=L	2� for x 2 ��L;�L�
0 otherwise

1=7

Uniform f�x	 �
�
1=L for x 2 ��L;�L�
0 otherwise

�1=5

Hollow f�x	 � 1�����
2�

p
�3 x

2e���x2	=�2�2	�
�1=3

FIG. 1. rms envelopes and halo parameters for the matched
case.
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values of h andH both for the continuous case and for the
bunched-beam case. In the continuous beam case, we
assume the uniform beam has 2D projections that are
uniform in any direction. For the bunched-beam case, the
uniform beam is assumed to have uniform 3D projections
in any direction. The functional form of each distribution
is given in Table II. Notice that all values lie between 0
and 1, unlike beams from multiparticle simulations that
show strong halo.

B. Profile parameter values for 1D projections

Table II shows the values of the profile parameter for
one-dimensional distributions, that is, spatial density dis-
tributions. Distributions of this type are obtained from
experimental measurements. In the values below, Eq. (1),
the continuous-beam definition for h, was used. Note that
it is possible to obtain negative values for h in the one-
dimensional case.

C. Numerical simulations

To illustrate the behavior of the halo parameters h and
H for distributions in multiparticle simulations, we con-
sider simulations of the halo experiment at the Los
Alamos Low-Energy Demonstration Accelerator. The
Halo Experiment is designed to produce halo by mis-
matching the beam into a 52-quadrupole periodic
FODO lattice. The beam is initially bunched; however,
since there is no longitudinal focusing, it debunches as it
propagates down the channel. Throughout the examples,
we use the profile parameter hi defined by Eq. (1), and the
halo parameter Hi defined by Eq. (3).

We consider three cases: (i) the matched case, (ii) a
mismatch that excites the antisymmetric (quadrupole)
mode, and (iii) a mismatch that excites the symmetric
envelope mode. These cases are shown in Figs. 1–3,
respectively. We see that the phase-space halo parameters
Hx,Hy and the spatial-profile parameters hx, hy are ap-
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proximately constant at values less than 1 for the matched
beam. This is consistent with the lack of significant halo
in the x-x0 phase-space plot and the x profile plot shown in
Fig. 4. Similar results are obtained in y-y0 and y (not
shown). When the beam is mismatched, the H parameters
smoothly increase while the h parameters are oscillatory
about an increasing mean. Both the h and H halo
parameters assume values larger than 1, indicating strong
halo formation; this result is consistent with the x-x0

phase-space plots and x-profile plots, shown for the sym-
metric mismatched case in Fig. 5.
124202-4
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FIG. 4. (Color) Matched beam.

FIG. 2. rms envelopes and halo parameters for the quadru-
pole mismatch.

FIG. 3. rms envelopes and halo parameters for the symmetric
mismatch.
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Unlike the idealized case of elliptical symmetry where
h � H, the mismatched beams in Figs. 2 and 3 show that
the parameters can be quite different for more general
distributions seen in multiparticle simulation. As men-
tioned above, it has been observed that the halo can
‘‘hide,’’ so that it is not observed in some spatial projec-
tions. The variations of the profile parameters h are
reflecting this fact, oscillating about the smoothly vary-
ing H parameters.
IV. CONCLUSION

The halo parameters defined here represent a conven-
ient and model-independent method for quantifying the
magnitude of beam halo observed in phase space and
spatial projections. The spatial-profile parameter h is, in
essence, the kurtosis of the beam distribution normalized
to the uniform distribution rather than the Gaussian. The
phase-space halo parameter H can be interpreted as a
generalization of h into 2D phase space such that it is
invariant under linear forces. Both parameters are useful.
124202-5
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FIG. 5. (Color) Symmetric mismatch.
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Although the profile parameter and halo parameter both
reduce to the same value when the distribution has the
elliptically symmetric form of Eq. (4), in general these
parameters are not equal. As we saw in the simulation
examples, halo observed in the 1D spatial profiles is
relatively easily measured, but is oscillatory as the
beam distribution evolves, and can hide as the distribu-
tion rotates in phase space. This behavior produces oscil-
lations in the h parameter. The 2D phase-space halo is
more difficult to measure, but the H parameter varies
more smoothly as the halo evolves. It provides a more
reliable characterization of the halo as an intrinsic prop-
erty of the beam.
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APPENDIX

The moments of a distribution described by Eq. (4) may
be computed using a technique similar to that of Dragt
et al. [9]. Specifically, let

hqmpni �
1

N

Z 1

0
qmpnf�zTQz�d2z; (A1)

where

N �
Z 1

0
f�zTQz�d2z; Q �

�
 �

� �

�
; z �

�
q

p

�
;

d2z � dqdp: (A2)

The matrix Q is symmetric and positive definite. Thus,
there is an R 2 SO�2	 which diagonalizes Q, say

� � RTQR �

�
%1 0
0 %2

�
; (A3)

where %1; %2 are the eigenvalues of Q. Note that
det� � %1%2 � detQ � �� �2 � 1; (A4)

where the last relation is a property of the Courant-Snyder
parameters. With the substitution & � RTz and the fact
that detR � 1, we have

hqmpni �
1

N

Z 1

0
�R11&1 � R12&2	

m�R21&1 � R22&2	
n

 f�&T�&�d2&: (A5)

Using the additional substitution

&1 �
r������
%1

p cos(; &2 �
r������
%2

p sin(;

d2& �
rdrd(�����������
%1%2

p � rdrd(; (A6)

we obtain the formula

hqmpni �
Fm�n

2

F0

1

2�

Z 1

0

�
R11������
%1

p cos(�
R12������
%2

p sin(
�
m



�
R21������
%1

p cos(�
R22������
%2

p sin(
�
n
d(; (A7)

where

Fk �
Z 1

0
skf�s	ds: (A8)

The above formula can be used to compute all the
moments and, thus, the kinematic invariants, in terms
of the Fk.
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