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Longitudinal space charge effect in slowly converging or diverging relativistic beams
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Beginning with the Green function for a rod beam in a round beam pipe we derive the space charge
induced average energy change and rms spread for relativistic beams that are slowly converging or
diverging in round beam pipes, a result that tends to be much larger than the 1=�2 dependence for
parallel beams. Our results allow for beams with longitudinal-transverse correlation, and for slow
variations in beam pipe radius. We calculate, in addition, the space charge component of energy change
and spread in a chicane compressor. This component indicates source regions of coherent synchrotron
radiation (CSR) energy change in systems with compression. We find that this component, at the end of
example compressors, approximates the total induced voltage obtained by more detailed CSR calcu-
lations. Our results depend on beam pipe radius (although only weakly) whereas CSR calculations do
not normally include this parameter, suggesting that results of such calculations, for systems with beam
pipes, are not complete.
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small, this component will approximate the total longi-
tudinal effect. In the case of a beam in a chicane this

symmetric step from a beam pipe of radius a to one of
radius b, with a gentle tapered transition between the two.
I. INTRODUCTION

The Sub-Picosecond Photon Source (SPPS) is a new
modification of the Stanford Linear Accelerator that
promises to generate high peak current, femtosecond
electron bunches that will then pass through an undulator
to produce synchrotron light [1]. At the heart of the
project is a magnetic chicane that compresses an rf
gun generated bunch by more than a factor of 20. To
achieve the performance goals of the SPPS it is important
that coherent synchrotron radiation (CSR) generated in
the chicane not increase the beam energy spread and
through it the emittance of the beam by a significant
amount. This requirement places a tight tolerance ( � 5�
10�5) on the increase in energy spread allowed in the
chicane.

CSR in compressors is recently a very active research
topic (see, e.g., Ref. [2] and references contained therein).
The CSR force has both longitudinal and transverse
components, with the longitudinal component —the one
that we will be interested in comparing with—thought to
typically dominate in compressors [3]. One component of
the longitudinal CSR force, which we here call the ‘‘space
charge fields,’’ generates an energy change in the beam
equal to the negative of the potential difference between
an initial and a final state of the beam; it is the component
termed the ‘‘compression work’’ by Dohlus when applied
to compressors [4]. (Note that another part of the fields,
also called space charge, that depends on 1=�2, with � the
Lorentz energy factor, and that is small for relativistic
beams will not be considered here.) In this report we will
focus on the space charge component, though, in general,
one needs to consider all components to understand the
longitudinal fields, for example, in a chicane. In the case
of a converging beam in a drift tube, where the angles are
1098-4402=02=5(10)=104401(11)$20.00 
component is only a part, though—as we shall see —an
important part, of the total effect.

Chicane compressors are beam lines with three or four
bends separated by drifts. In the drift region between the
last two bends the beam converges in the horizontal plane,
with a large difference between the initial and final beam
size values. At the same time the longitudinal beam
distribution is unchanging, with the bunch length near
its minimum, compressed value. We expect the potential
change in this region to be a significant part of the total
change within the chicane. Consequently we take as a first
model of the chicane a relativistic converging beam in a
beam pipe. Such a problem was studied by Zimmermann
and Raubenheimer [5]. These authors noticed that in a
converging (or diverging) relativistic beam the longitu-
dinal space charge force no longer is proportional to 1=�2,
and can therefore be a much larger effect than for the case
of a parallel moving beam. They derive the space charge
forces for bi-Gaussian beams beginning with the
Bassetti-Erskine potentials and calculate the work done
by these forces. Our approach here is different, beginning
with the Green function for the potential of a rod beam
oriented parallel to the axis in a circular beam tube, and
we study several more aspects of the problem.

In this report we first study the longitudinal space
charge effect of converging/diverging relativistic beams
in a circular beam pipe and apply the results to the drift
region before the last bend in the SPPS chicane. We then
calculate the space charge part of the induced energy
spread over the entire SPPS chicane beam line.

A. Motivation

As a well-known example where space charge domi-
nates the solution of a problem, consider a cylindrically
2002 The American Physical Society 104401-1
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There are no bends or other sources of radiation upstream.
Now consider a relativistic Gaussian bunch with length�z
that traverses unchanged past this step. Yokoya [6] has
shown that if aa0=�z � 1, where a0 is the slope of the
tapers, the longitudinal impedance for this problem is
purely imaginary with no net energy radiated, and the
problem looks very much like a statics problem— even
when �z=a� 1—in that the local effect depends ap-
proximately on the local properties of the beam and the
boundary. In such a problem we expect the energy change
of beam particles as they pass the step to be given by
minus the potential energy change between the current
and initial positions. That is, the energy change is given
by (discussed in more detail later) �2eN	z ln�b=a�, with
eN the bunch charge and 	z the longitudinal line density.

We demonstrate this through numerical calculation
with the time domain, wakefield calculating module of
MAFIA [7] in Fig. 1. It is difficult for us to numerically
model shallow tapers so we choose a taper angle of 45�,
a 	 1 cm, b 	 1:5 cm, and �z 	 2 cm (nevertheless, the
phenomenon for this model is the same). In the figure we
show the transition shape (a) and the wake experienced by
the center of the beam as a function of longitudinal
position s (b). The numerically obtained energy change
of the particle is �0:145 V=pC, which agrees well with
the above space charge formula result, �0:146 V=pC. For
the entire bunch, the average and rms energy change of
the beam are also well approximated by the space charge
component.

However, even at the other, highly radiative extreme for
such a problem (aa0=�z 
 1) the space charge compo-
nent is important. It has been shown by Heifets and
Kheifets that in this case the space charge component
of the fields exactly equals the radiation component [8].
FIG. 1. (Color) Development of the wakefield at the center of a
Gaussian bunch, with �z 	 2 cm, as it traverses on axis
through a model transition. Shown are the transition geometry
(a) and the numerically calculated wake (b).

104401-2
However, unlike in the earlier case, here the beam will
need to go far beyond the transition before the fields catch
up to it and the total result is obtained.

Now consider a similar problem: a relativistic (trans-
versely round) parallel beam, moving parallel to the axis
in a round beam tube, is focused by a thin lens; after some
distance it passes through a defocusing lens that trans-
forms it back to a parallel beam, but this time, one with a
smaller radius. One expects again that if the beam angle
(after the first lens) is small, then the kinetic energy
change from beginning to end is given by the negative
of the change in potential energy; in addition, we expect
the effect to be approximately static, in that the local
effect depends on the local properties of the beam.

To obtain a first estimate of the size of the effect,
consider now the simpler problem of two relativistic rod
beams (no transverse extent) in free space, both with
longitudinal distributions 	z, that are comoving but at a
slight angle � toward each other. From Gauss’s law we find
that the gradient in energy change of a particle of one of
the rods is given by �2eN	z�=d, where d is the distance
to the other rod. Note that the size of the effect, instead of
being on the order of 1=�2, is now on the order of �, which
can be much larger. Using the Green function for the
scalar potential of a rod moving parallel to the axis in a
cylindrical pipe (presented in a following section) we
obtain the same result for the two-rod problem. This
example motivates us to solve the problem of relativistic
converging/diverging beams, but now with transverse
extent and including also the effect of the beam pipe
walls.
B. SPPS model problem

As a concrete example we consider first the energy
change in the beam as it traverses the drift space between
the last two bends in the SPPS chicane. It is in this region
of the chicane that the beam converges strongly in x and
that the bunch length is the smallest, and so we expect the
space charge induced forces to be most significant here.
Note that in this region the longitudinal distribution does
not change. We ignore, for the moment, upstream effects.
Later in the report we will consider also the energy spread
change due to space charge throughout the compression
process.

Between the last two bends of the chicane the beam
tube length is 2.8 m, and the length of the following
(fourth) bend is 1.8 m. For our model we will imagine
the bend to be a thin lens and let the beam tube length
L 	 3:7 m. The beam pipe radius is fixed at a 	 7:62 cm.
We take the longitudinal charge distribution to be
Gaussian, with a (constant) rms length of �z 	 60 mi-
crons. In our model the vertical beam size remains fixed
at �y 	 100 microns; the horizontal beam size begins
at �x0 	 5:5 mm and ends at �x 	 350 �m. In the
real beam line there is an initial x-z correlation in the
104401-2



TABLE I. Parameters for our SPPS model problem.

Bunch population N 2.1 1010

Bunch length �z 60 �m
Beam energy E 9 GeV
Vertical beam size �y 100 �m
Horizontal beam size (initial) �x0 5.5 mm
Horizontal slice size (initial) ��x0�sl 4.0 mm
Horizontal beam size (final) �x 350 �m
Beam tube length L 3.7 m
Beam tube radius a 7.62 cm
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distribution, which we will ignore at first. Other parame-
ters are shown in Table I.

If the beam energy spread increases by �� in the drift,
then when it enters the bend the emittance will grow by
(assuming the growth is small)

��x
�x

�
�2��

2
b�x

2�x
; (1)

with �x the horizontal emittance, �b the bend angle, and
�x the beta function. If we take �x 	 2:8 nm, �b 	 5:5�,
�x 	 8 m, then an energy spread increase of �� 	 4�
10�5 results in an emittance growth��x=�x 	 2%, which
we take as our tolerance. We will also use Eq. (1) to
estimate emittance growth in a chicane, though, in this
case, it is meant to be a rough guide only.

II. ROUND BEAM

Let us consider a relativistic bunch of positrons moving
in a beam tube of radius a from position s0 to s. We are
interested in beams that are converging or diverging in
transverse dimension, but we assume that the angles are
very small. The beam tube represents a continual electri-
cal connection; its radius a may vary slowly with longi-
tudinal position s. We begin by assuming that the
longitudinal distribution of the beam 	z�z� is arbitrary
but frozen in time; however, we require that the bunch
length �z > a=�. The transverse distribution is assumed
to be bi-Gaussian in horizontal and vertical positions x
and y, with respective rms beam sizes �x, �y, and cent-
roids �xx, �yy. In principle, there can be correlation between z
and (x; y) and the method is still valid. For simplicity we
will assume no x-y correlation.

Our basic assumptions are that radiation fields can be
ignored, so that the energy change in the beam is given by
a change in potentials, and that the angles are small, so
that the local potential can be approximated by that of the
translationally invariant problem. Let us begin with the
case where the beam remains round and centered on the
axis at all times, i.e., let �x 	 �y � � and �xx 	 �yy 	 0
throughout. We assume that for any particle r=� remains
fixed; i.e., any focusing field is linear and centered on the
beam tube axis. For a test particle within the beam the
104401-3
electric field is dominantly in the radial direction and
approximately given, by Gauss’s Law, as (in cgs units)

Er�r� �
2eN	z
r

�1� e�r
2=2�2�; (2)

with eN the bunch charge and r 	
����������������
x2 
 y2

p
. The electric

potential, with respect to the beam tube potential, is
given by

��r� 	
Z a

r
Er�r

0�dr0 � 2eN	z
Z a=�

r=�

�1� e�r
02=2�dr0

r0
:

(3)

The energy change of a test particle in moving from
position s0 to position s is given by

�U 	 ���r; �; a�jss0 � ���: (4)

The energy change of a test particle can also be ob-
tained from a path integral representing the work done by
the field on the test particle:

�U 	
Z s

s0

~EE � ~dds: (5)

(Since the force on the particle is obtained from a poten-
tial, any integration path between the end points will do.)
For the round case, we can write

�U 	
Z s

s0

�
Er
dr
ds


 Ez

�
ds; (6)

with dr=ds a (small) constant and Ez 	 �@�=@s the
longitudinal electric field, given by (for �=a small)

Ez 	 �2eN	z

�
1

a
da
ds

�
e�r

2=2�2

�
d�
ds

�
(7)

(plus the familiar term that depends on 1=�2). Note that,
even when da=ds 	 0, two terms of the same order need
to be considered in the work integral. Of the two methods
of finding �U, we feel that the earlier one is preferable,
since it involves only knowledge of the potential at s0 and
s and does not require an integration over s.

We see from the above equations that for the round
case:

(i) For �=a small, at large r (1� r=� < a=�), � 	
2eN	z ln�a=r�.

(ii) If r=� 	 r0=�0 the energy change of the test par-
ticle is independent of r. If e�a

2=2�2 is small compared to
1, and a is unchanged, then �U can be approximated as

�U 	 �2eN	z ln
�
�0
�

�
; (8)

where �0 is the initial beam size.
(iii) If r=� 	 r0=�0 and a=� 	 a0=�0, then there is no

space charge energy change. For example, if the walls
follow the change in beam size, there is no energy change.
104401-3
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To find the total bunch energy change and the second
moment of energy change we sum �� and ����2 over all
particles. Note that, in general, for the average relative
energy change h�i we do not need to know the corre-
spondence between the positions of individual particles at
s0 and at s, but for the rms change �rms we do. (For a round
beam, however, since �U is independent of r, this is not
necessary.) For a round beam, with a Gaussian longitu-
dinal distribution (assuming no z-r correlation and �=a
small) we obtain

h�i 	 �
reN����
�

p
��� �z

ln

�
�0
�

�
; (9)

where re 	 2:82� 10�15 m, and ��� is the average beam
energy; �rms 	 0:39jh�ij.
104401-4
III. ELLIPTICAL BEAM

The beam is usually not round but, rather, elliptical in
cross section. The solution for elliptical beams is not so
simple as for round beams. In general, we need to solve
the Poisson equation numerically, with the boundary
condition that at the beam pipe radius the potential is
fixed. However, for the case of a round beam pipe we can
easily find the Green function—the potential for a line
charge—and then integrate over all the charges in the bi-
Gaussian transverse distribution.

The Green function at position (x; y) within a round
beam pipe of radius a, due to a line charge with charge
distribution eN	z parallel to the pipe axis and transverse
offset (xd; yd), can be shown to be
�G�x; y; xd; yd� 	 �eN	z ln

0
@ a2��x� xd�2 
 �y� yd�2�

�x2d 
 y2d���x�
a2xd
x2d
y

2
d
�2 
 �y� a2yd

x2d
y
2
d
�2�

1
A: (10)

Written in this form, the connection with the method of images is clear: the image of a line charge with density eN	z at
(xd; yd) is a line charge with density �eN	z at [�a2xd�=�x2d 
 y2d�; �a

2yd�=�x
2
d 
 y2d�]; the extra factor of �a2�=�x2d 
 y2d� in

the logarithm of Eq. (10) represents an additional constant potential contribution [9]. For a bi-Gaussian beam slice with
rms extents �x, �y, and centroids �xx, �yy, the potential becomes

��x; y� 	
1

2��x�y

Z 1

�1
dxd

Z 1

�1
dyd�G�x; y; xd; yd�e��xd� �xx�2=2�2x��yd� �yy�2=2�2y : (11)

We assume here that the bi-Gaussian beam distribution is (almost) entirely contained within the beam pipe. When �x 	
�y � �, Eq. (11) reduces to Eq. (3), our earlier result for a round beam.

Let us assume the beam size is small compared to a and that the beam’s distance from the wall is * �x;y. Then from
Eq. (11) we find the following.

(i) The potential of the slice, averaged over the transverse dimensions, is given by

h�it � eN	z



C� 2 ln

�
�x 
 �y

a

�

2 ln

�
a2 � �xx2 � �yy2

a2

��
; (12)

with C 	 0:5772, Euler’s constant.
(ii) The potential at the center of the slice becomes

�� �xx; �yy� � eN	z



C
 ln2� 2 ln

�
�x 
 �y

a

�

2 ln

�
a2 � �xx2 � �yy2

a2

��
: (13)

Since the potential at the beam center does not equal the average potential, there must be a spread in potential; the rms in
spread is on the order of eN	z ln2.

The potential itself can be approximated by

��x; y� � I�x; y� 
�� �xx; �yy� � 2eN	z



�xx�x� �xx� 
 �yy�y� �yy�

a2 � �xx2 � �yy2

�
; (14)

with

I�x; y� 	 �eN	z
Z 1

0

1� exp�� �x� �xx�2

2�2x
q
� �y� �yy�2

2�2y
q
�������������������

2�2x 
 q
p ������������������

2�2y 
 q
q dq: (15)

The advantage in using Eq. (14), instead of Eq. (11), for finding � is that only one integral now needs to be solved; the
disadvantage, however, is that we have lost generality in terms of beam size and location. Note that the last, centroid
shift term in Eq. (14) typically is small. Note that if we set the first term in the integral Eq. (15) to zero, I�x; y� becomes
the familiar Bassetti-Erskine (BE) potential [10,11]. Note also that the electric field ~EE�x; y� 	 �r��x; y� is given by the
104401-4
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usual BE formula plus a new term due to the image
charge, which is approximately given by

2eN	z �rr2
�x�rr2 � a2 �xx�x̂x 
 �y�rr2 � a2 �yy�ŷy
��rr2x� a2 �xx�2 
 �y�rr2 � a2 �yy�2

; (16)

with �rr2 	 �xx2 
 �yy2.
If we transform the integral for I , it appears to become

easier to solve numerically (for nonround beams). In
104401-5
Eq. (15) let [10]

t2 	
2 ���2 
 q

2�̂�2 
 q
; (17)

where ��� (�̂�) is the minimum (maximum) of �x and �y;
let us also denote the corresponding coordinates �qq (q̂q) and
average values ��qq�qq ( �̂qq�qq). Equation (15) then becomes
I�x; y� 	 �2eN	z
Z 1

���=�̂�

1� expf� �1�t2�
2��̂�2� ���2�

��q̂q � �̂qq�qq�2 
 � �qq � ��qq�qq �2=t2�g

1� t2
dt: (18)
Unlike in the round beam case,�U, for an elliptical beam
moving from s0 to s in a linear system, is not independent
of transverse position. The work performed on a test
particle —assuming, as in our SPPS model example,
only x, �x, and �xx change with s—becomes

�U 	 �
Z s

s0

�
@�
@x

dx
ds



@�
@�x

d�x
ds



@�
@ �xx

d �xx
ds

�
ds: (19)

This is the approach used in Ref. [5] to obtain the space
charge effect of converging beams.

A. Averaged effect

We are typically interested in the first and second mo-
ments of the energy change experienced by a beam in
moving from s0 to s. To obtain these moments we perform
integrals of �� over the longitudinal and transverse
(Gaussian) distributions. For the first moment we can
simply subtract the average initial potential from the
average final potential. For the second moment, however,
we need to know the map for all particles between their
initial and final states.
Let us here suppose, as in the SPPS model example,
that the longitudinal distribution is fixed, and that the
optics is linear, implying that for all particles �x� �xx�=�x,
�y� �yy�=�y, remain fixed. Let us also suppose that there
are no x-y correlations, and, for the moment, that there
also are no longitudinal-transverse correlations. From
Eq. (12) we see that the average potential change over
the beam is simply

h��i � �2eNh	zi


ln

�
�x 
 �y
�x0 
 �y0

�
� ln

�
a2 � �xx2 � �yy2

a2 � �xx20 � �yy20

��
;

(20)

where subscript 0 indicates initial conditions. [From here
on we will use brackets hi to mean longitudinal average
for functions of z, transverse average for functions of
�x; y�, and average over both for functions of both.]

The second term in Eq. (20) gives the effect, due to the
image charges, of the change in the beam offset. Note,
however, that as long as the beam size changes, the first
beam size term will tend to dominate over the second
offset term. The second moment is given by
h��2i 	
1

�2��3=2�z

Z 1

�1
dze�z

2=2�2z
Z 1

�1
dxr

Z 1

�1
dyre�x

2
r=2�y2r=2

� ���xr�x 
 �xx; yr�y 
 �yy� ��0�xr�x0 
 �xx0; yr�y0 
 �yy0��
2; (21)
where �within the integral is given by Eq. (14). Since we
assume no x-z correlation the integral over z can be done
immediately, giving a result proportional to e2N2h	2zi.
Note that in Eq. (21) we have made a change of variables
from x and y to xr 	 �x� �xx�=�x and yr 	 �y� �yy�=�y.

In general our calculations allow for the beam to both
shift its centroid and change its shape transversely as it
moves longitudinally from s0 to s. Let us here consider
the two effects separately. Consider the examples: (1) a
beam that undergoes simple translation transversely, and
(2) a beam that remains on axis but changes its shape
transversely (as for the SPPS model example). For both
examples the average potential change h��i is given by
Eq. (20). As for the rms deviation, for example (1), the
deviation within one slice of the beam is given by
����sl;rms 	
2eN	z
a2

���xx � �xx0�2�2x 
 � �yy � �yy0�2�2y�1=2:

(22)

This quantity is normally very small; it is second order in
parameters offset over a and beam size over a.
Consequently, the rms deviation over the beam will
tend to be dominated by the longitudinal variation in
potential, giving

����rms �

��������������������������
h	2zi � h	zi

2
q

h	zi
jh��ij: (23)

Note that if the longitudinal distribution is Gaussian, then
104401-5
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h	zi 	 �2
����
�

p
�z�

�1 and h	2zi 	 �2
���
3

p
��2z�

�1, which im-
plies that ����rms � 0:39jh��ij. Finally note that, since
h��i itself depends on beam offset over a to second order,
as long as there is non-negligible beam size/orientation
change between positions s0 and s, the effect of beam
offset can usually be ignored.

For example (2) the beam remains always on axis but
changes its shape. For this situation, we see, from
Eq. (14), that for any test particle in the beam the change
in potential can be written in the form
104401-6
�� 	 eN	z



f�xr; yr; $0; $� � 2 ln

�
�x 
 �y
�x0 
 �y0

��
; (24)

where xr 	 �x� �xx�=�x, yr 	 �y� �yy�=�y, and $ 	 ���=�̂�;
f�xr; yr; $0; $� is a function only of the quantities indi-
cated plus beam orientation (see below). Note that Eq. (24)
implies that if both transverse beam sizes change by the
same factor, then the variation in �� within one slice
becomes zero. The average of f over the Gaussians in
�xr; yr�, hfi 	 0. It follows that
����rms 	 eN


hf2ih	2zi 
 4�h	2zi � h	zi

2� ln2
�
�x 
 �y
�x0 
 �y0

��
1=2
: (25)

The first term in the large brackets gives the contribution of the transverse variation in ��, the second term that of the
longitudinal variation.

The results for frms ( 	
���������
hf2i

p
) separate into two categories: (i) when the initial and final beam orientations are the

same, and (ii) when they are different. This is evident since for the case when $ remains unchanged, in case (i) hf2i
equals 0 (nothing has changed), whereas in case (ii) it does not. The result is

frms 	


j ln��1
 $�=�1
 $0�� �

1
4 ln��1
 $2�=�1
 $20�� j : �case i�;

� ln��1
 $��1
 $0�=4� 

1
4 ln��1
 $2��1
 $20�=4� : �case ii�:

(26)
FIG. 2. (Color) The rms of the auxiliary function f, as a
function of $0, for various values of $. The solid lines give
results for the case when initial and final ellipses are oriented
in the same way; the dashed lines give results for when they
are not.
In Fig. 2 we plot frms as a function of $0, for various
values of $. The solid lines give results for the case when
the initial and final beam ellipses are oriented in the same
way; the dashed lines give results for when they are not.
Note that frms is always � 1:04, with the limit reached for
a pencil beam that changes its orientation ($0 	 $� 0).
In the case the first term in the large brackets of Eq. (25) is
small compared to the second term, we can again ap-
proximate ����rms by Eq. (23).

B. Longitudinal-transverse correlation

At the end of the third bend in the SPPS chicane (the
initial condition for our model problem) there is signifi-
cant x-z correlation in the beam. In the equivalent posi-
tion in the second chicane of the LCLS project the beam
is extremely correlated, and this fact must be taken into
account for obtaining the space charge effect.

To include x-z correlations in our calculations we again
assume that the potential of every slice (at fixed z) is
independent of other slices. However, in calculations the

slice beam size ��x�sl 	
�������������������������
�2x�

2
z � �2xz

q
=�z now takes over

the function that the total beam size �x has in the case of
no correlations, and, in addition, the slices are offset in x
by an amount �xx 	 z�xz=�2z (see Fig. 3). If, as usual, the
beam size is small compared to a, and the beam is not
near the wall, we expect, from the results of the previous
section, that we can ignore the centroid shifts without
affecting the average and rms energy change signifi-
cantly. We demonstrate in this section that this is true
for the SPPS model parameters.

In general, to calculate h��2i for a beam with x-z
correlation we numerically solve Eq. (21), but substituting
the slice offsets �xx�z�, �xx0�z�, in the arguments for�,�0, in
the integrand. In the most general calculation we use � as
given in Eq. (11). Then we have five integrals to do.
However, since �, �0, are smooth functions, well ap-
proximated by low order polynomials, we can perform
the three outer integrals (over z, xr, yr) efficiently using
Hermite numerical quadrature.

Let us now consider the SPPS model example: we have
initially �x0 	 5:6 mm, �y0 	 100 �m, and finally �x 	
350 �m, �y 	 100 �m; other beam parameters can be
found in Table I. Initially there is x-z correlation with
��x0�sl 	 0:73�x0, but in the final state there is no corre-
lation. To show the sensitivity to initial x-z correlation we
104401-6



FIG. 5. (Color) The development of the rms energy spread for
the SPPS model problem (solid line) and the quantity �0:39h�i
(dashed line).

FIG. 3. (Color) Sketch of beam with x-z correlation, showing
the slice parameters ��x�sl, �xx, and the beam parameters �x, �z.
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plot, in Fig. 4, the relative rms energy change �rms as a
function of ��x0�sl (keeping �x0 fixed) as obtained by the
general numerical calculation. At the upper end of the
curve ��x0�sl 	 �x0, there is no correlation; at the lower,
maximum correlation end, ��x0�sl equals the final beam
size (�x), and the slice beam size does not change. Also
shown in the figure, by the dashes, is �0:39h�i.

The interaction decreases as ��x0�sl decreases, because
the change in (slice) beam size from initial to final state is
reduced; the centroid offset of the slices has little effect.
We see this, for example, at ��x0�sl 	 �x ( 	 0:064�x0, no
beam size change and maximum correlation) �rms � 6�
10�8, which is very small. We repeated the calculation,
but now setting the slice offsets to zero and using the
FIG. 4. (Color) For the SPPS model parameters: sensitivity to
correlation component in initial beam size. Given are �rms
(solid line) and �0:39h�i (dashed line) as functions of
��x0�sl=�x0 keeping �x0 fixed.
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simpler Eqs. (20), (25), and (26). We obtained essentially
the same curves as before. For the SPPS model, ��x0�sl 	
0:73�x0, and thus h�i 	 �7:1� 10�5 and �rms 	 2:8�
10�5, which is within, but close to, our tolerance, 4�
10�5. Note that the transverse component of rms relative
energy is only 3:5� 10�6.

In Fig. 5 we plot the development of �rms for our SPPS
example problem (the solid curve) and �0:39h�i (the
dashed curve). The two curves are very close, indicating
that the (weighted) transverse variation in energy change
in the bunch is always small compared to the longitudinal
variation. Finally, we plot in Fig. 6 a contour plot showing
the change in �, between the beginning and end of the
SPPS drift, over the central slice of the beam. Shown is
the energy change over a �5� rectangle in the x, y plane.
FIG. 6. (Color) Contour plot of energy change, over the central
slice of the beam, between the beginning and end of the SPPS
model problem. Results are shown over a �5� rectangle in x
and y. The peaks (orange) are at � 	 �6:5� 10�5, the floor
(violet) is at � 	 �11:� 10�5.

104401-7
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There is a difference of � 	 4:5� 10�5 between the
maximum and minimum values in the plot (remember
that for the round beam case �� was independent of
transverse position).

C. Reducing the effect

Suppose we would like to reduce the induced energy
spread. How could we do it? For the round beam case we
saw that in a linear optics region (in such a way that r=�
is constant), if a is allowed to vary adiabatically such that
�=a is the same at s0 as at s, then the induced energy
spread is zero. The same can be shown to be true for the
elliptical beam in a cylindrical beam tube, as long as a,
�x, �y, �xx, and �yy (though the last two are not usually
important) all change under identical scaling. For the
elliptical beam case, we see from Eq. (12) that having a
different beam tube radius at s than at s0 ( 	 a0), the
longitudinal space charge effect at the test particle is
modified (neglecting the usually small, centroid offset
term) by the quantity

�U 	 �2eN	z ln
�
a
a0

�
: (27)
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(This equation is also valid for the round beam case.) For
the elliptical beam, by only adjusting a, we can again
reduce the space charge effect, though this time we can-
not reduce it to zero. We find that for the SPPS model
problem the induced energy spread is reduced by a factor
of 2 if at the end a is reduced (from 7.62 cm) to 2.5 cm; it
is reduced to its minimum, �rms 	 4:� 10�6 if at the end
a 	 0:8 cm.
IV. BUNCH COMPRESSION

Up to now we have limited ourselves to the case of
converging/diverging beams in drift regions, where the
longitudinal bunch distribution remains fixed. Let us ex-
tend our space charge calculations to allow compression.
There will be a radiation contribution to the beam’s en-
ergy change while in a compressor, though our calculation
will not include it. We still assume that the beam pipe is
round, with the same radius a, and that the pipe represents
a continuous electrical connection.

The change in average potential is again simple to
calculate. We see from Eq. (12) that (if a does not change)
it is given by
h��i 	 eN


h	zi



C� 2 ln

�
�x 
 �y

a

��
�h	z0i



C� 2 ln

�
�x0 
 �y0

a

���
: (28)

Note that a change in bunch length has a bigger effect than a change in transverse beam size.
The second moment h��2i is more difficult to obtain than before because, for any test particle, 	z at the initial and

final positions is different, and because the phase advance between the two positions is not normally an integer multiple
of 2�, so—in addition to x; y; z— one needs to also average over x0; y0; �. The most general solution is given by

h��2i 	
Z
. . .

Z
dx0dxd0dyd0dzd0 0�x0�� ~��G�x; y; z; xd; yd; zd� � ~��G�x0; y0; z0; xd0; yd0; zd0��

2; (29)

where x0 represents a six-dimensional vector �x0; x00; y0; y
0
0; z0; �0�,  0 is the initial six dimension beam distribution, and

the Green function ~��G is related to the one introduced in Eq. (10) by ~��G 	 ��z� zd��G. Note that to solve this
equation we need to perform eight integrals (plus one integral over a delta function). To solve the integrals of Eq. (29) we
need to substitute x 	 Mx0, where the symplectic, first order transfer matrixM is of the form [12] (we assume our optics
is linear)

M 	

2
66666664

R11 R12 0 0 0 R16
R21 R22 0 0 0 R26
0 0 R33 R34 0 0
0 0 R43 R44 0 0
R51 R52 0 0 1 R56
0 0 0 0 0 1

3
77777775
: (30)

This matrix assumes bending in x only. Note that if initially the beam is in a dispersion-free region (such as at the
beginning of the SPPS chicane), then R16 	 (, R26 	 (0, R51 	 R21(� R11(0, R52 	 �R12(0 
 R22(, and R56 	
�

R
s
s0
ds(= �)), with ( the dispersion function and �)) the bending radius. For the SPPS chicane we take the initial beam

distribution to be

 0�x0� 	 )xx00�x0; x00�)yy00�y0; y
0
0�	z0�z0�	�0��in 
 �0corrz0�; (31)

where )’s and 	’s, represent, respectively, correlated bi-Gaussian and Gaussian distributions; where �in and �0corrz0
represent the (with z) uncorrelated and correlated components of initial energy spread.

From our earlier results we know that we can simplify the calculation of h��2i by using the potential given in
Eq. (14) (let us denote it by �BE), where, in addition, we can usually drop the third, beam-offset term. We are left with
104401-8
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the six dimensional integral

h��2i 	
Z
. . .

Z
dx0 0�x0�f�BE�x� �xx; y; z; ��x�sl; �y; �z� ��BE�x0 � �xx0; y0; z0; ��x0�sl; �y0; �z0�g

2: (32)
With this method, however, to perform the integrals we
need �y, �z, ��x�sl, and �xx (the final slice rms size and
offset), as functions of the initial beam distribution. They
are obtained by � 	 M�0M

T , with MT the transpose
of M, which converts the initial covariance matrix of
the beam to the final covariance matrix, and then

by ��x�sl 	
�������������������������
�2x�2z � �2xz

q
=�z and �xx 	 z�xz=�2z .

For an efficient calculation of Eq. (32) we first calculate
the beam covariance matrix at position s. Knowing
��x�sl and �y we calculate the transverse dependence
of �BE over a �7� two-dimensional grid. Then,
when needed by the integrals, we use results splined
to this grid. As for the integrals over phase space,
if we assume Gaussian distributions in all direc-
tions, these can again be performed efficiently using
Hermite quadrature [13]. If we take seven terms
for each integral, then we need calculate only 105 terms
in all.
FIG. 7. (Color) Space charge component of energy spread in
the SPPS chicane. Shown are �rms and h�i (top frame), and also
the development of the beam sizes (bottom frame). The bend
regions are marked in orange. Note that within the bends, our
space charge results, which assume a round beam pipe, are
not valid.
The SPPS chicane

For the SPPS chicane we take initial bunch length
�z0 	 1:15 mm, initial uncorrelated energy spread
��in 	 5:5� 10�4, correlated energy parameter �0corr 	
0:0133 mm�1, and final R56 	 7:5 cm, which result in
final bunch length�zf 	 41 �m. Our results for the space
charge energy change, from the beginning to any position
within the SPPS chicane, are shown in Fig. 7. Shown are
�rms and h�i (top frame), and also the development of the
beam sizes (bottom frame). Note that �y (not shown)
varies nearly linearly from an initial 55 �m to a final
110 �m. The bend regions are marked by orange bands.
Note that within the bends of the SPPS chicane the beam
pipe is not round, and our space charge results are not
valid. Nevertheless, in the drift regions and up to the edge
of the bends they are valid. We see that everywhere
�0:39h�i is a good approximation of �rms, again suggest-
ing that the longitudinal variation in � dominates over
the transverse variation. In addition, we see that most of
the effect occurs within bends 3 and 4. At the end our
results are �rms 	 11:5� 10�5 and h�i 	 �27� 10�5.
We see that our earlier model problem results do not
give a good approximation for space charge induced
spread in the fourth bend, since the energy spread in-
creases significantly already in the third bend. Our rough
estimate for emittance growth, Eq. (1), using the rms
energy spread at the center of the last bend (10� 10�5),
yields �13%, which is much larger than our tolerance.
104401-9
Let us compare our results with the energy spread
obtained from CSR calculations that include also
radiation terms. These CSR calculations, however, as-
sume the beam to be in free space. If we, equivalently,
let a 	 ��z our results become �rms 	 16� 10�5 and
h�i 	 �37� 10�5. The CSR calculation results are
�rms 	 16� 10�5 and h�i 	 �23� 10�5 (though these
parameters are still increasing in amplitude at the end of
the calculation, 5 m beyond the fourth bend) [14]. This
suggests that, in a chicane compressor, the space charge
component of energy spread can dominate the total. A
significant difference, however, is that for the space
charge component most of the growth happens within
the last two bends, while for the total, the energy spread
accumulates gradually, with a significant contribution
occurring in the drift regions downstream of these bends.
We expect the total CSR energy loss after all the fields
have caught up to the beam to be equal or greater than the
space charge component (‘‘the compression work’’) [4].
104401-9
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Note that, due to the catch-up requirement, an estimate
for emittance growth (within the last bend) using only the
space charge component of energy spread will tend to be
pessimistic.

Finally, in March 2002 a meeting was held in Berlin,
CSR-Workshop-2001, to discuss coherent synchrotron ra-
diation [15]. For the purpose of comparing simulations,
benchmark chicane parameters were generated. In the
Appendix we give the space charge component of energy
spread for one of these examples. Our results are compa-
rable for the total CSR induced energy change, as pre-
sented at the workshop (unfortunately �rms, as presented
at the workshop, is not given in a form that is easy for us
to compare).
TABLE II. Parameters for a Berlin benchmark chicane.

Bunch population N 6.25 109

Initial bunch length �z0 200 �m
Final bunch length �z 20 �m
Beam energy E 5 GeV
Initial energy correlation �0

corr 36 m�1

Initial uncorrelated energy spread ��in 2 10�6

Compression parameter R56 �2:5 cm
Emittance �x;y 0.1 nm
V. CONCLUSION

Beginning with the Green function for a rod beam
oriented parallel to the axis of a round beam pipe we
have derived the space charge induced energy shift and
spread for relativistic beams that are slowly converging or
diverging, a result that tends to be larger than the 1=�2

dependence for parallel beams. In a simple drift region
our results give the change in (kinetic) energy spread in
the beam. We have found that the variation in energy is
typically dominated by the longitudinal variation, so that
for Gaussian beams the rms energy spread �rms �
j0:39h�ij, with h�i the average energy change. We have
found that in calculations for converging/diverging beams
with an x-z correlation the result is essentially the same as
for an on-axis beam with no correlation, but with the
horizontal beam size �x replaced by the slice beam size
��x�sl. We have found that by varying the beam pipe
radius to roughly follow the beam size variation the space
charge effect can be reduced.

We have extended the calculation to systems with
bends, such as chicane compressors, but now our results
give only part of the total energy spread induced in the
beam. Nevertheless, our results can be used to indicate
source regions of CSR induced energy spread. Comparing
with more complete CSR calculation results, it appears
that due to bunch compression the space charge compo-
nent can dominate the total longitudinal effect, after
enough time is given for the radiation fields to catch up
with the beam. Because of the catch-up requirement,
space charge estimates of energy spread and emittance
growth in the last bend of a chicane will tend to be
too large. We note, in addition: (i) even in a chicane
system �rms � j0:39h�ij (for Gaussian beams), which
allows us to obtain an estimate of �rms using a simple
formula; (ii) our results are not valid within nonround
beam pipe regions, such as is usually the case in bends;
(iii) our results depend on beam pipe radius a (although
only weakly), whereas CSR calculations do not normally
include this parameter, suggesting that results of
104401-10
such calculations, for systems with beam pipes, are not
complete.

From our space charge calculations for the SPPS chi-
cane we obtain a final induced energy spread of �rms 	
1:1� 10�4, though this result should be taken as an over-
estimate.

ACKNOWLEDGMENTS

The authors thank S. Heifets, V. Ivanov, and
G. Stupakov for helpful discussions on the subject of
space charge forces, and P. Emma for motivating this
work, describing the SPPS project, and discussing the
results. We also thank T. Raubenheimer for discussing
his earlier work on this subject. This work was supported
by the Department of Energy, Contract No. DE-AC03-
76SF00515.

APPENDIX: BERLIN BENCHMARK CHICANE

In March 2002 there was a meeting in Berlin to discuss
coherent synchrotron radiation [15]. For the purpose of
comparing simulations, parameters for benchmark chi-
canes were generated. Parameters for one such example
are given in Table II. We compute the space charge com-
ponent of energy spread for this example. No beam pipe
radius is specified, and we take, for example, a 	
7:62 cm. The results are shown in Fig. 8. Given are �rms
and h�i (top frame), and �z, �x, and ��x�sl (bottom
frame). We note that most of the space charge effect
occurs in the third bend. We see that again �rms 	
�0:39h�i is a good approximation. This time, throughout
most of the chicane, ��x�sl is very small compared to �x,
implying that there is a large x-z correlation.

The total space charge induced energy change h�i
equals �3:5� 10�4, which is comparable to the total
energy change obtained by complete CSR calculations,
��4:5–6:0� � 10�4 (though the amplitude appears to still
be increasing at the end of the CSR simulation) [16].
(Unfortunately the induced spread �rms in Ref. [16] is
not given in a form that is easy for us to compare.)
These CSR calculations, however, assume the beam to
be in free space. If we, equivalently, let a 	 ��z our final
results rise by about 10%.
104401-10



FIG. 8. (Color) Space charge component of energy spread in
the Berlin benchmark chicane. Shown are �rms and h�i (top
frame), and also the development of the beam sizes (bottom
frame). The bend regions are marked in orange. Note that
within the bends, our space charge results, which assume a
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round beam pipe, are not valid.
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