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Efficiency of a Boris-like integration scheme with spatial stepping
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A modified Boris-like integration, in which the spatial coordinate is the independent variable, is de-
rived. This spatial-Boris integration method is useful for beam simulations, in which the independent
variable is often the distance along the beam. The new integration method is second order accurate, re-
quires only one force calculation per particle per step, and preserves conserved quantities more accurately
over long distances than a Runge-Kutta integration scheme. Results from the spatial-Boris integration
method and a Runge-Kutta scheme are compared for two simulations: (i) a particle in a uniform sole-
noid field and (ii) a particle in a sinusoidally varying solenoid field. In the uniform solenoid case, the
spatial-Boris scheme is shown to perfectly conserve for any step size quantities such as the gyroradius
and the perpendicular momentum. The Runge-Kutta integrator produces damping in these conserved
quantities. In the sinusoidally varying case, the conserved quantity of canonical angular momentum is
used to measure the accuracy of the two schemes. For the sinusoidally varying field simulations, error
analysis is used to determine the integration distance beyond which the spatial-Boris integration method
is more efficient than a fourth-order Runge-Kutta scheme. For beam physics applications where statis-
tical quantities such as beam emittance are important, these results imply the spatial-Boris scheme is
3 times more efficient.
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I. INTRODUCTION

The Boris integration scheme [1,2] is popular in elec-
tromagnetic particle-in-cell simulations because it requires
only one force evaluation per step while being second or-
der accurate. In contrast, the commonly used fourth-order
Runge-Kutta (RK) scheme [3] requires four force evalu-
ations per step. The Boris integration scheme alternates
position advance with acceleration, and the acceleration is
broken into a half step of electric acceleration, followed
by a rotation due to the magnetic field, followed by a half
step of electric acceleration. The Boris integration scheme
additionally better preserves conserved quantities, and it
is stable for cyclotron integration for arbitrary step size.
Consequently, the Boris scheme can be more efficient for
many applications.

Beam simulations are often carried out with the distance
along the beam line being the independent integration vari-
able, because that makes matching to spatial structures
(such as the ends of magnets) easier. For such simula-
tions one would like to have an integration method with
the good properties of the Boris integrator. One cannot
use the Boris integrator directly, as its derivation depends
on one having a temporal integration. However, we show
that one can derive a Boris-like integration scheme for the
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case where one of the spatial coordinates is the indepen-
dent variable.

We compare the spatial-Boris scheme with a fourth-
order RK scheme for two magnetic field configurations:
(i) a uniform solenoid field and (ii) a sinusoidally varying
solenoid field. In the uniform solenoid case, the spatial-
Boris scheme is shown to perfectly preserve for any step
size conserved quantities such as the gyroradius and the
perpendicular momentum. In contrast, the RK scheme pro-
duces an artificial damping of these quantities. We give
a qualitative argument that for simulations in a uniform
solenoid field, the spatial-Boris scheme should always be
the more efficient scheme (where efficiency is defined by
the number of force evaluations required). In the sinu-
soidally varying case, the conserved quantity of canonical
angular momentum is used to measure the accuracy of the
two schemes. The errors introduced by the spatial-Boris
scheme produce an oscillation around the correct value,
while the errors introduced by the RK scheme produce a
secular change away from the correct value. Because of
this, the spatial-Boris will be more accurate over a long
enough distance. For the sinusoidally varying field, we
compare error magnitudes to determine the integration dis-
tance beyond which the spatial-Boris integration method is
more efficient than a fourth-order RK scheme. For typical
beam physics applications, this error analysis shows that
in a simulation of 103 lattice periods and 106 particles, the
spatial-Boris scheme is 3 times more efficient.
© 2002 The American Physical Society 094001-1
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This paper is organized as follows. In Sec. II, we de-
rive the spatial-Boris scheme. In Sec. III, we compare
the spatial-Boris scheme and a fourth-order RK scheme
for simulations of particle motion in a uniform solenoid
field. In Sec. IV, we compare the two schemes for simu-
lations of particle motion in a sinusoidally varying sole-
noid field. Finally, in Sec. V, we discuss the implications
for beam physics simulations, where we show the spatial-
Boris scheme may be 3 times more efficient for typical
simulations.

II. THEORY

The motivation for how to modify the Boris scheme to
use a spatial independent variable comes from relativity
and Hamiltonian theory. Both of these subjects give formal
methods for exchanging spatial and temporal variables. We
begin by writing the momentum evolution equations, but
substituting the energy evolution equation for the momen-
tum component conjugate to the variable we want to be-
come the independent variable (z in this paper):

dpx

dt
� q�Ex 1 yyBz 2 yzBy� , (1)

dpy

dt
� q�Ey 1 yzBx 2 yxBz� , (2)

d�U�c�
dt

� q�Exyx 1 Eyyy 1 Ezyz� , (3)

where p2
z � �U�c�2 2 p2

x 2 p2
y 2 m2c2 (MKS units).

One exchanges z for t on the left-hand side by multiplying
through by 1�yz :

dpx

dz
�

1
yz

dpx

dt
� q

µ
Ex

yz
1

yyBz

yz
2 By

∂
, (4)

dpy

dz
�

1
yz

dpy

dt
� q

µ
Ey

yz
2

yxBz

yz
1 Bx

∂
, (5)

dU�c
dz

�
1
yz

dU�c
dt

� q

µ
yxEx

yzc
1

yyEy

yzc
1

Ez

c

∂
. (6)

Exchanging yz for pz on the right-hand side, one can write
this as a matrix equation, splitting into terms that involve
pz and those that do not:

dw
dz

� Mw 1 b , (7)

where

w �

0
@ px

py

U�c

1
A , (8)

M �
q
pz

0
@ 0 Bz Ex�c

2Bz 0 Ey�c
Ex�c Ey�c 0

1
A , (9)

and

b � q

0
@ 2By

Bx

Ez�c

1
A . (10)
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Only the matrix, M, involves pz . The equation for the evo-
lution of the generalized particle position, s � �x, y, ct�,
can be written

ds
dz

�
w
pz

. (11)

Equations (7) and (11) are the equations one needs to ad-
vance in the numerical integration scheme.

The goal is to find a scheme that will advance these two
sets of equations with second-order accuracy while requir-
ing only one force evaluation per step. One can leapfrog
[4] the advance of the generalized positions Eq. (11) with
the generalized momenta Eq. (7). This means advancing
the positions one-half a step, advancing the momenta a
full step, and advancing the positions half a step. In this
scheme, one assumes that the momenta are constant when
advancing the positions and that the positions are constant
when advancing the momenta. This will be at least sec-
ond order accurate so long as each piece is at least second
order accurate. The integration of the positions is exact
assuming constant momenta, so one must only find a
way to integrate the momentum equation to second order
accuracy.

As with the temporal Boris scheme, the approach here
will be to further split the advance of Eq. (7) in a leapfrog
way: (i) advance w first by only the vector term, b, for
one-half a step, (ii) advance by only the matrix term, M, a
full step, then (iii) advance by the vector b a final one-half
step. Because the positions are assumed constant in the
momentum advance, all the terms in b are constant, and
so steps (i) and (iii) are exact. All that is left, then, is
to show step (ii) can be done to second order accuracy.
So long as the elements of M are all constant during this
step, a space-centered advance (i.e., using the average of
w on the right-hand side and solving the resulting implicit
equation) is second order accurate.

To show that M is constant, one needs to show that
the coefficient pz is constant during step (ii). Because M
involves only the field components Bz , Ex , and Ey that
do not directly modify pz , one expects that pz will be
constant. Formally, one can show that pz does not change
magnitude when operated on by M by considering

dpz

dz
�

1
pz

µ
U�c

dU�c
dz

2 px
dpx

dz
2 py

dpy

dz

∂
. (12)

Using the equations of motion from Eq. (7) but including
only the matrix term gives

U�c
dU�c

dz
� U�c

∑
q
pz

µ
Expx

c
1

Eypy

c

∂∏
,

px
dpx

dz
� px

∑
q
pz

µ
Bzpy 1

ExU
c2

∂∏
, (13)

py
dpy

dz
� py

∑
q
pz

µ
2Bzpx 1

EyU

c2

∂∏
.
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Substituting into Eq. (12) yields (for the matrix term
alone):

dpz

dz
� 0 . (14)

Thus all change in the magnitude of pz is due to the vector
b. This means that for a step involving only the matrix
term, the elements of the matrix are constant, and a space-
centered advance will be second order accurate.

Using the space-centered advance scheme for step (ii)
means that one must solve an implicit equation. One uses
the average w on the right-hand side of the equation:

w1 2 w2 � M

µ
w1 1 w2

2

∂
Dz , (15)

where w2 is the vector before the matrix operation, and
w1 is the vector after. Solving for w1 gives

w1 �

µ
I 2 M

Dz
2

∂21µ
I 1 M

Dz
2

∂
w2. (16)

To calculate �I 2 MDz�2�21, one needs the eigenvalues
of M. The eigenvalues of M are

l � 0, 6i
q
pz

q
B2

z 2 E2
x 2 E2

y � 0, 6il̂ . (17)

In the corresponding basis of eigenvectors, this leads to

µ
I 2 M

Dz
2

∂21

�

0
BBBB@

1 0 0
0 11il̂Dz�2

11l̂2Dz2�4 0

0 0 12il̂Dz�2
11l̂2Dz2�4

1
CCCCA . (18)

One can then write the matrix from Eq. (16) in a basis-
independent way:µ

I 2 M
Dz
2

∂21µ
I 1 M

Dz
2

∂

� I 1
Dz

1 1 l̂2Dz2�4
M 1

Dz2�2

1 1 l̂2Dz2�4
M2.

(19)

So one can advance from w2 to w1 using Eq. (16) rewrit-
ten as

w1 � w2 1
Dz

1 1 l̂2Dz2�4
Mw2

1
Dz2�2

1 1 l̂2Dz2�4
M2w2. (20)

The full operator for advancing w2 to w1 can be written
out as

w1 � w2 1 Rw2, (21)

where from Eq. (21):
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R �
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4
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d
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ExEy
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Ex

Bzc 1
d

2
Ey
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21 1
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2
ExEy

B2
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Ey
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2
Ex
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d

2
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2
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(22)

where

a �
2� d

2 �

1 1 � d

2 �2�1 2
E2

x 1E2
y

B2
zc2 �

, (23)

and

d �
qBzDz

pz
� kDz , (24)

b1 �
d

2

µ
E2

x

B2
zc2 2 1

∂
, (25)

b2 �
d

2

µ
E2

y

B2
zc2 2 1

∂
, (26)

b3 �
d

2

µ
E2

x

B2
zc2 1

E2
y

B2
zc2

∂
. (27)

The quantity k � qBz�pz defined in Eq. (24) is related
to the distance, Zg � 2p�k, over which a particle would
complete an oscillation in a uniform field of strength
Bz . The distance Zg is called the gyroperiod. We leave
Eqs. (22)–(27) expressed in terms of d�2 for reasons
regarding the gyroperiod discussed below.

To summarize, the final steps for the spatial-Boris push
to move from position zn to zn11 are as follows:

(1) Push the generalized positions one-half step (Dz�2�
using the velocities at zn.

(2) Evaluate the fields at this midpoint time and position.
(3) Push the generalized momenta vector, w, from wn

to an intermediate state w2 with a half step using only the
vector b:

w2 � wn 1
Dz
2

b . (28)

(4) Evaluate pz at this point, plug into the matrix R, and
advance w2 to w1 with a full spatial step of the matrix
part of Eq. (7):

w1 � w2 1 Rw2. (29)

(5) Advance w1 to the final state wn11 with a half step
using only the vector b:

wn11 � w1 1
Dz
2

b . (30)
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(6) Push the generalized positions one-half step using
the velocities at zn11.

The above steps require only one evaluation of the fields.
One can combine steps (1) and (6) for efficiency, but the
positions are then known one-half step off from the mo-
menta. By keeping steps (1) and (6) separate, one knows
the generalized positions and momenta at the same spatial
location at the end of a step.

III. SIMULATIONS IN A UNIFORM SOLENOID
FIELD

The RK scheme is known to produce artificial damp-
ing (or growth) of conserved quantities (see Fig. 3 of
Ref. [5]). Because the spatial-Boris scheme is a leapfrog-
like scheme, we expect it to have improved conservation
properties in the same way as symplectic integrators [6].
As a first test of this, we chose the problem of motion
of a particle in a uniform solenoid field. For this problem,
the gyroradius and perpendicular momentum are conserved
quantities. The gyroradius is

rg �
yp

yz
k21, (31)

where yp is defined by

yp �
q

y2
x 1 y2

y �
pp

gm
, (32)

and pp is the perpendicular momentum.
Figure 1 shows the radius as a function of distance for

various step sizes for simulations using the RK scheme. In

FIG. 1. The gyroradius (normalized to its initial value) as a
function of distance (normalized to the gyroperiod) calculated
using the fourth-order Runge-Kutta integration scheme. Plots
are shown for step sizes of 5, 7.5, 10, and 20 steps per gyrope-
riod. The curves for perpendicular momentum as a function of
distance are similar to these.
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this figure, the gyroradius is normalized to its initial value
and the distance of integration to the gyroperiod. This
figure shows that the RK scheme produces artificial decay
of the gyroradius, as expected from the results of Ref. [5].
The RK scheme also produces a decay in the perpendicular
momentum. The curves of perpendicular momentum as a
function of distance for the various step sizes are similar
to those for the gyroradius, so we do not show them here.

Figure 2 shows on a log-log plot the fractional error ver-
sus step size after one gyroperiod. The error scales as
Dz5�Z5

g. For a fourth-order integrator, one might expect
the error for a fixed integration distance to scale as Dz4.
This is because one might expect the error in a single step
would go as estep � Dz5, and for a fixed distance of in-
tegration, the number of steps goes as N � Dz21. This
implies the error would scale as e � Nestep � Dz4. How-
ever, the coefficients for a single step of the RK scheme
produce a coincidental cancellation of the fifth-order er-
ror in the calculation of the radius (see Appendix A). So,
the error in calculation of the radius in a single step in
fact goes as estep � Dz6, and so the total error goes as
e � Nestep � Dz5, as shown in Fig. 2.

In contrast, for simulations using the spatial-Boris
scheme, the gyroradius and perpendicular momentum are
perfectly conserved for any step size. The full calculation
of these quantities for a single step of the spatial-Boris
integrator is shown in Appendix B. To demonstrate this
conservation, Fig. 3 shows the radius as a function of
distance for various step sizes for simulations using the
spatial-Boris scheme. Figure 3 also shows the perpen-
dicular momentum as a function of distance using the
spatial-Boris integration scheme. These plots are put on

FIG. 2. The fractional error in the gyroradius after one gy-
roperiod as a function of steps per period using the Runge-Kutta
scheme. The slope of the line is consistent with the error in the
radius in a single step of the Runge-Kutta being sixth order.
094001-4
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FIG. 3. The gyroradius and perpendicular momentum (normal-
ized to their initial values) as a function of distance (normalized
to the gyroperiod) calculated using the spatial-Boris scheme.
These are plotted for a step size of five steps per gyroperiod.
These quantities are perfectly conserved for any step size using
the spatial-Boris scheme.

the same vertical scale as Fig. 1 for comparison, however
the integration distance is many hundreds of times farther
for the spatial-Boris simulations to demonstrate the
conservation. The perfect conservation of rg and pp is
not shown definitively by Fig. 3, but a detailed analysis
does show the errors in rg and pp are zero to within the
double-precision accuracy of the data analysis tool we
used. Furthermore, we show rg and pp for a step size
of five steps per period in Fig. 3, as this was the largest
step size used in the Runge-Kutta analysis, and therefore
094001-5
should be a worst case. The perfect conservation does
hold for all step sizes however.

While the spatial-Boris scheme is good at preserving
conserved quantities, it is still only a second-order inte-
gration scheme and does produce errors. In this case, the
scheme introduces phase error. The phase for this case is
defined as

tan�u� �
y
x

, (33)

where u is the phase. One can show the error in phase
introduced by the spatial-Boris scheme by considering the
special case of initial conditions x � x0, y � 0, px � 0,
and py � 2kx0. For a single step, the phase should be
u � 2p�Dz�Zg� � kDz, which gives to third order (using
the notation d � kDz):

tan�u� � tan�d� � 2

µ
d 1

d3

3

∂
. (34)

The minus sign is due to the clockwise rotation. However,
following the evolution (see Appendix B) through one step
of the spatial-Boris scheme gives

y
x

�
22� d

2 �

1 2 �d

2 �2
� 2

µ
d 1

d3

4

∂
. (35)

The spatial-Boris scheme produces a phase slightly smaller
than the true phase, meaning the calculated rotation is too
slow. The phase error due to the spatial-Boris scheme is
third order in Dz, as expected for a second-order integrator.
Integrated over an entire period, the spatial-Boris scheme
introduces an error in the gyroperiod that is second order
in Dz.

However, Boris [1] points out that replacing d�2 with
tan�d�2� in Eqs. (22)–(27) will correct the phase error to
all orders. The motivation for this modification is seen in
Eq. (35), where making the replacement yields the trigono-
metric identity

y
x

�
22 tan�d

2 �

1 2 tan2�d

2 �
� tan�d� . (36)

Boris refers to this as the tan�a��a modification. Because
to first order tan�d�2� � d�2, and the next term is third
order in d�2, the modification to the step size is third order
and so does not affect the order of accuracy of the individ-
ual positions or momenta. For simulations in a uniform
magnetic field, where gyromotion is the dominant motion,
the tan�a��a modification is clearly an improvement over
the unmodified scheme. For simulations in spatially vary-
ing fields, this modification changes the spatial dependence
of the coefficients in Eqs. (22)–(27) and changes the ef-
fective step size. Dynamically changing the step size in a
leapfrog scheme has been shown [7] to introduce a secular
error in conserved quantities, so applying the tan�a��a

modification to spatially varying fields must be done
with care.

The conservation properties of the spatial-Boris scheme
make it almost certainly the more efficient integrator for
094001-5
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this problem (where efficiency is measured in terms of
the force evaluations required). The conservation of the
topology for any step size means that typically one would
choose the step size based on other considerations (perhaps
resolving some other feature of the problem). For instance,
a modest restriction on step size of 20 steps per period with
the spatial-Boris scheme means that scheme would require
20 force evaluations per period. Because the RK scheme
requires four force evaluations per step, to be as efficient
as the spatial-Boris scheme at 20 steps per period, the RK
scheme would have to use only five steps per period. Fig-
ure 1 shows that for five steps per period, the RK scheme
can introduce errors of over 10% after only a few periods.
While this argument is only qualitative and does not ac-
count for the phase errors introduced by the spatial-Boris
scheme, for most problems involving a uniform solenoid
field, the advantages of the spatial-Boris scheme will out-
weigh any disadvantages.

IV. SIMULATIONS IN A SINUSOIDALLY VARYING
SOLENOID FIELD

As a second test of the different integration schemes, we
looked at simulations of particle motion in a sinusoidally
varying solenoid field. The z component of the magnetic
field used in these simulations is shown in Fig. 4. The
radial component of the magnetic field is chosen to satisfy
= ? B � 0. The distances for this problem are scaled to
the spatial oscillation period of the magnetic field, which
we call the lattice period and denote by ZL.

In this case, the gyroradius and perpendicular momen-
tum are not conserved quantities, but the canonical angular

FIG. 4. Bz (normalized to its peak value) as a function of
distance (normalized to the lattice period) from simulations with
a sinusoidally varying magnetic field. The magnitude of Br is
calculated to satisfy =B � 0.
094001-6
momentum is conserved. The canonical angular momen-
tum is

Lc � r�p 1 qA� , (37)

where A is the vector potential, and we consider only the
component of the canonical angular momentum parallel to
B. Figure 5 shows the longitudinal part of the canonical
angular momentum (normalized to its initial value) as a
function of distance (normalized to the lattice period) for
both schemes. The solid line shows the results using the
spatial-Boris scheme, and the dashed line shows the results
using the RK scheme. Both plots show results from simu-
lations with a step size of ten steps per lattice period.

This figure exhibits the behavior seen previously in com-
parisons of RK to other integration schemes (see Figs. 3
and 4 of Ref. [5]). The RK scheme introduces a secular
error in the longitudinal part of Lc, while the spatial-Boris
scheme introduces an oscillatory error. This implies that
for long enough integration distances, the spatial-Boris
scheme will be more accurate. Figure 6 shows the frac-
tional error as a function of step size for both schemes.
The error due to the RK scheme (calculated after 100 lat-
tice periods and shown as triangles) again scales as Dz5, as
it did for the case of the gyroradius in a uniform field. The
error due to the spatial-Boris scheme (shown as squares)
is independent of the final distance and is measured as the
amplitude of the oscillations seen in Fig. 5. The error for
the spatial-Boris scheme scales as Dz2, as expected for a
second-order integration scheme (the error in a single step
is of order Dz3, but the accumulated error over many steps

FIG. 5. The longitudinal part of the canonical angular mo-
mentum (normalized to its initial value) as a function of dis-
tance (normalized to the lattice period) for a step size of ten
steps per lattice period. The dashed line shows results using the
Runge-Kutta scheme, and the solid line shows results using the
spatial-Boris scheme. The Runge-Kutta scheme produces a secu-
lar drift, while the spatial-Boris scheme produces oscillation.
094001-6
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FIG. 6. Fractional error in the longitudinal canonical angular
momentum as a function of steps per lattice period for the
Runge-Kutta and spatial-Boris schemes. The error from the
Runge-Kutta scheme is shown by triangles, and the error from
the spatial-Boris scheme is shown by squares. The error in the
RK scheme is measured after 100 lattice periods. The error in
the spatial-Boris scheme is independent of the final integration
distance.

scales as Dz2). One might expect the canonical angular
momentum calculated using the spatial-Boris scheme to
oscillate about the initial value, thereby conserving canoni-
cal angular momentum on average. However for sym-
plectic integrators, it is known that the finite size of the
integration step shifts the invariants [8], and these shifted
invariants are not guaranteed to be symmetric about the
original invariants.

Unlike the uniform solenoid field, for the sinusoidally
varying solenoid field both integrators are introducing
errors into the conserved quantities. The RK errors are
secular, while the spatial-Boris errors are oscillatory, and
consequently one expects the spatial-Boris scheme to be
more efficient for long integration distances. However,
the RK scheme is a more accurate (fourth-order) scheme
than the spatial-Boris (second-order), and consequently
one expects the RK scheme to be more efficient for short
integration distances. Given a distance of integration, one
can calculate the accuracy level at which the spatial-Boris
and RK integrators require the same number of force
evaluations, NF , and therefore are equally efficient. We
call this accuracy level the crossover error. The error as a
function of the final distance for the RK scheme is

eRK � b
Zf

ZL
� b0

Dz5

Z5
L

Zf

ZL
, (38)

where b0 is a constant and Zf is the final distance. The
error due to the spatial-Boris scheme is given by
094001-7
FIG. 7. The crossover error (the fractional error level at which
the Runge-Kutta and spatial-Boris schemes use the same number
of force calculations) as a function of the integration distance
in lattice periods for a sinusoidally varying solenoid field. For
points to the left of the line, the Runge-Kutta scheme uses fewer
force calculations. For points to the right of the line, the spatial-
Boris scheme uses fewer force calculations.

eB � eB0
Dz2

Z2
L

, (39)

where eB0 is also a constant. From Fig. 6, we know b0 �
80.0 and eB0 � 3.0. The number of steps required for
a given step size and integration distance is N � Zf�Dz.
We denote the number of steps for the spatial-Boris scheme
as NB � NF and for the RK scheme as NRK � NF�4.
Setting Eq. (38) equal to Eq. (39) gives

e � eB0
�Zf�NB�2

Z2
L

� b0
Z5

f

N5
RKZ5

L
Zf�ZL . (40)

Substituting in and solving for NF and plugging back into
either Eq. (38) or Eq. (39) gives the crossover error, eC , in
terms of Zf�ZL:

eC �
e

5�3
B0

410�3b
2�3
0

µ
Zf

ZL

∂22�3

. (41)

Figure 7 shows eC as a function of Zf�ZL for b0 � 80.0
and eB0 � 3.0. For points to the left of the line, the Runge-
Kutta scheme uses fewer force calculations. For points to
the right of the line, the spatial-Boris scheme uses fewer
force calculations.

V. IMPLICATIONS FOR BEAM PHYSICS
SIMULATIONS

In this section, we discuss the implications of the effi-
ciency of the spatial-Boris scheme for typical beam physics
simulations. We show that for calculations where sta-
tistical errors are dominant (like the calculation of beam
094001-7
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emittance), the spatial-Boris scheme is more efficient over
distances typical of beam physics simulations. We estimate
that for simulations using approximately 106 particles and
going roughly 103 gyroperiods, the spatial-Boris scheme
is approximately 3 times more efficient.

A common calculation in beam physics is the beam
emittance. The emittance for the x direction, for instance,
is defined as

e2
x � �x2	 �p2

x 	 2 �xpx	2. (42)

This is a statistical quantity and so is subject to statistical
noise because there are usually fewer computational par-
ticles than beam particles. For instance, if a simulation
uses 106 particles, the statistical errors will be on the order
of

p
1�106 � 1023. Accelerators are typically a few hun-

dred meters long, with lattice periods on the order of a frac-
tion of a meter, so Zf�ZL � 103. Figure 7 shows that for
Zf�ZL � 103 the spatial-Boris scheme will be more effi-
cient for e � 1023. In fact, using Eq. (39) and e � 1023

gives a step size for the spatial-Boris scheme of
µ

Dz
ZL

∂
B

� 0.02 . (43)

The spatial-Boris scheme uses one force evaluation per
step, and so a simulation of Zf�ZL � 103 would require
5 3 104 force evaluations. By comparison, Eq. (38) gives

µ
Dz
ZL

∂
RK

� 0.025 . (44)

The RK scheme uses four force evaluations per period, so a
simulation of Zf�ZL � 103 would require approximately
1.6 3 105 force evaluations. For these parameters, the
spatial-Boris scheme is roughly 3 times more efficient.
In other words, if the computation time in the simulation
is dominated by force evaluations (as it will be for many
codes), a simulation using the spatial-Boris scheme should
run 3 times faster than a simulation using the RK scheme.

VI. CONCLUSION

We have developed a modified Boris-like integration,
in which a spatial coordinate is the independent variable.
This spatial-Boris integration method is useful for beam
simulations, in which the independent variable is often the
distance along the beam. The new integration method is
second order accurate, requires only one force calculation
per particle per step, and preserves conserved quantities
more accurately over long distances than a Runge-Kutta
integration scheme. We compared results from the spatial-
Boris integration method and a Runge-Kutta scheme for
two simulations: a particle in a uniform solenoid field and
a particle in a sinusoidally varying solenoid field. In the
uniform solenoid case, the spatial-Boris scheme conserves
perfectly for any step size quantities such as the gyroradius
094001-8
and the perpendicular momentum. The Runge-Kutta inte-
grator produces damping in these conserved quantities. For
the sinusoidally varying field simulations, error analysis is
used to determine the integration distance beyond which
the spatial-Boris integration method is more efficient than
a fourth-order Runge-Kutta scheme. For beam physics ap-
plications where statistical quantities such as beam emit-
tance are important, these results imply the spatial-Boris
scheme is 3 times more efficient.

A possible application of this work is to provide an al-
ternate algorithm for self-consistent simulations. Lidia,
for example, has recently developed [9] a self-consistent
klystron simulation code that calculates part of the propa-
gation using approximate maps obtained by integration of
trajectories. The spatial-Boris integrator might be used for
obtaining these maps. There is no guarantee that the map
obtained by spatial-Boris integration is symplectic, but it
does have many of the good qualities of symplectic inte-
grators, such as no secular change of conserved quantities.
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APPENDIX A: CALCULATION OF THE
GYRORADIUS IN A UNIFORM SOLENOID WITH

THE RUNGE-KUTTA INTEGRATION SCHEME

In this appendix, we show that calculating the gyroradius
with a fourth-order RK scheme for a uniform solenoid field
gives a fortuitous cancellation of the expected fifth-order
error. This explains the scaling of the error seen in Fig. 2.

The exact expression for the gyroradius in a uniform
field is

x�z� � x0 cos�kz� 1 y0 sin�kz� , (A1)

y�z� � y0 cos�kz� 2 x0 sin�kz� , (A2)

where k � qB�pz . In a single step of dimensionless size
d � kDz, the RK scheme gives the same result as Taylor
expanding the exact expression to fourth order:

xn11 � xn

µ
1 2

d2

2
1

d4

24

∂
1 yn

µ
d 2

d3

6

∂
, (A3)

yn11 � yn

µ
1 2

d2

2
1

d4

24

∂
2 xn

µ
d 2

d3

6

∂
. (A4)

To calculate the radius, we need to square x and y. Keeping
terms to sixth order, squaring the above gives
094001-8
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x2
n11 � x2

n 1 d�2xnyn� 1 d2�y2
n 2 x2

n�

1 d3

µ
2

4
3

xnyn

∂
1 d4 1

3
�x2

n 2 y2
n�

1 d5

µ
1
4

xnyn

∂
1 d6

µ
1
36

y2
n 2

1
24

x2
n

∂
,

(A5)

y2
n11 � y2

n 1 d�22xnyn� 1 d2�x2
n 2 y2

n�

1 d3

µ
4
3

xnyn

∂
1 d4 1

3
�y2

n 2 x2
n�

1 d5

µ
2

1
4

xnyn

∂
1 d6

µ
1
36

x2
n 2

1
24

y2
n

∂
.

(A6)

The odd terms in these expressions are of opposite sign,
and so when one calculates the radius, r2 � x2 1 y2, only
even terms will survive. Further, the second-order and
fourth-order terms cancel as expected. Thus, the change
in radius squared from n to n 1 1 is

r2
n11 2 r2

n � �x2
n11 1 y2

n11� 2 �x2
n 1 y2

n�

� 2
d6

72
�x2

n 1 y2
n� . (A7)

Taking the square root to get from r2 to r will not affect
the order of the error. This shows the error in radius in one
step of a fourth-order RK is sixth order.

APPENDIX B: CALCULATION OF GYRORADIUS
AND PERPENDICULAR MOMENTUM

IN A UNIFORM SOLENOID WITH THE
SPATIAL-BORIS INTEGRATION SCHEME

In this appendix, we show that calculating the gyrora-
dius and perpendicular momentum with the spatial-Boris
scheme in a uniform solenoid field yields zero error.

For the case where Bz is the only field component, the
matrix R in Eq. (22) is

R �
2b

1 1 b2

0
@ 2b 1 0

21 2b 0
0 0 0

1
A , (B1)

where b � kDz�2. This means after one step from n to
n 1 1, the momenta become
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pn11
x � pn

x 1
2b

1 1 b2 �2bpn
x 1 pn

y � ,

pn11
y � pn

y 1
2b

1 1 b2 �2bpn
y 2 pn

x � .

(B2)

According to the spatial-Boris scheme, the positions get a
half-step kick with the momenta at n and a half-step kick
with the momenta at n 1 1. This gives

xn11 � xn 1
pn

x

pz
Dz 1

Dzb

1 1 b2

µ
2b

pn
x

pz
1

pn
y

pz

∂
,

yn11 � yn 1
pn

y

pz
Dz 1

Dzb

1 1 b2

µ
2b

pn
y

pz
2

pn
x

pz

∂
.

(B3)

By using the initial conditions pn
x � kynpz and pn

y �
2kxnpz and working through the algebra, one gets

�pn11
x �2 1 �pn11

y �2 � �pn
x �2 1 �pn

y �2,

�xn11�2 1 �yn11�2 � �xn�2 1 �yn�2.
(B4)

Thus the perpendicular momentum and gyroradius are con-
served exactly by the spatial-Boris scheme.
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