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The luminosity in flat-beam circular colliders is known to “saturate” at some “threshold” beam cur-
rent above which (because the beam height grows) the luminosity varies (only) linearly with beam
current, making both the specific luminosity (luminosity/current) and the beam-beam tune shift parame-
ter jy independent of current. The purpose of this paper is to calculate jy analytically with the goal
of maximizing the luminosity. A zero parameter application of the theory to 13 existing storage ring
configurations yields theory/experiment equal to 1.26 6 0.45 for jy,max. Parameter values (especially
tunes Qx , Qy , and Qs) expected to maximize jy are given. The most favored tune combinations seem
not to have been tried so far in colliding beam facilities. The vertical beam growth is ascribed to “para-
metric pumping” of the vertical betatron amplitude of each individual particle by its own (inexorable)
horizontal and longitudinal oscillation. A unique determination of the distribution of all particles then
follows from a saturation principle which asserts that the beam height adjusts itself to the value for
which the least stable particle (of probable amplitude) is barely stable. The difference equation de-
scribing the pumping can be solved by numerical iteration or, because it is (almost) linear, it can be
solved analytically, at least for amplitudes small enough that resonances remain isolated. Because of the
aliasing (or undersampling) characteristic of accelerators, this equation exhibits an even richer spectrum
of resonances than the Mathieu equation, which the present theory generalizes. Contrary to the lore of
the field (which motivates the intentional increase of damping decrement dy using wigglers), the theory
presented here predicts the dependence of luminosity on dy to be quite weak. This is not inconsistent
with actual collider performance according to a survey by Rice [D. Rice, Cornell University Report
No. CBN 01-09 (2001)] of colliding rings built thus far.

DOI: 10.1103/PhysRevSTAB.5.081001 PACS numbers: 41.75.-i, 29.27.Bd
I. BEAM-BEAM OBSERVATIONS FROM EXISTING
e1e2 STORAGE RINGS

This paper is concerned with “saturation” of the specific
luminosity, a phenomenon best understood by referring
to experimental data. Luminosity data collected in 1985
by Seeman [1] for a variety of colliding rings (VEPP-2M,
DCI, ADONE, SPEAR, CESR, PETRA, and PEP 3B) are
shown in Fig. 1. In almost all cases saturation is ob-
served — above some threshold the luminosity increases
only linearly with current, and jy (which measures the
charge density of the opposing beam in units such that jy

is the tune shift caused by passage through the other beam)
is correspondingly constant.

This saturation phenomenon is consistent with observa-
tion (using synchrotron radiation) of beam shapes. For ex-
ample, in an early observation at CESR, when the beams
were separated, independent of beam current, the beams
had rms width 1.4 mm and rms height not greater than
30 mm (diffraction limit of optics); after being brought
into collision the widths were sensibly unchanged but the
rms beam heights were 58 mm and the beam height then
increased proportionally with beam current. This causes
the beam-beam tune shift parameter jy to saturate and
no longer increase with increasing beam current. The
fact that the horizontal profiles are unaffected corresponds
to the assumption in this paper that this motion is inex-
1098-4402�02�5(8)�081001(19)$20.00
orable and the beam height enlargement is ascribed to the
parametric pumping of vertical oscillations by horizontal
oscillations.

Luminosity behavior of LEP is described by Brandt
et al. [2]. Saturation of jy is again observed. (There is
a suggestion also of saturation of jx in one case. This
is mentioned only because, if true, it would contradict a
fundamental assumptions of the present paper — that the
horizontal motion is, except for modest tune shifts to be
explained later, independent of beam current.) When run-
ning LEP at highest energy, 100 GeV, no saturation was
observed up to the highest possible beam current. This
would tend to contradict the model being presented ex-
cept that the authors note that the coupling coefficient
could not be reduced below k � 0.8%. According to the
present paper, saturation of jy would set in already at ar-
bitrarily small beam current in a perfect ring, but this be-
havior is masked by any beam height sy0 present due to
single beam effects, especially coupling or vertical dis-
persion. This picture is supported by observed behavior,
for example, at CESR and PETRA, in which reducing the
coupling reduces the threshold current at which saturation
sets in.

In 1983, extrapolating empirically from existing rings
to predict future behavior for LEP, Keil and Talman [3]
conjectured that the damping decrement dy � 1�2kft

(where k is the number of bunches, f is the revolution
© 2002 The American Physical Society 081001-1
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FIG. 1. Tune shift parameter saturation observed (pre–1985) at various e1e2 colliding beams. Copied from Seeman [1].
frequency, and t the is damping time) would strongly in-
fluence the luminosity saturation behavior. Plotting jy,max
against dy for rings operating at the time (mainly
PETRA and CESR) for values mainly in the range
0.5 3 1025 , dy , 2 3 1025 a “strong” power law
dependence jmax � d0.38

y was found. The luminosity
projection for LEP obtained by extrapolating this fit turned
out to be almost a factor of 2 too low at lowest energy but
roughly correct at higher energies. This suggested a power
law exponent considerably smaller than 0.38. Surveying
the dependence of jy on dy, for numerous modern rings,
Rice [4] has produced Fig. 2. This data shows that the
power law dependence (to the extent it is applicable at all)
could be as weak as jmax � d0.05

y .
The present paper attempts to clarify the influence

of damping decrement on luminosity, neglecting any
multiparticle-coherence aspects. The conclusion (based
on theory alone) will be that the dependence is weak.
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FIG. 2. A survey by Rice of the dependence of beam-beam
tune shift parameter jy on damping decrement dy, as observed
at various, not too ancient, colliding rings. For each ring, deter-
minations of jy by alternative methods are indicated by different
symbols. The straight lines represent “weak” (jy � d0.05

y ) and
“strong” (jy � d0.333

y ) power law dependencies.
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Beam-beam calculations are often characterized as be-
ing weak-strong or strong-strong, depending upon whether
or not the opposing beam profile is held fixed. The ap-
proach taken here does not really fit either category. On
the one hand, the inexorable treatment of horizontal and
longitudinal motion of both beams could be characterized
as a weak-weak assumption [5]. On the other hand (once
the saturation principle and the Gaussian profile assump-
tion have been adopted), my treatment of vertical motion
can be said to be strong-strong. Another way in which
the present calculation differs from earlier calculations
is that it includes (essentially) no Monte-Carlo-supplied
fluctuations.

Many beam-beam calculations have been reported in
the past. By this time fully numerical, strong-strong simu-
lations, in which particles subject to quantum fluctuations
are tracked individually in six dimensions, have been rea-
sonably consistent with experimental observations at the
various colliding beam facilities. The present calculation
is more in the spirit of earlier papers which attempted to
distill out essential features. Some of these were primarily
numerical [6], others [7] concentrated on analytic treat-
ment of the influence of resonances on large amplitude
particles and especially the possibility of diffusionlike
growth of particle amplitudes. Nonlinearity provided the
unifying thread for these calculations.

This paper, emphasizing, as it does, the near-linearity of
the equations describing the process, gives a very differ-
ent, and far simpler, picture. It is interesting to note one
way in which the present model accounts for a feature of
an early numerical simulation that seemed mysterious at
the time. Paraphrasing Tennyson [8], “When the vertical
fluctuations are removed from the mapping (and the damp-
ing correspondingly reduced as follows from Tennyson’s
Eq. 6) the dependence of beam height on beam current
remains essentially unchanged.” From the perspective of
this paper, in which the near absence of dependence on
vertical damping rate is a central feature, this observation
is not surprising. An aspect of Tennyson’s simulation that
he found mysterious, and remains mysterious, is a strong
dependence of beam height on horizontal fluctuations.
081001-2
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II. QUALITATIVE DESCRIPTION OF THE
PARAMETRIC PUMPING MODEL

It is not surprising that the (tiny) beam height is much
more sensitive to the beam-beam interaction than is the
(large) width. Since the horizontal motion is “hot” and
the vertical “cold,” any mechanism that couples these
motions tends to affect the vertical motion a great deal,
without necessarily affecting the horizontal motion no-
ticeably. The model proposed in this paper accepts this
feature without further justification; that is, the horizontal
motion of every individual electron is inexorable, inde-
pendent of interaction with the other beam (except for
an amplitude-dependent tune shift as the opposing beam
currents are increased).

Quite the opposite comments apply to the vertical mo-
tion. In an ideal electron storage ring, if there were no
cross-plane coupling or other extraneous source of verti-
cal excitation, jy would be infinite because the vertical
beam height would be zero [9]. In this ideal limit any jy-
dependent instability threshold whatsoever would be ex-
ceeded for any finite beam current. In particular, the
resonance emphasized in this paper, parametric pumping
of vertical oscillations by horizontal oscillations, is certain
to occur. (The pumped-parameter here is the vertical beta-
tron tune Qy � my�2p .) In this process, if the threshold is
exceeded for any particular electron, the vertical amplitude
of this electron will increase up to a well-defined level that
depends on jy and ax , the horizontal amplitude of the par-
ticular electron. Furthermore, most of the particles must
be under the influence of some such amplitude build up; if
some large class (e.g., all particles below one-half sigma
horizontal amplitude) were free of perturbation, their ver-
tical amplitudes would damp strongly, again causing un-
physically large beam density.

Electrons in one beam do not interact directly with each
other, but the result of their simultaneous interaction with
all the particles in the other beam is a global equilibrium
in which all electrons are at least marginally stable against
the parametric pumping. The total effect is that the beam
height will have increased to a nonzero value such that jy

is just low enough for this marginal stability to be achieved
for (essentially) all electrons. The saturation theory (or
more properly, saturation principle) now expounded is that
the beam height adjusts itself to the value for which the
least stable particle is barely stable [10]. To turn this
principle into a practical theoretical calculation that can
predict the vertical beam height it is necessary to qualify
the statement slightly by limiting it to particle amplitudes
having appreciable probability. What is to be calculated
is the saturation value of the beam-beam tune shift param-
eter, jsat or, equivalently, the beam height sy , which is
proportional to 1�jsat.

Single beam (noncolliding) distributions, both horizon-
tal and vertical, are observed to be Gaussian distributed.
This is well understood as being the result of a competi-
081001-3
tion between quantum fluctuations and damping, both of
which are due to synchrotron radiation. It is implicit in
assumptions already made that the horizontal distribution
is unaffected by the beam-beam interaction. But the para-
metric pumping, at a minimum, introduces a correlation
between horizontal and vertical amplitudes, and is capa-
ble, therefore, of causing the vertical distribution to be-
come non-Gaussian. An electron pumped to large vertical
amplitude will tend to stay locked on resonance in spite of
its damping, for a length of time comparable with the syn-
chrotron radiation equilibration time (typically thousands
of turns). On a longer time scale the particles will tend
to be knocked off resonance by quantum fluctuation. But,
because the parametric pumping growth is (initially) expo-
nential, the amplitude of each particle subject to resonance
grows to its limiting value within tens of turns. This paper
makes no attempt to analyze the complete dynamic evo-
lution, which is clearly very complicated. Rather it is as-
sumed that the equilibrium distributions remain Gaussian,
so the entire current dependence of the distribution is en-
capsulated in the dependence on beam current of a single
parameter sy .

The leading parametric resonance in mechanical oscil-
lators occurs for drive frequency equal to twice the natural
frequency; the result is a response that is a subharmonic
of the drive. The theory of this phenomenon has a long
history going back at least to Lord Rayleigh [11]. The
equation of motion is known as the “Mathieu equation” or,
in greater generality, the “Hill equation” [12]. The lead-
ing behavior is clearly analyzed by, for example, Landau
and Lifshitz [13]. Other than employing difference equa-
tions rather than differential equations, the present treat-
ment mirrors the Landau-Lifshitz treatment. The need for
difference equations arises because of the impulsive na-
ture of the beam-beam interaction. For the same reason
the phenomenon of aliasing, without changing the essence,
increases the number of possible resonances and alters the
vocabulary. There are striking similarities between Math-
ieu domains of instability [12] and storage ring domains of
instability (see Fig. 11, which is explained in Appendix B).
Because the bunch distributions are symmetric horizontally
the vertical tune modulation occurs at tune 2Qx . Because
of the subharmonic nature mentioned earlier in this para-
graph, this causes resonance at Qy � 2Qx�2 � Qx . Even
though this is the same condition as for the so-called “dif-
ference resonance” (or “coupling resonance” in accelerator
physics jargon) the nature of the resonances are completely
different, for example, because the coupling resonance is
driven by skew quadrupole forces. Furthermore, paramet-
ric resonance is comparably effective for both sum and
difference resonances, Qx 6 Qy � integer.

Except for detuning at large vertical amplitudes, the
equations governing parametric pumping are linear. The
detuning can be accounted for using well-established
mathematical approximations, for example, as described
by Migulin [14].
081001-3
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III. DIFFERENCE EQUATION FOR VERTICAL
MOTION

As illustrated in Fig. 3, the vertical deflection of an elec-
tron passing through the other beam at a location with lat-
tice function b is [15,16]

Dy0 � 2
4pj

b

r
p

2
s erf

µ
y

p
2 s

∂

� 2
4pj

b
y

µ
1 2

y2

6s2

∂
, (1)

where the vertical distribution has been assumed to be
Gaussian with rms size s, and the error function depen-
dence results from direct application of Gauss’ law as-
suming s ø sx . That the appropriate numerical factor
has been introduced so that j is beam-beam tune shift
for a small amplitude particle can be seen: a quadrupole
of strength q causes deflection Dy0 � qy which causes
small amplitude tune shift DQ � 2bq�4p [17]. The lin-
ear part of the beam-beam deflection is labeled “equivalent
quadrupole” in Fig. 3.

To account for the damping that accompanies syn-
chrotron radiation one introduces a small “damping
decrement” d, so that the once-around transfer map in
“Twiss form” isµ

y
y 2 Dy0�2

∂
t11

� exp�2d�
µ

C0 1 aS0 bS0
gS0 C0 2 aS0

∂

3

µ
y

y0 1 Dy0�2

∂
t
, (2)

and a similar equation can be written for backwards propa-
gation from t to t 2 1. Note that y0 is evaluated at the cen-
ter of the other beam. I am using the notation C0 � cosm0
and S0 � sinm0. For these two maps the top equations are

∆y deflection

actual beam-
beam deflection

σy-

"equivalent
quadrupole"

ξ y

y

σy

4 π σ
βy

y−

FIG. 3. Dependence of vertical deflection Dy0 on vertical dis-
placement y. The deflection of an “equivalent” quadrupole of
strength q � 24pj�b is also shown. For an e1e2 collider
j . 0.
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exp�1d�yt11 � �C0 1 aS0�yt 1 bS0�y0 1 Dy0
t�2� ,

(3)

exp�2d�yt21 � �C0 2 aS0�yt 2 bS0�y0 2 Dy0
t�2� .

(4)

Treating d as small and adding these equations to eliminate
y0 yields [18]

yt11 �
2C0yt 2 yt21�1 2 d� 1 bS0Dy0

t�xt , yt , st�
1 1 d

.

(5)

This formula is extremely convenient for numerically
evolving y into the future by simple iteration; the only
substantial calculation required is the determination on
each iteration of Dy0

t (whose dependence also on trans-
verse coordinate xt and longitudinal coordinate st will
be introduced shortly). This evolution can be stable or un-
stable in ways to be analyzed. Once Dy0

t has been spelled
out explicitly, Eq. (5) represents the entire saturation
theory—jsat is the largest value for which all amplitudes
(except those so far out in the tails of the distribution
as to be negligible) are stable. This calculation can be
performed numerically by checking the stability of Eq. (5)
for a sufficiently representative selection of amplitudes
and a sufficiently large number of turns.

Within the limitation of the model (for example the un-
certainty in picking what constitutes a “probable ampli-
tude” in the saturation principle) the numerical procedure
just described can be arbitrarily accurate but, being numeri-
cal, it provides little intuitive guidance as to the essence
of the process. For such guidance an analytic solution of
difference Eq. (5) is useful, even if it is quantitatively in-
accurate. It is convenient to set d � 0 for the moment,
planning to account for damping later, to approximate the
error function according to the final version of Eq. (1), and
to move the linear part of the deflection to the left-hand
side of the equation. Then the equation of vertical motion
is

yt11 2 2Cyt 1 yt21 � S4pj
y2

6s2 y . (6)

Here we have defined C � cos�m0 1 2pj�, S �
sin�m0 1 2pj� in order to incorporate the linear part of
the beam-beam deflection into the unperturbed motion. If
the right-hand side is evaluated for “zeroth approximation”
motion yt � ay cosmt, and only the fundamental Fourier
component (varying as cosmt) retained, the result is

Spj

2

a2
y

s2 ay cosmt . (7)

Resubstituting ay cosmt � yt , this term can be incorpo-
rated approximately into the equation of motion by defin-
ing an amplitude-dependent coefficient [19],
081001-4
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C̄ � cosm̄ � C 1
Spj

4

a2
y

s2

� C 1
Spj

4

∑
1 2 exp

µ
2

a2
y

s2

∂∏
. (8)

This transforms the equation of motion into

yt11 2 2C̄yt 1 yt21 � bSDy0
t , (9)

where Dy0
t is any not-yet-included perturbation. (It is not

necessary to replace S by the corrected value S̄ since this
factor appears only in the perturbing term.) Though C̄ will
be obtained directly from Eq. (8) when it is needed, the
tune at amplitude a can be expressed directly by expanding
Eq. (8),

m̄ � m0 1 2pj

Ω
1 2

1
8

∑
1 2 exp

µ
2

a2

s2

∂∏æ

� m 2
pj

4

∑
1 2 exp

µ
2

a
s2

∂∏
. (10)

The amplitude-dependent part becomes increasingly nega-
tive as a increases, which causes the tune shift to be less
positive than would be given by the linearized focusing
force alone. Until amplitude-dependent detuning becomes
an issue there will be no need to distinguish between C̄ and
C since instability thresholds occur for amplitudes small
enough that C̄ � C.

The dependence of horizontal tune on horizontal am-
plitude will be much the same as that for the vertical
motion. The leading variation of Dx0 is proportional to
1 2 x2�2s2

x , just as in Eq. (1).

IV. SUBHARMONIC PARAMETRIC EXCITATION
OF VERTICAL OSCILLATIONS

We now turn to the mathematical analysis of beam-beam
distortion. From a pedagogical point of view the reader
unfamiliar with difference equations might profit from first
reading Appendix A, which uses difference equations to
solve for betatron response to an external shaker. Because
that drive is “direct” the analysis is simpler than this section
requires. Higher order parametric resonances are analyzed
in Appendix B.

The vertical beam-beam deflection, given previously by
Eq. (1), actually depends also on both the horizontal and
longitudinal displacements. Because the beams are ribbon
shaped, and both profiles are Gaussian, the y-linearized
deflection on turn t is given by [20]

Dy0
t � 2

4pj

b
exp

µ
2

a2
x cos2mxt

2

∂

3

vuut1 1 a2
s

µ
ss

b�
y

∂2

cos2mstyt , (11)

where mx and ms are horizontal and longitudinal tunes
(multiplied by 2p) and where units have been chosen so
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sx � 1. j is now to be interpreted as the value of the tune
shift parameter at x � s � 0. For much of this paper, in
the interest of keeping the formulas simpler, I will con-
centrate on the transverse motion by taking as � 0. The
same formulas derived for x motion can be easily tran-
scribed to incorporate s when needed. Of course, including
another degree of freedom introduces many more reso-
nances. Since ms ø mx it will be natural to regard the new
resonances as “satellites” of the horizontal resonances.

It is appropriate to Fourier expand the Gaussian factor
in Eq. (11) [21],

Dy0
t � 2

4pj

by

(X̀
n�0

∑
B0

2
1 Bn cos�2nmxt�

∏æ
yt . (12)

The coefficients Bn can be evaluated in terms of (modified)
Bessel functions In using an integral from Watson [22], the
result is

Bn�ax� � 2 exp

µ
2

a2
x

4

∂
In

µ
a2

x

4

∂
. (13)

Values of the Bn (which are unrelated to Bernoulli num-
bers) are given in Table I. The first row and first column
are shown only for completeness. B0 can (and will) be set
to zero as far as the mechanism of this paper is concerned.
(This is consistent with the formulation described previ-
ously, where the leading effect of the beam-beam inter-
action was defined to be part of the unperturbed motion.)
The coefficients Bn�ax� depend (importantly) on ax but,
for brevity, this argument is suppressed in Eq. (12) and in
all subsequent equations.

We hypothesize the response of an individual electron
to the parametric drive to be betatron motion for which
the dominant part is sinusoidal, with a frequency m̃ to be
determined,

yt � a cos��m 1 ´n�t� 1 b sin��m 1 ´n�t�

� a cosm̃t 1 b sinm̃t . (14)

Here ´n, to be defined, is a “small” frequency deviation
from the natural frequency. It is possible for any of the
terms in the sum (12) to resonate with (and hence cause)
this motion. The quantity m 1 ´n has been replaced by
m̃ in Eq. (14) and from here on, even though this sup-
presses the (essential) index n. The coefficients a and b
are “variation of constants” coefficients whose variation
will be arranged to satisfy the equation of motion. They
are assumed to vary slowly with t; that is, their fractional
changes per revolution are small compared to 1. If they
are treated as depending on a continuous variable t, then

at61 � at 6 �at and bt61 � bt 6 �bt . (15)

From this point on, the t subscripts on a and b will be
suppressed.

Combining Eq. (12) (with constant term dropped) and
Eq. (14) yields
081001-5



PRST-AB 5 RICHARD TALMAN 081001 (2002)
TABLE I. Fourier coefficients Bn�ax� as given by Eq. (13).

n Bn�0� Bn�sx� Bn�2sx� Bn�3sx� Bn�4sx� Bn�5sx�

0 2.0 1.58 0.932 0.575 0.414 0.326
1 0.0 0.196 0.416 0.422 0.358 0.299
2 0.0 0.0122 0.0999 0.199 0.235 0.231
3 0.0 0.000 509 0.0163 0.0680 0.122 0.151
4 0.0 0.000 015 9 0.002 01 0.0180 0.0519 0.0854
5 0.0 0.397 3 1026 0.000 200 0.003 90 0.0185 0.0420
6 0.0 0.827 3 1028 0.000 016 5 0.000 710 0.005 66 0.0182
7 0.0 0.148 3 1029 0.118 3 1025 0.000 112 0.001 51 0.007 03
8 0.0 0.231 3 10211 0.733 3 1027 0.000 015 4 0.000 359 0.002 45

2
Dy0

t

4pj�b
�

X̀
n�1

Bn cos�2nmxt� �a cos�m̃t� 1 b sin�m̃t��

�
X̀
n�1

Bn

2
	a cos��2nmx 2 m 2 ´�2�

n �t� 2 b sin��2nmx 2 m 2 ´�2�
n �t�


1
X̀
n�1

Bn

2
	a cos��2nmx 1 m 1 ´�1�

n �t� 1 b sin��2nmx 1 m 1 ´�1�
n �t�
 . (16)

Any term in these sums can potentially cause resonance. The frequency offsets ´�6�
n quantify “phase offsets from nearest

resonances” by the following relations (for which the overall signs are not significant)

2nmx 1 m 1 ´�1�
n � 2�m 1 ´�1�

n � or ´�1�
n � nmx 1 m ,

2nmx 2 m 2 ´�2�
n � 1�m 1 ´�2�

n � or ´�2�
n � nmx 2 m .

(17)
Presumably a particular one of these possibilities, for ex-
ample n, �2�, will dominate over all others. From here on
the index n will be specialized to indicate this particular
dominant case. Then, dropping all other terms, Eq. (16)
becomes

Dy0
t � 2

4pj

b

Bn

2
�a cos�m̃t� 2 b sin�m̃t�� . (18)

Substitution into Eq. (9) yields

yt11 2 2C̄yt 1 yt21

� 2S2pjBn�a cos�m̃t� 2 b sin�m̃t�� . (19)

(As mentioned earlier, it is initially unnecessary to distin-
guish between C̄ and C.) Including the time variation of
a and b, Eq. (14) yields

yt11 � �a 1 �a� �cosm̃ cos�m̃t� 2 sinm̃ sin�m̃t��
1 �b 1 �b� �sinm̃ cos�m̃t� 1 cosm̃ sin�m̃t�� ,

yt21 � �a 2 �a� �cosm̃ cos�m̃t� 1 sinm̃ sin�m̃t��
(20)

1 �b 2 �b� �2 sinm̃ cos�m̃t� 1 cosm̃ sin�m̃t�� .

Substituting into Eq. (19), and requiring the sine and co-
sine term coefficients to vanish separately, yields the equa-
tions

2 �a sinm̃ 1 b cosm̃ 2 C̄b 2 SpjBnb � 0 ,

�b sinm̃ 1 a cosm̃ 2 C̄a 1 SpjBna � 0 .
(21)
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Seeking a solution for which a and b exhibit time depen-
dence of the form exp�ivt� yields0

@ 2iv
cosm̃2C̄2SpjBn

sinm̃

2 cosm̃1C̄2SpjBn

sinm̃ a 2iv

1
A ≥ a

b

¥
� 0 . (22)

The requirement for a nontrivial solution to exist is that
the determinant formed from the coefficients must vanish;
this yields

v2 �
�cosm̃ 2 C̄�2 2 �SpjBn�2

sin2m̃
. (23)

In this form the condition for stable motion is that v2

be positive (since the alternative yields one exponentially
growing solution). Making the assumptions ´n ø 1 and
C � C̄ allows the approximations cosm̃ 2 C̄ � 2S´,
sinm̃ � S. Then setting v � 0 to determine the edges of
a “stop band” yields [23]

´2 � �pjBn�2 or 2pjBn , ´ , pjBn . (24)

By setting d to zero we have so far been neglecting
damping and have found that, even with no damping, if
´ lies outside the stop band, the motion will be stable.
In fact there is damping, as represented by d fi 0. The
threshold of instability is therefore determined by requiring
the growth rate given by Eq. (23) to be equal to d,
081001-6
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q
2´2 1 p2j2B2

n � d . (25)

The band of instability is therefore given by

2´l , ´ , ´l , where ´l �
q

p2j2B2
n 2 d2 . (26)

For d . pjBn there is no unstable band at all. It is in
this resonance-suppressing role that d might be expected
to have its greatest potential influence on luminosity.

The prediction so far is that the motion is either stable or
that, within a limited band, the amplitude grows exponen-
tially without limit. Such growth would eventually invali-
date the small amplitude assumption on which the equation
is based and, in fact, the amplitude-dependent detuning an-
alyzed earlier limits the growth. Because of the nonlinear-
ity, as well as the state of equilibrium with a2

y � 0, there is
a state of equilibrium with a2

y � a2 1 b2 fi 0. Substitut-
ing for C̄ from Eq. (8), Eq. (23) depends on the amplitude
parameter ay . After rearrangement the condition becomes

´ � 6

q
p2B2

nj2 2 d2 2
pj

4

∑
1 2 exp

µ
2

a2 1 b2

s2

∂∏

� 6

q
p2B2

nj2 2 d2 2
pj

4

a2
y

s2 . (27)

If there is an unstable band then p2B2
nj2 2 d2 is positive

so picking the positive-sign square root yields a positive
value for a2 throughout the stop band of Eq. (26). This
equation sets the amplitude at which the growth of vertical
amplitude is limited by the amplitude-dependent detuning.
The vertical amplitude of any particle whose tunes place
it in the range Eq. (26) will be pumped immediately to
the value given by Eq. (27). The functions of Eq. (27) are
plotted schematically in Fig. 4. It can be seen that stable
motion with a fi 0 is even possible for ´ , 2´l . This
asymmetry in ´ will be important in interpreting numerical
solutions of the master difference equation. In particular, it

π ξ
4

σ

−εl
εl

ayexact
resonance

ε

FIG. 4. Plot of Eq. (27). Open circles mark stable motion: a
temporary excursion to larger ay moves the system away from
exact resonance which tends to reduce ay . Crosses mark un-
stable motion. The broken curve indicates the type of depen-
dence to be expected from a more detailed theory including other
nonlinearity.
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seems to account for the numerically observed superiority
of values Qx just above resonance compared to values just
below.

For the special case d � 0 the band limits are at ´ �
6pjBn so the amplitude lies in the range 0 , ay ,

�2
p

2Bn s. From Table I one notes that values of Bn

likely to be important vary over the range from, for ex-
ample, 0.05 to 0.5, depending on ax , so the limiting am-
plitude ranges from close to zero up to about 2s. As the
particle oscillates its loss of vertical amplitude due to ra-
diation damping will tend to be replenished immediately
by the pumping mechanism and the particle will oscillate
rather stably for many turns. But the particle’s random
walk in horizontal phase space will eventually disrupt the
resonance. Positive damping (d . 0) reduces the limiting
amplitude (though typically very little) and, as noted pre-
viously, reduces the stop band width.

There is a certain self-consistency here—whatever the
beam height is, at least approximately, the pumping mecha-
nism provides the support for just that beam height. This
“natural” relationship corroborates the identification of de-
tuning as the amplitude-establishing mechanism since the
height scale on which detuning occurs is about the same as
the beam height itself. Just what this height s is remains
to be determined. The further relation that, in principle,
fixes s is that j depends inversely on s. The relation can
be written as

j �
I 0

s
, (28)

where I 0 is the beam current, as measured in units chosen
to make the constant of proportionality be 1. The factors
entering this relation are all well known in practice.

Though it is still too encumbered with limitations to give
an accurate picture, and it is not clear what form of aver-
aging is appropriate, Eq. (27) can be manipulated to ex-
press this self-consistency semiquantitatively. Since the
beam height is supposed to be ascribable to the pumping
mechanism that the equation describes, one has to suppose
a � s is typical. With this assumption Eq. (27) deter-
mines j according to

1
2

j2 2
´

4pB2
n

j 2
´2 1 d2

2p2B2
n

� 0,

assuming 16B2
n ¿ 1 , (29)

which can be solved to give

jmax �
1

p
2pBn

µ
´

2
p

2 Bn
1

p
´2 1 d2

∂
. (30)

Then s is determined by Eq. (28). To be valid at all this
formula assumes that a single resonance is dominant and
that ´ corresponds to that resonance. The structure of this
formula predicts that the dependence of jmax on d is more
complicated than the power law dependence mentioned
earlier. In any case the main purpose of Eq. (30) is to
illustrate an in-principle, parameter-free, determination of
081001-7
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the limiting tune shift parameter. Since d ø e is typical,
Eq. (30) exhibits only a very weak dependence on d. This
contrasts with the threshold tune shift value which, accord-
ing to Eq. (39), depends sensitively on d.

V. OTHER RESONANCES

Equation (14) was not the most general possibility for
parametric resonance. For example, suppressing the t sub-
scripts (as before) to free up a position for Fourier indices,
let us seek a solution of the form

y � a0 1

3X
m�1

am cos�mm̃yt� 1

3X
m�1

bm sin�mm̃yt� ,

(31)

truncated, in this case, at m � 3.
Performing the same substitutions as before leads to

definitions, such as those in Eq. (17), that pick out tune
combinations for which the perturbed frequency matches
the fundamental frequency. Recalling that my 1 ´n �
m̃y ,

2nmx 2 �s 1 1�m̃y � m̃y or 2nmx � �2 1 s�m̃y ,
(32)

where s is another integer. The case s � 0 was previously
called “lowest order.” Let us try s � 21, so 2nmx � m̃y ,
or ´n � 2nmx 2 my . Solving the resulting equations
yields

a2 �
SypjyBn

Cy 2 cos 2m̃y
a1, b2 �

SypjyBn

Cy 2 cos 2m̃y
b1 .

(33)

The stop band edges are unbalanced:

´n1 � 2
Sy�pjyBn�2

Cy 2 cos 2m̃y
,

´n2 � Sy�pjyBn�2

µ
2

1 2 Cy
1

1
Cy 2 cos 2m̃y

∂
.

(34)

This resonance, with n � 1, s � 21, is not really “new”
since it requires the same relation between Qx and Qy

as the lowest order resonance with n � 2, s � 0, but the
numerical factor and resonant denominators are different.
Compared to the limit given in Eq. (24) these acquire fac-
tors of order pjyBn. Referring to values of Bn given in
Table I, and expecting the factor pjy to not exceed, for ex-
ample, 0.3, the only values of n likely to be significant will
not exceed a few unless one of the denominators is anoma-
lously small. Several parametric resonances are therefore
candidates to dominate the growth of the vertical beam
size, even without including longitudinal oscillations.

To incorporate damping decrement dy, one should first
solve the determinant equation for the growth rate. This
should then be set equal to the dy to find the stability limits
in the presence of damping, as in Eq. (25). It is simpler
to mimic Eq. (26) by interpreting ´

2
n1 as the square of a

real frequency shift and to equate it to d2
y , which is the
081001-8
(negative) square of an imaginary frequency shift. (Doing
the same with ´

2
n2 will not yield quite the same value. This

reflects the fact that the threshold of instability need not
occur at exactly e � 0.) The first estimate yields

jy �
d

1�2
y

pBn

s
Cy 2 cos 2m̃y

sinm̃y
. (35)

Another resonance occurs for s � 1, i.e., for tunes sat-
isfying 2nmx � 3�my 1 ´n� or ´n � �2�3�nmx 2 my .
Solving the resulting equations, both stop band limits are
given by

´n � Sy�pjyBn�2

µ
1

cos 2m̃y 2 Cy

∂
. (36)

The implication of equality of these limits is presumably
that the stop band width is of higher order in j than has
been used in the calculation. This probably makes this
resonance unimportant and accounts for the absence of
s � 1 stop band in Fig. 11.

It is tedious to extend this calculation to higher order.
In Appendix B this extension is made more systematic by
using complex exponentials.

VI. IMPORTANT RESONANCES AND FAVORED
REGIONS

The master formula governing exact resonance is
Eq. (B7). Expressed in terms of tunes it is

Q � 6
2n

2 1 s
Qx , (37)

where n is a positive integer and s is any integer except 22.
The aliasing is such that multiples of 1�2 can be added (or
subtracted) from either Qx or Q. The leading possibilities
are tabulated in Table II.

As usual the resonances can be identified with straight
lines in a resonance diagram such as Fig. 5. The aliasing
can be implemented using “periodic boundary conditions.”
When a line terminates on an integer boundary, another
line with the same slope starts from the same location on
the opposite boundary.

The essential feature of the parametric growth mecha-
nism that has been analyzed is that there is stability up to
a threshold above which the amplitude grows rapidly to
an amplitude limited by detuning. The stop band widths
increase with increasing jy and they are also expanded by
the spread of horizontal tunes. There is also a spread of
vertical tunes, but this mainly leads to detuning that has to
be modeled explicitly, as has been discussed; this effect is
automatically included in the numerical investigation de-
scribed in the next section.

The single resonance model assumes that it is impossible
to avoid all resonances and that, for any given operating
conditions, it is necessary only to identify and analyze the
dominant resonance. In this case the onset of beam growth
is controlled by d. For the lowest order (s � 0) resonance,
according to Eq. (26), the instability sets in at
081001-8
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TABLE II. The leading linear parametric resonances, including aliases. These resonance lines are plotted in Fig. 5.

n s 2n

21s
Qx Aliases 2

2n

21s
Qx Aliases

1 0 Qx 10.5, 10, 20.5 2Qx 11.5, 11, 11.5
2 0 2Qx 10.5, 10, 20.5, 21, 21.5 22Qx 12.5, 12, 11.5, 11, 10.5
1 21 2Qx 10.5, 10, 20.5, 21, 21.5 22Qx 12.5, 12, 11.5, 11, 10.5
1 1 2Qx�3 suppressed (Fig. 11) 22Qx�3 suppressed
jn,0 �
d

pBn
, (38)

where the second subscript stands for s � 0. This is a
special case of formulas for jsat derived in Appendix B
which take the form

jn,s �
1

pBn
d1��11jsj�T1��11jsj�

n,s , (39)

where Tn,s is a trigonometric function of the tunes, whose
value is approximately 1. For example, from Eq. (35)

jn,21 �
d1�2

pBn

s
Cy 2 cos 2m̃

Sy
. (40)

For this resonance the power law exponent is 0.5.
Tune combinations that approximately satisfy the

s � 0 resonance condition yield such small values of
jy,thr that it seems reasonable to suppose they have
always been, and will always be, avoided operationally.
One might say therefore that for “unfavorable” tunes the
power law exponent is �1 since jy,thr � dy For “once-
removed” resonances, s � 61, jy,thr �

p
dy and the

power law exponent is 0.5.
The single resonance model may give a good descrip-

tion in regions where a single resonance is dominant, but
in these regions the saturation threshold is necessarily very
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FIG. 5. Linear parametric beam-beam resonances from
Table II. In all cases tunes are fractional tune advances (i.e.,
deviations from nearest lower integer) per IP. None of the
operating points are even close to regions labeled “Good
Region” on the basis of the saturation principle, numerically
investigated.
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low. Such regions are avoided in practice since the goal of
colliding beams is high luminosity and there is too much
operational overhead to spend machine studies time inves-
tigating unpromising tune combinations. As a result there
tends to be little data with which to test the single reso-
nance model. In practice the tunes are adjusted to be
roughly equidistant from the two or three nearest reso-
nances, invalidating the single-resonance assumption. The
numerical approach, to be described next, automatically
includes the effects of overlapping resonances.

VII. SOLUTION OF THE DIFFERENCE EQUATION
BY NUMERICAL ITERATION

The analytic solution given thus far breaks down when
the particle amplitude increases to a value such that more
than one resonance is significant. Then a numerical ap-
proach is required. The difference equation (5) and de-
flection formula (1) can be combined into a formula that
makes turn-by-turn iteration easy,

yt11 �
1

1 1 d

Ω
2C0yt 2 yt21�1 2 d� 2 4pjS0

3 exp

∑
2a2

x cos2�mx�ax��t 1 tx��
2

∏

3

vuut1 1

µ
ss

b�
y

∂2

a2
s cos2�ms�t 1 ts�t�

3

r
p

2
erf

µ
ytp
2

∂æ
. (41)

After substituting for mx�ax� from Eq. (10), this formula is
completely explicit [24]. Since Eq. (41) gives the correct
dependence of Dy0 on y it includes effects nonlinear in y,
such as island overlap and chaos, but this paper concen-
trates on small amplitudes where such effects are expected
to be unimportant.

My procedure in using Eq. (41) has been to fix Qx , Qy ,
ax , and as and to increase j in steps until instability oc-
curs. Note that, for some small enough amplitude, for
example ymin � 0.001s, the equation is essentially lin-
ear and the motion is stable—the Courant-Snyder (CS)
invariant of the motion even decays because d . 0. Fur-
thermore, Eq. (41) is pseudohomogeneous in the sense that
yt � 0 for all time is a solution, no matter how large j.
This makes it necessary to assign a small starting seed
amplitude ymin, which may or may not grow due to para-
metric pumping. The “instability boundary” is defined as
081001-9



PRST-AB 5 RICHARD TALMAN 081001 (2002)
follows: as j is increased from zero, a smallest value jmin
is found for which yt . ymax for some value of t within
a “large” number of turns, for example Nt � 1000; here,
for example, ymax � 0.1s is an assigned “large” ampli-
tude. [To partially suppress possible artificial correlations
among Q, Qx , and Qs the parametric drive oscillations
were given random starting t indices in the range from
0 to 2100. This is indicated by tx and ts in Eq. (41).]
The value j determined in this manner will be called jsat
to distinguish it from the differently calculated, single-
resonance threshold jthr. For most studies the definition of
what constitutes probable amplitudes was taken to be the
nine combinations of the points ax � 0.5sx , 1.5sx , 2.5sx

and as � 0.5ss, 1.5ss, 2.5ss. Bringing this up to 16 com-
binations by including ax � 3.5sx and as � 3.5ss did
not change the results markedly.

The procedure just described was performed for all
points in the transverse tune plane, in steps of 0.01, for
various choices of the other parameters. Results are
shown in the following series of figures. Figure 6 shows
results with synchrotron oscillations absent (i.e., as � 0)
for d � 1024. The starting and instability-defining am-
plitudes here were �ymin, ymax� � �0.001sy , 0.1sy�; that
is, instability was defined to mean parametric pumping
from sy�1000 to sy�10. (Though the blowup factor
is large, the blown-up amplitude is relatively small.)
In this and the other gray scale figures the horizontal

0

0.1

0.2

0.3

0.4

0.5

Qy

0.1 0.2 0.3 0.4 0.5Qx

0

0.
2

0.
4

0.
6

0.
81

FIG. 6. as � 0, d � 1024. For all points in one quadrant of
the fractional Qx, Qy tune plane the minimum value of jsat�ax�,
for a representative sample of ax values, has been selected and
plotted. In this and other gray scale plots the numerical value of
jsat is to be obtained using the gray scale to read the factor by
which the maximum (pure white) value (in this case jmax � 0.3)
is to be multiplied to obtain jsat�ax�.
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amplitude choices were ax � 0.5sx , ax � 1.5sx , and
ax � 2.5sx . At each point the worst case is plotted.
By the saturation principle this gives the tune plane
dependence of jsat. In this case synchrotron oscillations
are assumed to be absent. The most favorable region
seems to be in the vicinity of �Qx , Qy� � �0.40, 0.17�
where jsat � 0.19. Using the four quadrant symmetry

0

0.1

0.2

0.3

0.4

0.5

Qy

0.1 0.2 0.3 0.4 0.5
(a)                            Qx

0
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0.4

0.5
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(b)                            Qx

FIG. 7. (a) as � 0.5, jmax � 0.3, (b) as � 2.5, jmax � 0.3.
For both figures ax � 0.5, d � 1024. The tune plane depen-
dence of jsat is shown for as increasing from bottom to top.
(Figure 8 differs only by having ax � 2.5.) The gray scale in
Fig. 6 is to be used to extract numerical values, with jmax being
pure white. According to the saturation principle, the maximum
specific luminosity at each point in the tune plane is obtained
by picking the lowest value from a sufficiently comprehensive
grid of data sets such as these.
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FIG. 8. (a) as � 0.5, jmax � 0.3, (b) as � 2.5, jmax � 0.23.
For both figures ax � 2.5, d � 1024. The relationship of these
figures to those in Fig. 7 is explained in the caption to Fig. 7.
Note that the jmax values in (a) and (b) are different. The sys-
tematically superior performance on the more positive Qx side
of resonances is ascribed in Sec. IV to the response illustrated
in Fig. 4.

plane, equivalent examples are �Qx , Qy� � �0.40, 0.67�,
�0.90, 0.17�, and �0.90, 0.67�.

The effect of the simultaneous presence of hori-
zontal and longitudinal oscillation is shown in Figs. 7
and 8, again for the case d � 1024. The synchrotron
amplitude as increases by 2ss from bottom to top, and
the horizontal amplitude ax increases by 2sx in going
from Fig. 7 to Fig. 8. The worst case values from these
081001-11
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FIG. 9. d � 0.0001, jmax � 0.190. At each point in the tune
plane the worst case from a complete grid of data sets such as
those in Figs. 7 and 8 (combined) is picked and plotted, in this
case with weak damping.

plots have been selected and plotted in Fig. 9. Figure 10
is obtained similarly, but with d � 1022. The presence
of just those resonances predicted by the model (Table II)
is clear. Note the close similarity of Figs. 9 and 10, and
therefore the comparatively weak dependence on d. Apart
from the modest increase of jmax from 0.19 to 0.20, and
a slightly brighter region in the lower right hand corner
with d � 1022, the plots are qualitatively similar.
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FIG. 10. d � 0.01, jmax � 0.200. At each point in the tune
plane the worst case from data such as that of Figs. 7 and 8 is
picked and plotted, in this case with strong damping. Comparing
with Fig. 9, note that the dependence on d is weak over the entire
tune plane.
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VIII. COMPARISONS WITH EXISTING RINGS

Tune combinations for numerous existing colliding
beam facilities are shown in Table III as well as in Fig. 5.
Most of the entries in the table come from Rice [4]. The
column labeled DQy,exp contains the experimentally deter-
mined quantity most directly comparable with theoretical
value jth. Though it is determined indirectly, DQy,exp is
the vertical tune shift of a minimum amplitude particle,
including the effect of the perturbation of the beta function
at the crossing point due to the beam-beam force. The val-
ues jth are determined by numerical iteration as explained
in Sec. VII. In most cases the (minimal) Monte Carlo
aspect of the procedure results in negligible fluctuation in
jth, exceptions are noted as footnotes. The significance of
these fluctuations can also be assessed by the (relatively
smooth) bin-to-bin transitions in resonance-free regions
of the gray scale plots.

In constructing Table III, to account for multiple inter-
action points (IPs), the tunes and d have been divided by
the number of IPs, putting the calculation on a per IP basis.
The measured LEP tune shifts, all with four IPs, fall far be-
low the theoretical values, and a PEP-6IP point, not shown,
shows even greater disagreement. Within the assumptions
of the current model these points should agree, absent rea-
sons that invalidate the comparison. But even small ring
asymmetries invalidate the per-IP basis. Usually in rings
with multiple IPs the optics of the various IPs are not iden-
tical and the phase advances between IPs are not constant;
these effects invalidate the present theory. Furthermore,
TABLE III. Parameters of some circular, flat beam, e1e2 colliding rings, and the saturation tune shift values predicted by Eq. (41).
For points not excluded by one of these factors (see table footnotes) the mean and standard deviations of theory/experiment (the last
column) are 1.26 6 0.45.

Ring IPs Qx�IP Qy�IP Qs�IP ss b�
y 104dy jth DQy,exp jth�DQy,exp

VEPP4 1 8.55 9.57 0.024 0.06 0.12 1.68 0.028 0.046 0.61
PEP-1IP 1 21.296 18.205 0.024 0.021 0.05 6.86 0.076 0.049 1.55
PEP-2IP 2 5.303 9.1065 0.0175 0.020 0.14 4.08 0.050 0.054 0.93

CESR-4.7 2 4.697 4.682 0.049 0.020 0.03 0.38 0.037 0.018 2.06
CESR-5.0 2 4.697 4.682 0.049 0.021 0.03 0.46 0.034 0.022 1.55
CESR-5.3 2 4.697 4.682 0.049 0.023 0.03 0.55 0.029 0.025 1.16
CESR-5.5 2 4.697 4.682 0.049 0.024 0.03 0.61 0.027 0.027 1.00

CESR-2000 1 10.52 9.57 0.055 0.019 0.02 1.113 0.028 0.043 0.65
KEK-1IP 1 10.13 10.27 0.037 0.014 0.03 2.84 0.046 0.047 0.98
KEK-2IP 2 4.565 4.60 0.021 0.015 0.03 1.42 0.048 0.027 1.78
LEP-46 4c 22.58 19.04 0.016 0.0076 0.05 0.958 0.128 0.034
LEP-65 4c 22.57 19.04 0.019 0.009 0.05 2.7 0.086
LEP-98 4c 24.59 24.05 0.029 0.0110 0.05 8.6 0.12b 0.052

PEP-LER 1 38.65 36.58 0.027 0.0123 0.0125 1.17 0.044 0.044 1.00
PEP-HER 1 24.57 23.64 0.045 0.0115 0.0125 1.98 0.056 0.026a

KEK-LER 1 45.518 44.096 0.021 0.0057 0.007 2.34 0.042 0.032 1.31
KEK-HER 1 44.525 42.135 0.019 0.055 0.007 2.18 0.060 0.018a

BEPC 1 5.80 6.70 0.020 0.05 0.05 0.16 0.068 0.039 1.74

aIon effect blowup of low energy beam may prevent beam-beam saturation.
bTheory value is erratic
cUnequally spaced IPs.
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since tune shifts from different IPs add directly, it is pos-
sible for the total tune shift in a ring with several IPs to
approach 1�2 or even 1, and the implications of this have
never been understood theoretically. Legitimate or not, the
more-than-two-IP theory to experiment ratios have there-
fore been dropped from the averaging which then yields
theory/experiment equal to 1.26 6 0.45. The one-IP aver-
age is 1.12 6 0.43.

It is difficult to draw conclusions from a survey such as
this of beam-beam limit data from existing storage rings
because the mixture of points from different storage rings
does not indicate the huge variation of conditions, the
time spent (possibly years) optimizing collisions and learn-
ing how to operate the collider, the level of imperfections
present, the residual closed orbit, etc. These uncertainties
can only reduce the level of agreement between theory and
experiment.

IX. PREDICTIONS AND CONCLUSIONS

Predictions based on Eq. (41) for the performance of
various proposed rings are shown in Table IV. The entries
labeled CESR-1.9 are for the “CESRc” reconfiguration of
CESR, currently in progress.

As expected there is extreme sensitivity to tunes, in-
cluding synchrotron tune Qs. For CESR-1.9 the very high
proposed value Qs � 0.11 appears to limit jth seriously.
Reducing Qs (which is possible, at least in principle,
for example, with a third harmonic cavity) gives a big
improvement. Choosing optimal tunes is even more
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TABLE IV. Parameters of some proposed rings and the saturation tune shift values predicted by Eq. (41). In all cases ss � b�
y .

The dependencies are far too complicated to be faithfully represented by such a limited set of data and small changes of tunes may
yield substantially different values of jth.

Ring IPs Qx�IP Qy�IP Qs�IP 104dy jth

CESR-1.9 1 10.52 9.57 0.11 0.55 0.016a

1 0.03 0.026
1 0.0 0.022
1 10.42 9.17 0.11 0.030
1 0.03 0.096
1 0.0 0.100

VLLC(e) 1 0.59 0.05 0.11 100 0.044
1 0.03 0.104
1 0.0 0.098

VLHC(p) 1 0.59 0.05 0.03 10 3 1028 0.056

aTheory value is erratic.
important. In the full tune scans exhibited (as well as
others not shown) the regions labeled “Good Region” in
Fig. 5 appear to be more promising than other regions.
And yet, at least as far as cases documented in Table III,
these regions have never been tried operationally. Even
within the present model there is resonant structure within
these regions and effects not included, especially nonlinear
resonances, would make it necessary to probe around for
best operating points. For starters the fact that Qy � 0.67
sits exactly on the third integer resonance would seem to
contraindicate the upper two quadrants. But the so-called
“good regions” are considerably larger than typical non-
linear stop bands, so the good regions in all four quadrants
are candidates for good performance.

The location of good regions has been explained in this
paper by the parametric resonator response illustrated in
Fig. 4. Amplitude buildup occurs preferentially on the
negative Qx side of resonances [25]. Those resonances
expected to be important in Table II are in fact visible in
the tune plane plots, such as Fig. 8. Including synchrotron
oscillations complicates the pattern considerably and fa-
vors low Qs.

If one accepts the saturation principle and the numerical
results of this paper there is potential for large increase in
specific luminosity compared to existing operating points.
Unfortunately, large specific luminosity does not guaran-
tee large maximum luminosity, as nonlinear effects may
limit the amount by which the beam currents can be in-
creased above their threshold values. If the total beam cur-
rent is limited, there may be favorable compromises, using
more, but less intense, bunches, to exploit high specific
luminosity.

For VLLC(e) (Very Large Lepton Collider) entries in
Table IV, the tunes have arbitrarily been taken to be the
same as for LEP-98 even though more favorable points
exist (within the present model.) The achievable tune shift
values are consistent with projections by Sen and Norem
[26] and others, even though the extrapolation procedure
081001-13
on which their values were based has been argued to be
invalid.

The damping decrements d of hadron colliders are some
10 orders of magnitude less than for electron machines. In
spite of this big factor the maximum beam-beam tune shifts
in proton machines are typically one-tenth of those in elec-
tron machines. For this reason, because d has been thought
to be important, it has usually been thought that entirely
different mechanisms must be responsible for the limits.
One effect contributing to the (relatively) large value j val-
ues achieved in proton machines is the fact that their beams
are round rather than flat. But the (relatively) large j value
achieved operationally with protons may also be partly ex-
plained by the relatively weak d dependence claimed in
the present paper. To pursue this line of reasoning, the
bottom entry of Table IV shows the result of applying the
formulas of this paper to the Very Large Hadron Collider
VLHC(p). Comparing with the second VLLC(e) entry,
changing the value of d by 10 orders of magnitude alters
j by only a factor of 0.54. This is consistent with a de-
pendence j � d0.06. Since this is not inconsistent with
the dependence observed in electron machines (Fig. 2), it
is possible that the physics of the beam-beam interaction
may be much the same in proton as in electron colliding
rings. If so, the luminosities of next-generation proton col-
liders may be much greater than current projections sug-
gest. That said, the value jth � 0.056 given in the table
for VLHC(p) is undoubtedly too optimistic; other effects,
such as diffusive beam growth, which will be strongly ame-
liorated by large d, are likely to overwhelm the parametric
pumping effect on which Table IV is based.

APPENDIX A: EXCITATION OF VERTICAL
BETATRON MOTION BY AN EXTERNAL SHAKER

To illustrate the difference equation method it will be
used in this section to calculate the vertical motion induced
by the direct drive due to an external shaker. As well as
081001-13
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introducing the method of analysis, the equations of motion and an example of aliasing, this introduces the important
damping decrement dy and shows how it influences the motion. (But the influence of dy on parametric drive need not be
the same.)

The deflection caused by the external drive on the tth turn is

Dy0
t � FE cosmEt . (A1)

We postulate a small “damping decrement” dy, so that the once-around transfer map in Twiss form isµ
y

y0 2 Dy0�2

∂
t11

� exp�2dy�
µ

Cy 1 aySy bySy

gySy Cy 2 aySy

∂ µ y
y0 1 Dy0�2

∂
t
, (A2)
and a similar equation can be written for backwards propa-
gation from t to t 2 1. Note that y0 is evaluated at the
middle of the shaker. We are using the notation Cy �
cosmy and Sy � sinmy and are intentionally using the sub-
script t as a turn index to be suggestive of the time mea-
sured in units of the revolution period. It will, however,
always be an integer. Proceeding as in the derivation of
Eq. (5) yields

yt11 2 2Cyyt 1 yt21 � bySyDy0
t 2 dy�yt11 2 yt21� .

(A3)

After solving this for yt it will be possible to obtain y0
t

from the equation

y0
t �

yt11 2 yt21 2 2aySyyt 1 dy�yt11 1 yt21�
2bySy

.

(A4)

As usual with driven oscillations we expect a response
at the drive frequency, i.e.,

yt � A cosmEt 1 B sinmEt , (A5)

where any transient [i.e., any solution of the homogeneous
equation which is obtained by setting the drive term of
Eq. (A3) to zero] has been neglected. In electron accelera-
tors this neglect is justified by the existence of true damp-
ing. Even in proton accelerators where true damping is
negligible, it can be justified by decoherence, or, as it is
also called, Landau damping. Substituting into Eq. (A3)
and equating the in-phase and the out-of-phase coefficients
separately to zero, one obtains

A �
bySy�CE 2 Cy��2

�CE 2 Cy�2 1 d2
yS2

E
FE ,

B �
bySySEdy�2

�CE 2 Cy�2 1 d2
yS2

E
FE .

(A6)

For near-resonance analysis we define [27,28]

´ � mE 2 my . (A7)

Substituting into Eq. (A5) and neglecting terms containing
´dy, we obtain
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yt �
FEby�2

´2 1 d2
y

�2´ cosmEt 1 dy sinmEt�

� 2
FEby

2
q

´2 1 d2
y

cos�mEt 1 f� , (A8)

where f � tan21�dy�´�, sinf � dy�
q

´2 1 d2
y , and

cosf � ´�
q

´2 1 d2
y . Taking ay � 0, the slope is given

by

y0
t �

FE�2
´2 1 d2

y
�dy cosmEt 1 ´ sinmEt�

�
FE

2
q

´2 1 d2
y

sin�mEt 1 f� . (A9)

These equations should be reminiscent of driven simple
harmonic motion though they are the solution of the dif-
ference equations (A2). Except nearly on resonance, the
in-phase cosmEt term of Eq. (A8) is dominant, but for
small ´, the out-of-phase sinmEt dominates. The response
always “lags,” with phase angle f varying from zero to
2p as the drive frequency varies from zero to infinity.
With f � 2p�2 at resonance, the response changes sign
in passing from below to above the resonance. The CS
invariant of the motion is

ey,CS �
byF2

E�4

´2 1 d2
y

. (A10)

For small deflections the averaged change in ey,CS due to
the shaker is

�De
�S�
y,CS� � �2y0

tDy0
t�

�

ø
byFE

´2 1 d2
y

�dy cosmEt 1 ´ sinmEt�FE cosmEt

¿

�
byF2

Edy�2

´2 1 d2
y

. (A11)

The averaged fractional change is therefore

�De
�S�
y,CS�

ey,CS
� 2dy . (A12)

This can be compared to the fractional change due to
damping
081001-14
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De
�D�
y,CS

eCS
� 22dy . (A13)

The fact that these changes are equal but opposite is con-
sistent with the equilibrium.

APPENDIX B: HIGHER ORDER PARAMETRIC
RESONANCES

From Eq. (A3) the equation of motion is

yt11�1 2 d� 2 2Cyt 1 yt21�1 1 d� � bSDy0
t�xt , yt� .

(B1)

Here quantities without subscripts (b, m, C � cosmy ,
S � sinmy and d� implicitly refer to y motion. Equa-
tion (14) was not the most general possibility for paramet-
ric resonance; let us seek a solution of the form [29,30]

yt �
X
m

am expimm̃t , (B2)

where m̃ � m 1 ´ is close to m in a sense to be spelled out
below. The phase advance m̃ can be shifted by an integral
multiple of 2p without altering Eq. (B2). Actually there
is further degeneracy. The replacement m ! m 1 p is
equivalent to reversing the signs of both C and S. This
reverses the signs of the y and y0 outputs from the one-turn
map around the storage ring. Since the deflection Dy0

t is an
odd function of yt , the next beam-beam deflection is also
reversed. This means that the replacement m ! m 1 p

is equivalent to toggling the sign of yt every turn so the y
axis points up for t even and down for t odd. The phase
advance m̃ can therefore be shifted by hp (h being an
integer) without altering Eq. (B1). We therefore permit
arbitrary half-integer additions to or subtractions from m

but require m and m̃ to have the same fractional parts,

0 # mfrac, m̃frac , p , m̃ � m 1 ´ ,

where m̃ 2 m̃frac � m 2 mfrac . (B3)

Here the term “fractional” has been generalized to mean
“modulo half-integers.” A resonance condition will pre-
sumably be met for ´ sufficiently close to zero. This being
a variation of constants method, the coefficients am are to
be permitted to vary, but only slowly with time. Further-
more, since we are seeking normal modes of the system,
they are assumed to have the common time dependence
exp�ivt�. Therefore, Eq. (B2) yields

yt11 �
X
m

am�1 1 iv�eimm̃eimm̃t ,

yt21 �
X
m

am�1 2 iv�e2imm̃eimm̃t .

(B4)

Suppressing the summation over n, Eq. (16) now takes the
form
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2
Dy0

t

4pj�b

2
Bn

�
X
m

am	 exp�i�2nmx 1 mm̃�t�

1 exp�i�22nmx 1 mm̃�t�
 .
(B5)

Similar to m, mx is subject to degeneracy; for arbitrary
integer k, we define 0 # mx,frac , p and permit mx �
kp 1 mx,frac. Again the fractional parts are defined mod-
ulo half-integers. In this case the degeneracy is due to the
fact that the deflection is an even function of x. When
longitudinal motion is included there is a similar degener-
acy in the choice of Qs. In simulating performance I have
simply taken Qs to be fixed at a “small” value of order 0.1
or less [31]. The fractional ranges to be investigated are
therefore

0 , Qx , 0.5, 0 , Q , 0.5, Qs � fixed.
(B6)

The other three quadrants of modulo-integer fractional
tunes will be identical. A resonance condition takes the
form

2nmx � 6�2 1 s�m̃ ,

or, for n fi 0, mx � 6
2 1 s

2n
�m 1 ´� , (B7)

where s is a positive or negative integer. The integers h
and k entering m and mx to permit this condition to be
satisfied are not, in general, the same. The tune degen-
eracies will be reflected by the fact that the coefficients
in the equations are sinusoidal functions of the tunes and
are therefore invariant to certain translations of the tunes.
Also, there is other redundancy. For example, the replace-
ment s ! 24 2 s has the same effect as an overall sign
change.

It is these degeneracies (also known as aliasing) which
make the spectrum of resonances “richer” than is the
spectrum of resonances of the Mathieu equation. Any
particular resonance can be identified by a (nonunique)
combination of h, k, s, 6. Even two different values of n
can contribute to the same resonance, in which case two
different values of Bn will enter the solution. The various
ambiguities can, to some extent, be hidden, and a par-
ticular resonance isolated, by reexpressing the (externally
controllable) parameter mx in terms of ´, as in the second
of Eqs. (B7), allowing s to take all values except 22 (in
which case there is no time varying parametric drive) and
requiring ´ ø 1.

Using Eq. (B7) the right-hand side of Eq. (B1) can be
manipulated into the form

22pjSBn

X
m

�am222s 1 am121s� exp�imm̃t� . (B8)

Substituting into Eq. (B1), dropping (small) terms contain-
ing vd, and setting the coefficients of exp�imm̃t� individu-
ally to zero yields, for 2` , m , `,
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��11iv 2 d�eimm̃ 2 2C 1 �1 2 iv 1 d�e2imm̃�am

� 22pjSBn�am222s 1 am121s� . (B9)

These equations reduce to

�C̃m 2 C 2 v0S̃m�am � 2pjSBn�am222s 1 am121s� ,

(B10)
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where some abbreviations have been introduced;

v0 � v 2 id, S̃j � sinjm̃ � sinj�m 1 ´� ,

C̃j � cosjm̃ � cosj�m 1 ´� . (B11)

For any particular integer s fi 2 and any positive integer
n, Eq. (B10) forms an infinite set of equations, one for
each integer m. To truncate this set we pick an arbitrarily
large positive integer M and retain only the equations for
2M , m , M [32],
�C̃M 2 C 2 v0S̃M�aM � 2pjSBn�aM222s 1 aM121s� ,

�C̃M21 2 C 2 v0S̃M21�aM21 � 2pjSBn�aM232s 1 aM111s� ,

· · ·

�C̃1 2 C 2 v0S̃1�a1 � 2pjSBn�a212s 1 a31s� ,

�1 2 C�a0 � 2pjSBn�a222s 1 a21s� , (B12)

�C̃1 2 C 1 v0S̃1�a21 � 2pjSBn�a232s 1 a11s� ,

· · ·

�C̃M21 2 C 1 v0S̃M21�a2M11 � 2pjSBn�a2M212s 1 a2M131s� ,

�C̃M 2 C 1 v0S̃M�a2M � pjSBn�a2M222s 1 A2M121s� .

Coefficients with indices outside the range 2M , m , M are to be set to zero. Since these are linear, homogeneous
equations, the solvability of the equations is governed by the determinant D of the matrix formed from their coefficients.
Some properties of D can be obtained using a special case, M � 2, s � 0, as a model,

D�m, ´, v02, j2� � det

ØØØØØØØØØØ

C̃2 2 C 2 v0S̃2 0 pjSBn 0 0
0 C̃1 2 C 2 v0S̃1 0 pjSBn 0

pjSBn 0 1 2 C 0 pjSBn

0 pjSBn 0 C̃1 2 C 1 v0S̃1 0
0 0 pjSBn 0 C̃2 2 C 1 v0S̃2

ØØØØØØØØØØ
.

(B13)
Since the a0 equation does not depend on v0, it can be
solved for a0 which can then be eliminated from the other
equations. Reversing the sign of M obviously leaves the
equations invariant, but the following observation is more
essential: Just reversing the signs of the indices (e.g.,
am � b2m) cannot, on the one hand, alter the solvabil-
ity of the equations, and, on the other hand, produces the
same set of equations except with the sign of v0 reversed.
It follows that the characteristic determinant is a function
only of v02. That D depends only on j2 can be inferred
by multiplying both one row, for example, the second, and
the corresponding column by 21. This is equivalent to re-
versing the sign of j but leaving the equations and the
determinant otherwise unaltered. Because D is a func-
tion only of �v 2 id�2, the substitution v0 � 2id yields
D�m, ´, 2d2, j2�, a polynomial in d2 and j2 with all co-
efficients real.

The simplest example of Eqs. (B12) has s � 0,
M � 1. Dropping the m � 0 equation (because it does
not contribute to lowest order) yields
�C̃1 2 C 2 v0S̃1�a1 � 2jS�a21 1 â3� ,

�C̃21 2 C 2 v0S̃21�a21 � 2jS�â23 1 a1� .
(B14)

Terms to be dropped because they bring in coefficients out-
side the range being retained are indicated with circum-
flexes �ˆ� . (The rationale behind this approximation is that
the retained terms a1 and a2 describe the dominant vertical
motion, perturbed only in lowest order by the parametric
pumping. Since neither of these coefficients appears in the
m � 0 equation, that equation can be dropped—the error
made is of higher order in the small parameter pjSBn.)
Continuing with the example, the condition to be satisfied
for homogeneous Eqs. (B14) to have a nontrivial solution
is

det

Ç
C̃1 2 C 2 v0S̃1 jS

jS C̃1 2 C 1 v0S̃1

Ç
� 0 . (B15)

From Eq. (B3) which defined ´, we can approximate
C̃1 � C 2 ´S, S̃1 � S, to get
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�v 2 id�2 � ´2 2 j2. (B16)

This agrees with Eq. (23) and is even a slight improvement
in that the damping has been handled explicitly and does
not need to be inserted “by hand.” Expressed in terms of
system parameters using Eqs. (B2) and (B7), the motion
is stable if

Re

s
j2 2

≥ 2nmx

2 1 0
2 m

¥2
, d . (B17)

If d � 0 (no damping) the limits of the band of unstable
motion are obtained more directly by setting v0 � 0 in
Eq. (B15),Ç

C̃1 2 C jS
jS C̃1 2 C

Ç
� 0 or 2 j , ´ , j .

(B18)
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To obtain a more accurate formula (for the same s � 0
resonance) one must retain more terms. [For this case the
determinant needed for the next approximation was already
exhibited in Eq. (B13).] In general, after eliminating a0,
there are 2M equations in 2M unknowns. For fixed n,
s, and m, the determinant is a function of ´ and j. The
vanishing of the determinant formed from the coefficients
determines the stability boundaries in the �´, j� parameter
space.

The stability of motion can be formulated in terms of the
eigenvalues of a matrix. To illustrate this, and to exhibit a
different resonance, consider the case s � 1, M � 2. In
this case the central equation can be dropped (to lowest
order) since it does not couple a0 to any of the retained
coefficients. Solvability requires the vanishing of the de-
terminant
det

ØØØØØØØØØ
�C̃2 2 C��S̃2 2 v0 0 jS�S̃2 0

0 �C̃1 2 C��S̃1 2 v0 0 jS�S̃1
2jS�S̃1 0 2�C̃1 2 C��S̃1 2 v0 0

0 2jS�S̃2 0 2�C̃2 2 C��S̃2 2 v0

ØØØØØØØØØ
� 0 . (B19)
The four solutions of this equation for v0 are the exponents
of the possible homogeneous motions of the system. The
elements of this matrix have been obtained by reading
coefficients directly from Eq. (B12). For fixed n, s, and
m, since m̃ � 2nmx��1 1 s�, each of these eigenvalues is
a function of mx and jn. Unstable regions of the �mx , jn�
parameter space are characterized by at least one of these
eigenvalues having a positive real part.

Since instability boundaries are marked by the vanishing
of D for v � 0, we will be interested primarily in the case
of small j and d. We therefore define an expansion [33]

D�m, ´, 2d2, j2� � D00�m, ´� 1 D10�m, ´�j2

1 D01�m, ´�d2 1 D11�m, ´�j2d2

1 · · · . (B20)

This series terminates; the termination depends on M,
which is fixed. Because of the aliasing discussed pre-
viously, Eq. (B20) has a very complicated global depen-
dence on ´. To help in identifying local resonances, and
because we cannot simply set ´ � 0, we must also expand
for small ´,
D�m, ´, 2d2,j2� � D100�m�j2 1 D010�m�d2

1 D110�m�j2d2 1 · · ·

1 D101�m�j2´ 1 D011�m�d2´

1 D111�m�j2d2´ 1 · · · 1 D002�m�´2

1 D102�m�j2´2 1 D012�m�d2´2

1 D112�m�j2d2´2 1 · · · . (B21)

There is no leading term D000�m, ´� since that term cor-
responds to the absence of perturbation. The coefficient
D001�m, ´� also vanishes since, in the no perturbation limit,
D is an even function of ´. The D’s are trigonometric poly-
nomials of m. The very complicated dependencies of the
coefficients on m will (presumably) cause the resonance
strengths to exhibit erratic global variation.

This complication can be hidden formally by treating
the Dijk coefficients as constants, i.e., by holding m fixed.
For example, as j increases from zero, with ´ sufficiently
small, a nearby instability boundary is encountered for
j2 �
2D002´2 1 D010d2 1 �D011´ 1 D012´2�d2

D100 1 D101´ 1 D110d2 1 D102´2 1 �D111´ 1 D112´2�d2 . (B22)
The leading part of the denominator, D100 1 D101´, is ei-
ther negative or can be made negative by choosing the ap-
propriate sign for ´, then the overall expression is posi-
tive (for sufficiently small d) in those cases for which
D002 . 0. This makes j real, which implies true reso-
nance, at least in this case, and there are other possibilities.
To study the resonances in greater detail it is appropriate
to proceed in close analogy with traditional treatments of
the Mathieu equation. That is, holding m and d fixed, let
us plot ´ as a function of j for the curve or curves sepa-
rating stable and unstable regions, as they emanate from
the origin �j � ´ � 0� . For this purpose an expansion
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FIG. 11. ´6�0�, ´6�1�1000�, ´6�1�200�. The edges of in-
stability bands are plotted on the range 0 , j , 0.2, where
j is the abscissa and ´ is the ordinate. Vertically arrayed,
starting at the top, the plots correspond to s � 21, 0, 1, 2 with
M � s 1 1. Horizontally arrayed, the damping decrements are
d � 0, 1�1000, 1�200, as indicated in parenthesis. The verti-
cal phase advance for this plot is my � 0.57 3 2p. Horizontal
lines mark ´ � 20.05, 0, 0.05. For the dominant s � 0 reso-
nance (second from top) the displacement of the threshold away
from j � 0 is just barely visible for d � 1�200 and the stop
band width is proportional to j, as is true for the Mathieu equa-
tion. For higher order stop bands the threshold dependence on
d is much stronger and the power of the power law dependence
increases as the order increases. These features are also exhib-
ited by the Mathieu equation with damping.

more compact than Eq. (B21) is (suppressing m and d

arguments)

Dm,d�´, j� � G0�j� 1 G1�j�´ 1 G2�j�´2 1 · · · .
(B23)

These coefficients Gi�j� are obtained simply from the
Dijk�m� coefficients defined previously. Setting D � 0 and
solving Eq. (B23) (keeping only the terms shown) yields

´m,d�j� �
2G1�j� 6

q
G

2
1�j� 2 4G2�j�G0�j�
2G2�j�

. (B24)

The dependence of these roots ´m,d,6 on j for particular
values of d and m are plotted in Fig. 11. Values of j for
081001-18
which the roots are complex do not show up on these plots.
This plot is strikingly similar to the plot of the instability
boundaries of the Mathieu equation [12].

The threshold value jthr satisfies

G2
1�jthr� 2 4G2�jthr�G0�jthr� � 0 . (B25)
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