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Formulas for coherent synchrotron radiation microbunching in a bunch compressor chicane
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A microbunching instability driven by coherent synchrotron radiation (CSR) in a bunch compressor
chicane is studied using an iterative solution of the integral equation that governs this process. By includ-
ing both one-stage and two-stage amplifications, we obtain analytical expressions for CSR microbunching
that are valid in both low-gain and high-gain regimes. These formulas can be used to explore the depen-
dence of CSR microbunching on compressed beam current, energy spread, and emittance, and to design
stable bunch compressors required for an x-ray free-electron laser.
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I. INTRODUCTION

Coherent synchrotron radiation (CSR) is one of the most
challenging issues associated with the design of bunch
compressor chicanes required for an x-ray free-electron
laser (FEL) [1,2]. Typically, CSR is emitted for wave-
lengths longer than the length of the electron bunch and
leads to a detrimental tail-head interaction in bends [3]. In
addition, CSR can be emitted even for wavelengths much
shorter than the bunch length if the bunch charge density
is modulated at these wavelengths. Computer simulations
have shown that small density modulations can be signifi-
cantly amplified by the CSR force in bunch compressor
chicanes, giving rise to a microbunching instability [4].
Such an instability is currently under intense study [5–8]
as it may impact the design of an x-ray FEL calling for
kiloampere, subpicosecond electron bunches. A klystron-
like mechanism of amplification of parasitic density modu-
lations in a bunch compressor is studied in Ref. [7] under
the high-gain assumption and in the absence of the elec-
tron energy chirp. A self-consistent treatment of CSR
microbunching, including the electron energy chirp and
the emittance effect, is developed in Ref. [8], and the mi-
crobunching process is described by an integral equation.
The numerical solution of the integral equation for beam
parameters and lattice functions corresponding to the sec-
ond bunch compressor of the Linac Coherent Light Source
(LCLS) [1] yields very low gain (,3) over a wide wave-
length range.

In this paper we analyze the microbunching process in
a typical bunch compressor chicane and obtain the itera-
tive solution of the integral equation that is valid in both
high-gain and low-gain regimes. In Sec. II, we present
a compact derivation of the integral equation for CSR
microbunching, originally derived in Ref. [8] using the
linearized Vlasov equation. In Sec. III, we discuss the
iterative solution and express CSR microbunching initiated
from either density or energy modulation in terms of beam
energy, current, emittance, energy spread and chirp, and
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initial lattice parameters, as well as basic chicane parame-
ters. In Sec. IV, we apply these results to study the stability
of the LCLS bunch compressors and to illustrate various
amplification processes. Concluding remarks are given in
Sec. V.

II. INTEGRAL EQUATION FOR CSR
MICROBUNCHING

Consider a beam distribution function f�x, x0, z, d; s�
in the transverse �x, x0 � dx�ds� and longitudinal �z, d �
DE�E� phase spaces at location s along a bunch compres-
sor chicane. (The vertical plane is irrelevant here.) If N is
the total number of electrons, we haveZ

dX f�X; s� � N , (1)

where X � �x, x0, z, d� denotes the set of phase-space vari-
ables at s.

In the absence of CSR, the evolution of f is given by

f�X; s� � f�R21�t ! s�X; t�R� , (2)

where X � R�t ! s�Xt , Xt is the set of phase-space
variables at t, and the symplectic transfer matrix R be-
tween t and s is

R�t ! s� �

0
BB@

C�t ! s� S�t ! s� 0 h�t ! s�
C0�t ! s� S0�t ! s� 0 h0�t ! s�

R51�t ! s� R52�t ! s� 1 R56�t ! s�
0 0 0 1

1
CCA .

(3)

Here C�t ! s� and S�t ! s� are the cosine- and sinelike
solutions of the focusing equation

x00 1 Kx�s�x � 0 , (4)

with the boundary conditions C�t ! t� � 1 and S�t !
t� � 0, �0� � d�ds, Kx�s� is the horizontal focusing
function,

h�t ! s� � S�t ! s�
Z s

t
dz

C�t ! z �
r�z �

2 C�t ! s�
Z s

t
dz

S�t ! z �
r�z �

(5)
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is the dispersion function, r�s� is the bending radius, and
the transfer function

�R51, R52, R56� �t ! s�

� 2
Z s

t

dz

r�z �
�C, S, h� �t ! z � (6)

connects an offset in transverse phase space or energy at
t to a change in z at s. Thus, the distribution function
f�X; s� is completely determined by the initial distribution
f0�X0� at the chicane entrance t � 0 because

f�X; s� � f�R21�s�X; 0� � f0�X0� , (7)

where R�s� � R�0 ! s� for abbreviation.
Suppose coherent synchrotron radiation is emitted and

the electron energy is changed by an amount Dd during an
infinitesimal time interval around t. The distribution func-
tion immediately after the emission (at t 1 0) is related
to that immediately before (at t 2 0) by

f�Xt; t 1 0� � f�Xt 2 DX; t 2 0�

� f�Xt; t 2 0� 2 Dd
≠f�Xt; t 2 0�

≠dt

,

(8)

where DX � �0, 0, 0, Dd�. Summing up CSR contribu-
tions over the entire trajectory and using

f�X; s� � f�Xt; t 1 0�, f�Xt; t 2 0� � f0�X0� ,
(9)
074401-2
the evolution of the distribution function under the influ-
ence of CSR is

f�X; s� � f0�X0� 2
Z s

0
dt

≠f�Xt; t 2 0�
≠dt

dd

dt
. (10)

The rate of CSR energy change dd�dt is determined
from the beam density modulation as

dd

dt
� 2

re

g

Z dk1

2p
Z�k1; t�Nb�k1; t�eik1zt . (11)

Here re is the classical electron radius, and g is the elec-
tron energy in units of mc2. Z�k; s� is the longitudinal syn-
chrotron radiation impedance at wavelength l � 2p�k.
For wavelengths much shorter than the length of the elec-
tron bunch, we can neglect shielding effects of conducting
walls and transient effects associated with short bends to
employ the free-space, steady-state CSR impedance [9] in
the form [8]:

Z�k; s� � 2iA
k1�3

r�s�2�3 , with A � 1.63i 2 0.94 .

(12)

The density modulation at l is quantified by a complex
bunching parameter b�k; s� as

b�k; s� �
1
N

Z
dX e2ikzf�X; s� . (13)

Equation (10) can now be cast into an integral equation
for the bunching parameter. First, we write
b�k; s� � b0�k; s� 2
1
N

Z
dt

Z
dXt e2ikz�Xt� ≠f�Xt; t 2 0�

≠dt

dd

dt

� b0�k; s� 2
ik
N

Z
dt R56�t ! s�

Z
dXt e2ikz�Xt�f�Xt; t 2 0�

dd

dt
, (14)

where

b0�k; s� �
1
N

Z
dX0 e2ikzf0�X0� (15)

is the bunching without CSR, and we have integrated the second term by parts over dt using

z�Xt� � zt 1 R51�t ! s�xt 1 R52�t ! s�x0
t 1 R56�t ! s�dt . (16)

Changing variables from Xt to X0 with f�Xt , t 2 0� � f0�X0� for the second term of Eq. (14) and inserting Eq. (11),
we obtain

b�k; s� � b0�k; s� 1
ikre

g

Z
dt R56�t ! s�

Z dk1

2p
Z�k1; t�b�k1; t�

Z
dX0 e2ikz�X0�1ik1zt�X0�f0�X0� , (17)

where z�X0� � z0 1 R51�s�x0 1 R52�s�x0
0 1 R56�s�d0.
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We now write f0�X0� as

f0�X0� � f̄0�X0� 1 f̂0�X0� , (18)

where f̄0�X0� represents the average distribution and
f̂0�X0� represents an arbitrary but small perturbation. For
modulation wavelengths much smaller than the electron
bunch length, we may assume that the average beam
distribution is uniform in z and Gaussian in transverse
and energy variables:

f̄0�X0� �
n0

2p´
p

2p sd

exp

∑
2

x2
0 1 �b0x

0
0 1 a0x0�2

2´0b0

2
�d0 2 hz0�2

2s
2
d

∏
. (19)

Here n0 is the initial line density of electrons, a0 and b0
are the lattice functions at s � 0, ´0 and sd are the ini-
tial beam emittance and incoherent energy spread, respec-
tively, and h . 0 is the initial energy chirp. Linearizing
Eq. (17) by neglecting f̂0 in the second term and integrat-
ing over dX0, we obtain [8]

b�k�s�; s� � b0�k�s�; s� 1
Z s

0
dt K�t, s�b�k�t�; t� ,

(20)

with the kernel of the integral equation as

K�t, s� � ik�s�R56�t ! s�
I�t�Z�k�t�; t�

gIA
e2k2

0U
2�s,t�s2

d�2

3 exp

∑
2

k2
0´0b0

2

µ
V �s, t� 2

a0

b0
W�s, t�

∂2

2
k2

0´0

2b0
W2�s, t�

∏
. (21)

Here k�t��B�t� � k�s��B�s� � k0, B�s� � �1 1

hR56�s��21, k0 is the modulation wave number at s � 0,
I�t� � ecn0B�t� is the peak current at t, IA � ec�re �
17 045 A is the Alfvén current, and [10]

U�s, t� � B�s�R56�s� 2 B�t�R56�t� ,

V �s, t� � B�s�R51�s� 2 B�t�R51�t� , (22)

W�s, t� � B�s�R52�s� 2 B�t�R52�t� .

Note that compression reduces both the bunch length and
the modulation wavelength by a factor B�s�, and hence in-
creases the peak current and k by the same amount. The
physical meaning of Eqs. (20) and (21) is very clear: Den-
sity modulation at t induces energy modulation through
CSR impedance and is subsequently turned into density
modulation at s through the transfer function R56�t ! s�.

III. STAGED AMPLIFICATION OF CSR
MICROBUNCHING

Equation (20) can be solved numerically for given beam
parameters and chicane optics [8]. Here we seek an ap-
proximate analytical solution that may provide insight into
074401-3
the amplification process and simplify microbunching cal-
culations. First, we iterate Eq. (20) to obtain

b�k�s�; s� � b0�k�s�; s� 1
Z s

0
dt K�t, s�b0�k�t�; t�

1
Z s

0
dt K�t, s�

3
Z t

0
dz K�z , t�b0�k�z �; z � 1 · · · . (23)

For definiteness, we study a symmetric chicane that con-
sists of three rectangular dipoles only. The length of both
the first and the last dipoles is Lb , while the middle dipole
is twice as long. In general, Lb is much smaller than the
dipole separation distance DL. In the absence of horizon-
tal focusing [i.e., Kx�s� � 0 in Eq. (4)], we have C�s� � 1
and S�s� � s. The dispersion and transfer functions are
determined from Eqs. (5) and (6). In particular,

R56�t ! s� �

8><
>:

O�L3
b

r
2
0
� within the same dipole,

O� DLL2
b

r
2
0

� from one dipole to another,
(24)

where r0 � jr�s�j is the same for all dipoles. Thus, we
may neglect the induced bunching from the energy modu-
lation in the same dipole [7] [i.e., we may put K�t, s� �
O� Lb

DL � � 0 for �s 2 t� , DL in Eq. (23)] and consider
staged amplification from one dipole to another as follows.

A. Microbunching due to initial density modulation

We first consider that CSR microbunching is initiated
by a small deviation of the beam current such as from shot
noise fluctuations and rf nonlinearity. For simplicity, we
take a special form of f̂0�X0� � e�z0�f̄0�X0� [je�z0�j ø 1
with

R
dz0 e�z0� � 0]. The initial density modulation is

b0�k0; 0� �
n0

N

Z
dz0 e�z0�e2ik0z0 . (25)

Without CSR, the bunching degradation can be calculated
from Eqs. (15) and (19) as

b0�k�s�; s� � b0�k0; 0�e2k2�s�R2
56�s�s2

d�2

3 exp

∑
2

k2�s�´0b0

2

µ
R51�s� 2

a0

b0
R52�s�

∂2

2
k2�s�´0

2b0
R2

52�s�
∏

(26)

for k�s� � k0B�s� at s.
We now apply Eq. (23) to obtain CSR microbunching

in each dipole:

b�k�s1�; s1� � b0�k�s1�; s1�, 0 # s1 # Lb , (27)
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b�k�s2�; s2� � b0�k�s2�; s2� 1
Z Lb

0
ds1 K�s1, s2�b0�k�s1�; s1� , 0 # s2 # 2Lb , (28)

b�k�s3�; s3� � b0�k�s3�; s3� 1
Z Lb

0
ds1 K�s1, s3�b0�k�s1�; s1� 1

Z 2Lb

0
ds2 K�s2, s3�b0�k�s2�; s2� ,

1
Z 2Lb

0
ds2 K�s2, s3�

Z Lb

0
ds1 K�s1, s2�b0�k�s1�; s1�, 0 # s3 # Lb , (29)

where sj �j � 1, 2, 3� is measured from the beginning of the jth dipole, and b�k�sj�; sj� represents the bunching parame-
ter at sj in the jth dipole. The transfer functions are

R51�s1� �
s1

r0
, R52�s1� �

s2
1

2r0
, R56�s1� �

s3
1

6r
2
0

,

R51�s2� �
Lb 2 s2

r0
, R52�s2� � 2

DLs2

r0
, R56�s2� � 2

DLLb

r
2
0

s2 ,

R51�s3� � 2
Lb 2 s3

r0
, R52�s3� �

2DL�s3 2 Lb�
r0

, R56�s3� � 2
2DLL2

b

r
2
0

� R56 , (30)

R56�s1 ! s2� � 2
DL

r
2
0

�Lb 2 s1�s2, R56�s2 ! s3� � 2
DL

r
2
0

�2Lb 2 s2�s3 ,

R56�s1 ! s3� � 2
2DL

r
2
0

��Lb 2 s1�Lb 1 s1s3� .
For a typical chicane, we have b0 ¿ Lb , ja0j � 1 and
R51�s1� ¿ jajR52�s1��b0 � R52�s2��b0. Since R56�s1� is
much smaller than the R56 generated between dipoles, we
set R56�s1� � 0, k�s1� � k0 in Eq. (26) to obtain

b0�k�s1�; s1� � b0�k0; 0�e2k2
0R

2
51�s1�´0b0�2. (31)

If the induced bunching
RLb

0 ds1 K�s1, s2�b0�k0; s1�
in the middle dipole is much larger than b0�k0; s1� and
b0�k�s2�; s2� (i.e., if the gain is much larger than 1), the
bunching in the last dipole is determined mainly from the
induced bunching in the middle dipole [i.e., the last term
on the right side of Eq. (29)]. This situation corresponds
to the two-stage amplification discussed in Ref. [7] under
the high-gain assumption. However, the gain is usually not
very high when both the emittance and the energy spread
are taken into account; then one-stage amplifications from
the first and the middle dipoles to the last dipole [i.e., the
second and the third terms on the right side of Eq. (29)]
are also important and may even dominate the two-stage
process (see numerical examples in Sec. IV). Thus, the
final bunching at the chicane exit can be evaluated from
Eq. (29) for s3 � Lb (denoted as “f”). Here the initial
bunching degrades to

b0�kf ; f� � exp

∑
2

s̄
2
d

2�1 1 hR56�2

∏
b0�k0; 0� , (32)
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where s̄d � k0R56sd, and kf � k0��1 1 hR56�, and the
emittance degradation effect is absent because of the achro-
matic condition R51�f� � R52�f� � 0. The one-stage am-
plification from the first dipole can be computed from
Eqs. (29)–(31) as

Z Lb

0
ds1 K�s1, f�b0�k0; s1�

� AĪf

∑
F0�s̄x� 1

1 2 e2s̄2
x

2s̄2
x

∏

3 exp

∑
2

s̄
2
d

2�1 1 hR56�2

∏
b0�k0; 0� , (33)

where

Īf �
Ifk

4�3
0 R56Lb

gIAr
2�3
0

, (34)

If is the compressed beam current, s̄x � k0Lb
p

´0b0�r0,
and

F0�s̄x� �
e2s̄2

x 1 s̄x
p

p erf�s̄x� 2 1
2s̄2

x
, (35)

with the error function erf�x� � 2p21�2
Rx

0 dt exp�2t2�.
Similarly, the one-stage and the two-stage amplifications
from the middle dipole to the chicane exit can be computed
as
074401-4
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Z 2Lb

0
ds2 K�s2, f�b0�k�s2�; s2� � AĪfF1�hR56, s̄x , a0, f, s̄d�b0�k0; 0� ,

Z 2Lb

0
ds2 K�s2, f�

Z Lb

0
ds1 K�s1, s2�b0�k0; s1� � A2Ī2

fF0�s̄x�F2�hR56, s̄x , a0, f, s̄d�b0�k0; 0� ,
(36)

where f �
2DL
b0

� 2r
2
0R56

b0L
2
b

, and

F1 � 2
Z 1

0
dt

�1 2 t�
�1 1 hR56t�4�3 H�t� ,

F2 � 2
Z 1

0
dt

�1 2 t�t�1 1 hR56�
�1 1 hR56t�7�3 H�t� , (37)

H�t� � exp

∑
2s̄2

x
�1 2 2t 1 a0ft�2 1 f2t2

�1 1 hR56t�2 2
s̄

2
d

2�1 1 hR56t�2

µ
t2 1

�1 2 t�2

�1 1 hR56�2

∂∏
.

Defining the final gain of density modulation in a chicane as Gf � jb�kf ; f��b0�k0; 0�j, we obtain from Eqs. (32), (33),
and (36)

Gf �
Ç
exp

∑
2

s̄
2
d

2�1 1 hR56�2

∏
1 AĪf

∑µ
F0�s̄x� 1

1 2 e2s̄2
x

2s̄2
x

∂
exp

µ
2

s̄
2
d

2�1 1 hR56�2

∂

1 F1�hR56, s̄x , a0, f, s̄d�
∏

1 A2Ī2
fF0�s̄x�F2�hR56, s̄x , a0, f, s̄d�

Ç
. (38)

The first term on the right side of Eq. (38) represents the loss of microbunching in the limit of vanishing current, the
second term (linear in current) is the one-stage microbunching amplification at low current (low gain), and the last term
(quadratic in current) corresponds to the two-stage amplification at high current (high gain).

It is often useful to know the electron energy spectrum for beam diagnostics. The induced relative energy modulation
at wavelength l�s� � 2p�k�s� can be calculated as

Dp�k�s�; s� � 2
Z s

0
dt

I�t�
gIA

Z�k�t�, t�b�k�t�, t�e2k2
0U

2�s,t�sd2�2

3 exp

Ω
2

k2
0´0b0

2

∑
V �s, t� 2

a0

b0
W�s, t�

∏2

2
k2

0´0

2b0
W2�s, t�

æ
, (39)
where b�k�t�, t� is determined by Eqs. (27)–(29).

B. Microbunching due to initial energy modulation

CSR microbunching can also be seeded by an initial en-
ergy deviation Dp�z0; 0� originated from upstream wake-
field and CSR effects [11]. In this case, we write

f̂0�X0� � f̄0�X0 2 DX0� 2 f̄0�X0�

�
�d0 2 hz0�Dp0

s
2
d

f̄0�X0� , (40)

where DX0 � �0, 0, 0, Dp�. In view of Eqs. (15) and (19),
the density modulation at s in the absence of CSR is

b
p
0 �k�s�, s� � 2 ik�s�R56�s�Dp�k0; 0�e2k2�s�R2

56�s�s2
d�2

3 exp

∑
2

k2�s�´0b0

2

µ
R51�s� 2

a0

b0
R52�s�

∂2

2
k2�s�´0

2b0
R2

52�s�
∏

, (41)

where Dp�k0; 0� �
n0

N

R
dz0 e2ik0z0Dp�z0; 0� is the Fourier

amplitude of the energy modulation at s � 0.
074401-5
We can now repeat the staged calculation as before.
Since R56�s1� � 0 and induced bunching in the first dipole
is negligible, we have bp�k�s1�, s1� � 0. Equation (29)
reduces to

bp�k�s3�; s3� � b
p
0 �k�s3�; s3�

1
Z 2Lb

0
ds2 K�s2, s3�bp

0 �k�s2�; s2� .

(42)

Thus, the final bunching at the chicane exit due to an initial
energy modulation is

bp�kf ; f� � 2 ikfR56Dp�k0; 0�

3

∑
exp

µ
2

s̄
2
d

2�1 1 hR56�2

∂

1 AĪfF2�hR56, s̄x , a0, f, s̄d�
∏

. (43)

The induced energy modulation can also be calculated ac-
cording to Eq. (39).
074401-5
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TABLE I. Basic beam and chicane parameters for the LCLS
bunch compressors [12].

Parameter BC1 BC2

E (GeV) 0.25 4.54
If (A) 480 4000

g´0 �mm� 1 1
b0 (m) 15 105

a0 2 5
sd 1.2 3 1025 3 3 1026�3 1025�

h �m21� 21.4 40
R56 (mm) 236 222
r0 (m) 2.5 12.2
Lb (m) 0.2 0.4
DL (m) 2.6 10

Finally, we note that the results of this section are
equally applicable to a four-dipole chicane where two
closely spaced dipoles (length Lb each) play the role of
the middle dipole in a three-dipole configuration.

IV. NUMERICAL EXAMPLES

In this section, we apply the previous results to study
the stability of the LCLS bunch compressors and to illus-
trate different amplification processes discussed in Sec. III.
Two bunch compressors (BC1 and BC2) are incorporated
in the LCLS design in order to increase the peak current by
a factor of about 40. The basic beam and chicane parame-
ters are listed in Table I for both BC1 and BC2. In Fig. 1
we compute the amplification factor Gf1 in density modu-
lation for wavelengths from 1 to 100 mm at the exit of BC1
and show that it is determined by one-stage amplifications
as the gain is low. We also calculate the induced energy
modulation Dp1�kf ; f� (in units of initial bunching) at the
end of BC1 by integrating Eq. (39) (see Fig. 2). In Figs. 3
and 4 we compute the amplification of density modulation
Gf2 in BC2 as a function of the initial modulation wave-
length for four cases that are studied in Ref. [8]. Good

FIG. 1. (Color) BC1 gain Gf1 of the density modulation as a
function of modulation wavelength at the exit of BC1 as calcu-
lated from Eq. (38) with (in red) and without (in blue) the last
term (the two-stage amplification).
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FIG. 2. Energy modulation amplitude jDp1�kf ; f�j (in units of
initial bunching) as a function of modulation wavelength at the
exit of BC1.

FIG. 3. (Color) BC2 gain Gf2 of the density modulation as a
function of the modulation wavelength at the entrance of BC2
for (1) sd � 3 3 1025, g´0 � 1 mm (in blue); (2) sd � 3 3
1025, g´0 � 0 mm (in red); (3) sd � 3 3 1026, g´0 � 1 mm
(in black). Solid curves are calculated from Eq. (38) and dashed
curves are numerical solutions of the integral equation found in
Ref. [8].

FIG. 4. (Color) BC2 gain Gf2 of density modulation as a func-
tion of modulation wavelength at the entrance of BC2 for sd �
3 3 1026, g´0 � 0 mm, as calculated from Eq. (38) (in red)
and the last term of Eq. (38) only (in blue). The dashed curve is
the numerical solution of the integral equation found in Ref. [8].
074401-6
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FIG. 5. Total amplification factor GT of BC1 and BC2 as a
function of the modulation wavelength at the entrance of BC2
(1) without the wiggler; (2) with the wiggler.

agreement between the analytical results and the numer-
ical solutions of the integral equation is found. Figure 4
also indicates that the two-stage amplification is the domi-
nant process when the gain is very high.

In order to determine the total amplification factor GT

after a bunch (with some initial density modulation) pass-
ing through both BC1 and BC2, one should in principle
transfer CSR energy kicks in both compressors to density
modulations at the end of BC2. To simplify the calcula-
tion and to estimate GT , we approximate CSR energy kicks
in BC1 as an effective energy modulation at the entrance
of BC2 given by Dp2�k0; 0� � E1

E2
Dp1�kf ; f� (E1 is the en-

ergy in BC1 and E2 is the energy in BC2). We also assume
that the density modulation of BC1 is preserved to the en-
trance of BC2. Using Eqs. (38) and (43), we add up CSR
microbunching originating from both density and energy
modulation in BC2 and obtain GT as shown in Fig. 5. The
calculation assumes g´0 � 1 mm in both compressors and
sd � 1.2 3 1025 at the beginning of BC1. Such an inco-
herent energy spread will change to 3 3 1026 prior to the
entrance of BC2 due to BC1 compression and acceleration
between the two compressors. As seen in Fig. 5 (case 1),
the total gain of the two-compressor system can be signifi-
cant. To reduce the instability, sd at the beginning of BC2
can be increased to 3 3 1025 with the addition of a super-
conducting wiggler prior to BC2 [12]. Figure 5 (case 2)
shows that the increased energy spread in BC2 improves
the stability of the two-compressor system against the mi-
crobunching. It is interesting to note that the peak gain
of the two-compressor system with the wiggler (case 2 of
Fig. 5) is still larger than BC2 gain without the wiggler
(case 3 of Fig. 3), in qualitative agreement with the nu-
merical simulation results [12].

V. CONCLUSION

In this paper, we show that both one-stage and two-
stage (klystronlike) amplifications are important processes
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for CSR microbunching in a bunch compressor chicane.
Based on the assumption that the dipole separation is much
larger than the length of the individual dipoles, we inves-
tigate the bunching process in a typical chicane and de-
rive Eqs. (38) and (43) for CSR microbunching initiated
by density and energy modulation. These results are ap-
plied to the study of the LCLS bunch compressors in order
to determine the stability of the system. The method and
formulas presented here should be useful to facilitate the
design of the bunch compressors in order to reach the chal-
lenging beam parameters required for an x-ray FEL.
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