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Estimates of diffusion due to long-range beam-beam collisions
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Weak-strong tracking simulations for the Large Hadron Collider have shown that long-range beam-
beam collisions give rise to a well-defined diffusive aperture beyond which particles are lost quickly.
In order to derive analytical estimates of this stability boundary, we use leading order perturbation the-
ory and the Chirikov resonance overlap criterion applied to a simplified model with a 2-dimensional
transverse phase space. In addition, a Fokker-Plank–type diffusion coefficient is calculated through the
nonlinear action kicks imparted by the long-range beam-beam force. The analytical results are compared
with the tracking data.
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I. INTRODUCTION

In a colliding-beam storage ring, one of the largest per-
turbations affecting the motion of beam particles is the
collision with the opposing beam. This interaction oc-
curs, unavoidably, in the form of head-on collisions be-
tween bunches of the two beams at designated interaction
points (IPs) with minimum beta function. Many past stud-
ies for colliding proton beams have shown that simulations
of head-on collisions can only reproduce the experimental
data if a betatron-tune modulation of the order of 1024 is
included (see, for example, [1–3]). In addition, a trans-
verse offset between the closed orbits of the two colliding
beams at the head-on collision point has strongly enhanced
the diffusion and particle losses, both in simulations and
in experiments [3].

Future colliders employ long trains of closely spaced
bunches, and individual bunches encounter many others of
the opposing beam at various long-range (or “parasitic”)
collision points, where the beams are not fully separated.
In general, the effect of the long-range collisions depends
on the ratio of the beam separation to the local rms beam
size and on the total number of long-range collision points.
In the case of the Large Hadron Collider (LHC), a 7-TeV
double-ring proton collider presently under construction at
CERN, the long-range collisions occur in the vicinity of
each main head-on IP, before the beams are fully sepa-
rated into two disjunct beam pipes. Therefore, in the LHC
the effective strength of the long-range collisions depends
on the ratio of the beam crossing angle to the rms beam
divergence at the main IPs. On either side of the two LHC
main collision points, a beam encounters about 15 parasitic
collisions with an approximate average separation between
the closed orbits of the two beams of 9.5 rms beam sizes
(see Table I).
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Simulations predict that the long-range collisions in
hadron colliders give rise to a well-defined border of
stability at an amplitude which we call the “diffusive
aperture” [4–6]. As an example, Fig. 1 shows the change
of the action variance �DJ�2

x,y per turn, normalized to
the square of the transverse emittance ´x,y , as computed
by beam-beam simulations which consider the particle
motion in a 4-dimensional transverse phase space for a
model with two IPs and parameters similar to those of the
LHC [5]. The diffusive aperture is insensitive to the pres-
ence of the head-on collision (filled circles with dark blue
curve), and only marginally affected by the nonlinear field
errors in the final-triplet quadrupoles (squares with green
curve), or by a small additional tune ripple (empty circles
with pink curve). The diffusive aperture with long-range
collisions is equally insensitive to transverse closed-orbit
offsets between the two beams at the head-on collision
points [5]. Thus, previous studies for head-on collisions
are not directly applicable, and a better understanding of
the role of the long-range interaction is called for.

In this article, we first present a few simulation results
obtained by applying either the full beam-beam force or a
1�r 0 approximation. We then derive analytical estimates of
the diffusive aperture induced by the long-range collisions.

TABLE I. Simulation parameters.

Variable Symbol Value

Beam energy E 7 TeV
Particle species · · · protons
Full crossing angle uc 300 mrad
rms beam divergence s0

x 31.7 mrad
rms beam size sx 15.9 mm
Normalized transv.

rms emittance g´ 3.75 mm
IP beta function b� 0.5 m
Bunch charge Nb �1 3 1011 2 3 1012�
Betatron tune Q0 0.31
© 2002 The American Physical Society 074001-1
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FIG. 1. (Color) The change of action variance per turn, normal-
ized by the square transverse emittance, as a function of starting
particle amplitude in the LHC, considering the motion in a 4-
dimensional transverse phase space (2 transverse degrees of
freedom) for two interaction points with alternating horizontal/
vertical crossings and several additional sources of nonlinearity,
such as long-range collisions, the uncorrected nonlinear field
errors of the final-triplet quadrupoles, and a tune modulation
of amplitude 1024 [5]. The two beams, with 1011 protons per
bunch, are separated by 9.5s0

x at the long-range collision points.
Whenever long-range collisions are included in the simulation,
the diffusion rate increases sharply at about 6sx,y . The phase
advances between the two IPs were taken to be 31.655 3 �2p�
and 29.66 3 �2p�, respectively.

To this end, we apply the Chirikov overlap criterion to
a simplified model describing the long-range interactions
encountered at one IP of a circular machine. Finally, we
compute the locations of the most important resonances as
well as a diffusion coefficient based on a Fokker-Planck
type of approximation for the behavior of the chaotic tra-
jectories. Throughout this article, we assume LHC-like
parameters.

As a simplification, both in the simulation and in the
analytical treatment we consider particle motion in one
transverse plane only (1 transverse degree of freedom).
This is a necessary prerequisite for applying the Chirikov
criterion. All calculations, results, and figures presented
in the remainder of this article refer to a 2-dimensional
transverse phase space.

II. SIMULATIONS

We consider a single collision point, round Gaussian
beams, and particle motion in the crossing plane only. The
particle coordinate and slope at the IP can be written as
x �

p
2Jb� sinf and x0 �

p
2J�b� cosf, where (J, f)

are action-angle variables, b� is the beta function at the IP
(horizontal and vertical beta functions are assumed to be
equal), and the prime denotes the derivative with respect
to the accelerator path s. The long-range collisions occur
at a betatron phase advance close to p�2 from the IP. The
collisions before and after the IP add up and, thus, the net
effect of all long-range collisions around one IP can be
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represented as a single shift in the IP coordinate x (e.g.,
see [4,5]). A full turn around the storage ring is described
byµ

x
x0

∂
1

�

µ cosm b� sinm

2 sinm�b� cosm

∂ µ
x 1 f�x0�

x0

∂
0

, (1)

where m is the phase advance per turn,

f�x0� � 2K

∑
1

x0 1 uc
�1 2 e2��x01uc�2�2s0 2

x ��

2
1
uc

�1 2 e2u2
c �2s0 2

x �
∏

, (2)

with uc the full crossing angle, K � �2rpNbnpar�g�, Nb

the bunch population, npar the total number of long-range
collision points on both sides of one IP, s0

x the rms beam
divergence at the main IP, and g the relativistic factor.
Equation (2) describes the effect of a nonlinear deflection
(“kick”) at a long-range collision point, as viewed at a
location downstream or upstream which is separated from
the location of the kick by 90± in betatron phase advance.
Equation (1) represents the concatenation of a kick and a
rotation and resembles a generalized drift. It is not strictly
speaking a kick itself. Yet, we will loosely refer to it as
such, since it is the image of a long-range beam-beam kick
after a rotation in phase space.

Note also that instead of using the coordinates at the
main (head-on) collision point, we could have chosen di-
rectly those at the long-range collision point. In that
case, the new horizontal coordinate x̃ would have been
unchanged by the opposite beam, and the new slope x̃0

transformed into x̃0 1 f̃�x̃�, where f̃�x̃� would have been
a proper kick. However, we prefer to retain Eqs. (1) and
(2), in order to be consistent with an earlier publication [5],
where head-on collisions were also included in the simula-
tion, and where the present coordinate system was chosen
for computational efficiency and convenience.

In Eq. (2), a static dipole kick was subtracted (the term
proportional to 1�uc), as the resulting closed-orbit dis-
tortion can be taken into account and eliminated from
the analysis, simply by redefining the reference axes of
the local phase-space coordinates. Finally, let us men-
tion that the positive sign of the coefficient K applies to
equal-charge beams.

We have performed simulations of this model system
for parameters roughly representing proton-proton colli-
sions in the LHC, which are listed in Table I. Simulated
phase-space diagrams for various bunch charges are dis-
played in Fig. 2, along with the corresponding diagrams of
tune versus amplitude (Fig. 3), computed through Laskar’s
frequency map analysis method [7]. The diagrams provide
a view of the resonant structure of the system in frequency
space. The form of the tune curves reveals the strong non-
linearity encountered in the vicinity of the opposing beam.

The motion in phase space is regular for low bunch
populations. As for an increasing bunch population the
perturbation grows, a multitude of high-order resonances
074001-2
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FIG. 2. Phase-space plots for various bunch populations simulated using the 2-dimensional model of the long-range beam-beam
force of Eqs. (1) and (2). The transverse variables �x, x0� are measured in units of the rms beam size and rms divergence �sx , s0

x�.
appears (see [8], for a study on the resonance bifurcations
of this class of maps). By the time Nb reaches 5 3 1011,
most of the resonances are overlapping, giving rise to a
large chaotic area, and the tune is shifted towards the third-
order resonance. Interestingly, when the bunch population
is doubled (Nb � 1012), the topology of the phase space
changes drastically, as the central tune passes through the
third-order resonance.

If the oscillation amplitudes (expressed as slopes at the
IP) are small compared with the crossing angle, and as-
suming that the latter is several times larger than the rms
beam divergence, we can drop the exponential term in (2),
and the force decreases inversely with the distance to the
other beam, r 0 � �x0 1 uc�. Because of our choice of co-
ordinates, transverse distances at the long-range collision
points are described as angles at the IP. Note that dropping
the exponential term in Eq. (2) is equivalent to replacing a
beam with a Gaussian distribution by a pencil beam.

Phase-space plots obtained for this simplified model are
shown in Fig. 4. Although many details of the phase space
are different, especially at large amplitudes, in most cases
the chaotic boundary is about the same as in the simula-
074001-3
tions employing the exact force (Fig. 2). Figure 5 displays
the corresponding curves of tune shift with amplitude.

The difference in the phase-space topology for large
amplitudes arises due to a singularity in the approximate
1�r 0 force which is encountered when a particle passes
through the center of the opposing beam, at x0 � uc. In
the approximate force, particles crossing that point are
escaping towards infinitely large amplitudes. On the other
hand, no such singularity exists in the case of the full
kick, Eq. (2), due to the presence of the exponential term.
In the simulation, groups of particles are launched with
random nonzero initial betatron phases. Thus, the simu-
lated particles will come close to the singularity, but
usually not pass through it exactly, even if their starting
amplitudes are equal to the beam separation. This singu-
larity is of no direct concern to us, since we are interested
in modeling the particle motion near the diffusive aperture,
which, for the nominal LHC parameters, is significantly
smaller than the beam separation. However, we keep in
mind that at much lower bunch currents our approximation
is no longer self-consistent, when the diffusive aperture
approaches the singularity.
074001-3
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FIG. 3. Tune shifts versus initial particle slope, measured in units of the LHC rms beam divergence, for different bunch populations.
The tracking was done using the 2-dimensional model of the long-range beam-beam force, Eq. (1).
Figure 6 compares diffusion rates, i.e., the increase
in the action variance of a group of particles per unit
time, simulated using the exact and the approximated
long-range beam-beam force as a function of the bunch
population.

As we have done previously for the 4-dimensional simu-
lation results of Fig. 1, we identify the steep increases that
are visible in Fig. 6 with the diffusive aperture. The val-
ues of the diffusive aperture thus obtained are summa-
rized in Fig. 7, for both the exact force and for the 1�r 0

approximation. The figure illustrates that for bunch inten-
sities above 5 3 1011 the 1�r 0 approximation works well.
For lower intensities, this approximation gives a smaller
074001-4
diffusive aperture than the exact simulation, and, thus, it
can be used as a “worst case” estimate.

Even for high intensities the simulated diffusion rates
��DJ�2� per turn at amplitudes larger than the diffusive
aperture are not precisely the same in the two pictures
of Fig. 6. This difference is understandable and indeed
expected as the nature of diffusion for the two problems is
quite different: the chaotic behavior for the 1�r 0 force is
associated with particles escaping to infinity, whereas the
chaotic phase-space region for the full problem is bounded.

Note that in Fig. 7 the diffusive aperture first decreases
as a function of bunch population Nb , and then it rises
again for Nb larger than about 6 3 1011. This is consistent
074001-4
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FIG. 4. Phase space for various bunch populations simulated using a simplified model of motion in one transverse plane for the
long-range beam-beam force, Eq. (1) and the 1�r 0 approximation to Eq. (2). The transverse variables are measured in units of the
rms beam size sx and beam divergence s0

x .
with the phase-space diagrams in Figs. 2 and 4, as well as
with the simulated tune shifts versus amplitude in Figs. 3
and 5. In our example, a decisive ingredient determining
the diffusive aperture is the third-integer resonance, whose
location moves inwards for increasing bunch population.
Above a certain current, the third-order resonance islands
become stable and so does the particle motion in a fairly
large region of phase space. This phenomenon indeed
depends on the working point.

III. HAMILTONIAN, DETUNING, AND DRIVING
TERMS

The Hamiltonian corresponding to Eq. (1) consists of a
periodic series of long-range kicks and linear rotations

H�J, f,u� � Q0J 1 V �J , f�
1

2p

X
p

eipu ,

where Q0 is the unperturbed tune and the series represent-
ing the Fourier expansion of the Dirac d function, express-
ing the localization of the beam-beam kick in a single IP
encountered on successive turns. The beam-beam poten-
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tial V �J, f� � V �x0�J, f�� can be calculated by integrat-
ing the beam-beam kick f�x0� from 2` to x0. We obtain

V �x0� �
K
2

∑
Ei

µ
2

�x0 1 uc�2

2s
2
x0

∂
2 ln

µ
�x0 1 uc�2

2s
2
x0

∂

1
2x0

uc
�1 2 e2u2

c �2s
2
x0 �

∏
, (3)

where Ei is the exponential integral,

Ei�u� �
Z u

2`

eu0

u0
du0,

representing the exponential part of the force. The change
in the position of a particle at the main IP, due to the
generalized drift representing the combined action of up-
stream and downstream long-range kicks, is related to the
partial derivative of V with respect to x0, i.e., Dx�u� �
≠V�≠x0

P
n d�u 2 n2p�, and x0 can again be expressed

in terms of action-angle variables via x0 �
p

2J�b� cosf.
Near a resonance nQ � p of order n, we may approxi-

mate the Hamiltonian (see, e.g., [9]) as

Hr � Q0J 1 g�J� 1 hn cos�nf 2 pu� .
074001-5
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FIG. 5. Tune shifts versus initial particle slope, measured in units of the LHC rms beam divergence, for different bunch populations.
The tracking has been done using the simplified of motion in one transverse plane for the long-range beam-beam force, Eq. (1) and
the 1�r 0 approximation to Eq. (2).
The shift of the tune with amplitude in first-order pertur-
bation theory is

dg�J�
dJ

�
1

2p

ø
≠V
≠J

¿
f

,

where the angular brackets �· · ·�f denote an average over
the angle variable. The driving term hn is given by the
Fourier transform of the potential, i.e.,

hn�J� �
1

2p2

Z 2p

0
V �J, f� cos�nf� df .
074001-6
The usual procedure followed for integrals involving ex-
ponentials with arguments of trigonometric functions is to
expand them into a series of Bessel functions (see, e.g.,
[10]):

ez cosu � I0�z� 1 2
1X̀
n�1

In�z� cos�nu�

�
1X̀

n�2`

In�z� cos�nu� , (4)
074001-6
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where the symbols In represent the nth order modified Bessel functions of the first kind. Calculation of the integrals
yields

dg�J�
dJ

�
K

2pb�
p

u2
c 2 2J�b�

"
1

uc 1
p

u2
c 2 2J�b�

1
e2�u2

c �2s
2
x0 �2�J�2b�s

2
x0 �

4
p

2J�b�

3
X̀

k,l�2`

Ik

√
2

J

2b�s
2
x0

!
Il

√
2

uc

s
2
x0

s
2J
b�

!
Dk,l�J�

#
, (5)
where

Dk,l�J� � Rj2k1l11j 1 Rj2k1l21j

1 Rj2k2l11j 1 Rj2k2l21j,

and

R�J� � 2

p
2J�b�p

u2
c 2 2J�b� 1 uc

.

The convergence behavior of the expansion in Bessel
functions is illustrated in Fig. 8, where we plot the

FIG. 6. (Color) The change of action variance per turn, in units
of the LHC rms design emittance 0.5 nm, as a function of start-
ing amplitude for a simulation in one transverse plane (i.e.,
y0 � 0) with 9.5s0

x separation, considering a single interaction
point with the beam-beam crossing in the plane of motion. The
top picture shows results for the exact beam-beam force; the
bottom picture shows those for the 1�r 0 approximation. The
various curves correspond to different bunch populations.
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dependence of the analytical detuning estimate (5) at an
amplitude close to 9s0

x as a function of the maximum val-
ues k and l, for which the corresponding Bessel functions
are still taken into account. The partial sums for jkjmax
and jljmax about equal to 30 and 50, respectively, are con-
stant up to machine precision. However, the violent oscil-
lations of these partial sums at lower order indicate that
they are numerically ill conditioned, which may degrade
the accuracy of the result despite the convergence.

The first term in the square brackets of (5) corresponds
to the 1�r 0 approximation. This part of the detuning can
be derived using formula (3.613.1) of [11]. The term in
front of the square brackets diverges at an amplitude which
is 2 3s0

x smaller than the separation of the two beams
(expressed as the crossing angle) and so does the 1�r 0

approximation, as illustrated in Fig. 9. This divergence
indeed indicates the breakdown of the validity of the 1�r 0

approximation. It is not immediately evident that the term
in square brackets cancels the divergence in front, nor that
it necessarily should, since we are applying a first-order
perturbative treatment.

Regardless, the full expression more closely approaches
the simulated behavior of tune versus amplitude, though
above a certain amplitude it equally fails to reproduce the
simulation result. We attribute the remaining discrepancy
to either the first-order nature of the analytical estimate

FIG. 7. (Color) Simulated diffusive aperture as a function of
bunch population for 30 parasitic collision points and uc �
9.5sx0 . The figure compares the results for the exact force and
those obtained using the 1�r 0 approximation. Only particle mo-
tion in the plane of crossing is simulated (1 transverse degree of
freedom).
074001-7
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or to the limited computing precision when evaluating the
double sum over the product of Bessel functions.

Using again the expansion (4), or employing the formula
(4.397.6) of [11] [

Rp

0 ln�1 2 2a cosx 1 a2� cosnx dx �
2p��nan� for a2 . 1], and considering n . 1, the reso-
nance driving term can be written as

hn�J� �
2K
pn

∑
�2R�n 1

p
2J�b� e2�u2

c �2s0 2
x �2�J�2b�s0 2

x �

8uc

p
uc 2 2J�b�

3
X̀

k,l�2`

Ik

µ
2

J
2b�s02

x

∂

3 Il

µ
2

uc

s02
x

s
2J
b�

∂
D0

k,l,n

∏
, (6)

where

D0
k,l,n�J� � 2Rj2k1l1n11j 1 Rj2k1l2n11j

2 Rj2k1l2n21j 1 Rj2k2l2n11j 2 Rj2k2l1n11j

1 Rj2k1l1n21j 2 Rj2k2l2n21j 1 Rj2k2l1n21j.

Again, the first term in the square brackets represents the
1�r 0 force.

2 4 6 8
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FIG. 9. (Color) Tune as a function of amplitude in units of s0
x

due to long-range beam-beam interaction for a separation of
9.5s0

x . The tracking result (green), the 1�r 0 term only (red),
and the full force, where the Bessel function series of (5) are
expanded to maximum absolute orders jkjmax � 30 and jljmax �
50 (blue).
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IV. OVERLAP CRITERION

For simplicity, we now restrict the analysis entirely to
the 1�r 0 approximation. The resonance half-width of the
nth order resonance is DJn,1�2 � 2� hn

d2g�dJ2 �1�2 and the dis-
tance between two resonances of order n1 and n2 �n2 .

n1� is dJ � � 1
n1

2
1
n2

� 1
jd2g�dJ2j . Strong chaos occurs if two

adjacent resonances overlap [12]:

2
3

dJ # DJn1,1�2 1 DJn2,1�2 .

The factor 2�3 accounts for the width of the separatrix
and for higher-order islands [9,12]. This condition can be
rewritten as

1
3

µ
1
n1

2
1
n2

∂
# �

p
hn1 1

p
hn2 �

sÇ
d2g
dJ2

Ç
.

As a first example, we consider n2 � �n1 1 1�, assume
hn1 � hn2 , and insert the expressions for dg�dJ and hn

derived in Eqs. (5) and (6). The nonlinear equation de-
scribing the threshold of instability then becomes√

1 1 2
p

1 2 A2

�1 2 A2�3�2�1 1
p

1 2 A2�2

! √
A

1 1
p

1 2 A2

!nres

$
p2u4

cb�2

36K2

1
nres�nres 1 1�2 , (7)

where A 	
p

2J�b��uc is the particle amplitude normal-
ized to the separation, and nres � n1. The overlap criterion
is necessary, but not sufficient. In order to observe chaos,
resonances of order nres also need to be present near the
threshold amplitude A. This depends on the nominal tune
and on the detuning dg�dJ. As a worst case, we may
assume that a resonance of a given order nres is located di-
rectly at the boundary expressed by Eq. (7), where overlap
would occur.

An important point to note is that the action variable
Jov,nres 	 Ab�u2

c�2 for which the overlap criterion (7) is
fulfilled should be taken as the action value at the center of
the island, the destruction of whose separatrix gives rise to
chaos and diffusion, whereas the actual diffusive aperture
corresponds to an action variable obtained from Jov,nres by
subtracting the resonance half-width DJnres,1�2 :
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Jda � Jov,nres 2 DJnres,1�2 . (8)

Numerical solutions of (7) and (8) are shown in Fig. 10
illustrating the dependence of the overlap amplitude xda �p

2Jda�´ (where ´ is the geometric rms emittance) on the
resonance order, the bunch population, and the crossing
angle.

FIG. 10. (Color) Minimum amplitude at which the overlap con-
dition Eq. (7) is fulfilled as a function of (top) resonance order
nres (for uc � 9.5s0

x , Nb � 1.05 3 1011), (center) bunch popu-
lation (for the same crossing angle and three different resonance
orders), and (bottom) crossing angle uc (for a bunch population
of Nb � 1.05 3 1011 and five different resonance orders).
074001-9
On closer inspection, the numerical simulations indicate
that chaos occurs due to the overlap of a resonance of
low order, such as third order, with a second considerably
higher resonance.

To obtain a better analytical estimate, as a second ex-
ample, we therefore consider n1 	 nres to be a low-order
resonance, e.g., n1 � 3, and n2 to be a resonance of much

FIG. 11. (Color) Minimum amplitude at which the modified
overlap condition Eq. (9) is fulfilled as a function of (top) reso-
nance order nres (for uc � 9.5s0

x , Nb � 1.05 3 1011), (center)
bunch population (for the same crossing angle and three differ-
ent resonance orders), and (bottom) crossing angle uc (for the
nominal bunch population Nb � 1.05 3 1011 and five different
resonance orders).
074001-9
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higher order. We can then neglect its contribution in the
difference 1�n1 2 1�n2 and in the sum of the two reso-
nance widths, and we obtain, as a revised expression for
the chaotic threshold, the inequality√

1 1 2
p

1 2 A2

�1 2 A2�3�2�1 1
p

1 2 A2�2

! √
A

1 1
p

1 2 A2

!nres

$
p2u4

cb�2

9K2

1
n2

res
. (9)

Results computed using Eqs. (8) and (9) are displayed
in Fig. 11.

Figures 10 and 11 illustrate that for a bunch popula-
tion1 Nb � 1.05 3 1011, the diffusive aperture predicted
by Eqs. (7) and (9) is rather sensitive to the resonance or-
der. For high resonance orders or large crossing angles,
and also for small bunch populations, the model predicts
the onset of global chaos at amplitudes where particles
pass close to the center of the opposing beam (at 9.5s0

x).
At these amplitudes, however, the 1�r 0 approximation can
no longer be applied, and, therefore, the real diffusive
aperture might either be larger or not exist at all. How-
ever, for increasing strength of the perturbation, reso-
nances of lower order induce global chaos at significantly
smaller amplitudes, where our approximate solution is self-
consistent. For a working point at Q0 � 0.31 and bunch
charges above 3 3 1011, the third-order resonance deter-
mines the position of the diffusive aperture, as is evident
from Fig. 3.

It is noteworthy that for a constant normalized crossing
angle uc�

p
´�b�, the diffusive aperture in units of the rms

beam size depends only on the variables uc, b� and on the
perturbation parameter K in the combination

u2
cb�

K
~

gu2
cb�

Nbnpar
~

g´

Nbnpar
. (10)

V. RESONANCE LOCATION

The simulated phase-space diagrams in Figs. 2 and 4
indicate that the diffusive aperture for the nominal LHC
working point is dominated by resonances of fairly low
order. Under this assumption, we have also obtained a
good agreement with the analytical overlap criterion. We
can further improve the estimate based on Eqs. (8) and (9),
if we take into account the actual resonance positions.

Invoking again the 1�r 0 approximation, the detuning
function g�J� gives the location in action of a resonance
(Q � p�n) as

Q0 1
dg
dJ

�Jn,p� �
p
n

(11)

or

1Recently the nominal LHC bunch intensity was changed to
1.1 3 1011.
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FIG. 12. (Color) Location for resonances of order 3, 5, 8, and
13, according to Eq. (12), as a function of bunch population, for
a base tune of 0.31.

Jn,p �
1

4p�p 2 nQ0�
3 
2Kn 1 p�p 2 nQ0�bu2

c 1
p

p

3
p

�p 2 nQ0�bu2
c �2Kn 1 p�p 2 nQ0�bu2

c � � .

(12)

Using Eq. (12), we can compute the resonance locations
as a function of the bunch population, as illustrated in
Fig. 12 for resonances of order 3, 5, 8, and 13.

If a resonance nQ � p of order nres � n limits the
diffusive aperture, we may estimate the latter by

Jda � Jn,p 2 DJn,p,1�2 , (13)

FIG. 13. (Color) Diffusive aperture corresponding to the mini-
mum boundary for resonance islands of order 3, 5, 8, and 13, as
a function of bunch population, taking into account the actual
location of the resonances for a base tune of 0.31. Aperture
values are shown only for bunch currents at which overlap with
a high-order resonance occurs according to Eq. (9). If overlap
with other low-order resonances is taken into account curves
may extend farther to the right. The dotted line considers as
an example the overlap between the third- and the fifth-order
resonance.
074001-10
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where DJn,p,1�2 denotes the half-width of the nth order
resonance evaluated for a fixed point at Jn,p . Applying
Eq. (13), we obtain the diffusive aperture estimates of
Fig. 13. Values are shown only for bunch populations and
amplitudes at which the Chirikov criterion, Eq. (9), is ful-
filled. Here, we have considered only the overlap with a
high-order resonance. The dotted line illustrates that over-
lap with other low-order resonances may continue to sig-
nificantly larger bunch populations.

We recall that at small bunch populations, for which the
diffusive aperture approaches the separation, the calcula-
tion is no longer self-consistent.

VI. DIFFUSION COEFFICIENT

The action variable is related to x and x0 via

J �
x2 1 �b�x0�2

2b�
, (14)

which follows from the relations

x �
p

2Jb� sinf, x0 �
p

2J�b� cosf . (15)

The change in action due to a long-range kick is

DJ �
2xf�x0� 1 f�x0�2

2b�
. (16)

In the chaotic region of phase space, the action diffusion
coefficient per turn can be estimated by averaging over the
quasirandomly varying betatron phase variable as [9]

D�J� �
1

2p

Z 2p

0
df �DJ�f��2

�
1

2p
K2A4

Z 2p

0
df

"
sin2f cos2f

�1 1 A cosf�2

#
df

�
K2

2
1

A 2 1

"
A3 2 A2 1 4A2

s
1 2 A
1 1 A

2 6A

1 6 2 6

s
1 2 A
1 1 A

#
, (17)

where A 	
p

2J�b��uc. Note that the expression in the
square brackets becomes zero at A � 0 and A � 1, while
it is real and negative for intermediate values of A, thus
defining the validity limit of the estimate. Beyond this
limit, for A . 1, the expression becomes complex and has
no physical significance.

The diffusion coefficient for various bunch populations
is plotted in Fig. 14 as a function of amplitude. Compari-
son with Fig. 6 demonstrates that the analytical formula
gives a reasonable estimate for the diffusion rate in the
chaotic region, i.e., at amplitudes larger than the diffusive
aperture. For smaller amplitudes, the simulated diffusion
in Fig. 6 is much smaller than that computed from (17).
The reason for the discrepancy at small amplitudes is that
the assumption underlying Eq. (17), namely, that the mo-
tion is stochastic and the betatron phase random over long
time scales, no longer holds true.
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FIG. 14. (Color) Analytical estimate of the diffusion coefficient,
Eq. (17), for different bunch populations.

VII. CONCLUSION

Simulations show that the long-range beam-beam in-
teraction may severely limit the dynamic aperture of fu-
ture hadron colliders operating with many closely spaced
bunches. Simulated threshold amplitudes for strong dif-
fusion (diffusive aperture) are similar if either the exact
expression for the beam-beam force or a 1�r 0 approxima-
tion is employed.

The Chirikov overlap criterion yields an analytical esti-
mate for the onset of strong chaos. In order to apply the
Chirikov criterion for determining the diffusive aperture
caused by the long-range beam-beam interaction, we have
derived analytical formulas for the tune shift with ampli-
tude and the resonance driving terms, considering round
beams and motion in the crossing plane only, through
first-order perturbation theory.

Then restricting the treatment to the 1�r 0 part of the
long-range beam-beam force, also taking into account the
finite resonance width, and in addition assuming that a
resonance is located exactly at the amplitude from which
on resonance overlap can occur, we have derived an ex-
pression for the diffusive aperture. This analytical result,
although slightly pessimistic, resembles the full simula-
tion. We have demonstrated that the agreement with the
latter can be improved further, by also accounting for the
actual locations of resonances in phase space. In addition,
we have estimated the magnitude of the diffusion coeffi-
cient in the chaotic region. For amplitudes larger than the
diffusive aperture, the analytically estimated diffusion rate
is in good agreement with the simulation.

Our analytical discussion clearly reveals the dependence
of the long-range diffusive aperture on critical beam pa-
rameters, such as the crossing angle, the beta function at
the IP, or the bunch population.

In much the same manner, resonant Hamiltonians could
be computed for the full 4-dimensional transverse phase
space, including alternating crossing at two interaction
points. However, due to its purely geometrical character,
074001-11
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extension of the overlap criterion to the topology of a
higher-dimensional phase space is not possible.

ACKNOWLEDGMENTS

We would like to thank Y. Alexahin, O. Brüning, H.
Burkhardt, J. Jowett, J.-P. Koutchouk, and A. Mostacci for
useful discussions and suggestions. We are also grateful
to W. Herr and F. Ruggiero for a careful reading of the
manuscript, feedback, and corrections.

[1] L. R. Evans, in Proceedings of the CERN Accelerator
School on Antiprotons in Colliding Beam Facilities,
Geneva, Switzerland, 1984 (CERN Report No. CERN
84-15, 1984), p. 319.

[2] M. Meddahi, Ph.D. thesis, University de Paris VII, 1991
[CERN Report No. CERN SL/91-30 (BI), 1991].

[3] K. Cornelis, in Proceedings of the Workshop on
Beam-Beam Effects in Large Hadron Colliders —LHC99,
Geneva, 1999, edited by J. Poole and F. Zimmermann
074001-12
(CERN Report No. CERN-SL-99-039 AP), 1999, p. 2;
T. Satogata and S. Peggs, ibid., p. 108; F. Zimmermann,
Ph.D. thesis, University of Hamburg, 1993.

[4] J. Irwin, Superconducting Super Collider Report No. 233,
1989 (unpublished).

[5] Y. Papaphilippou and F. Zimmermann, Phys. Rev. ST Ac-
cel. Beams 2, 104001 (1999).

[6] L. Leunissen, H. Grote, and F. Schmidt, in Proceedings of
the EPAC 2000, Vienna, edited by M. Regler (European
Physical Society, Geneva, 2000).

[7] J. Laskar, Astron. Astrophys. 198, 341 (1988); H. S. Dumas
and J. Laskar, Phys. Rev. Lett. 70, 2975 (1993); J. Laskar,
Physica (Amsterdam) 67D, 257 (1993); J. Laskar and
D. Robin, Part. Accel. 54, 183 (1996).

[8] C. Polymilis, Ch. Skokos, G. Kollias, G. Servizi, and
G. Turchetti, J. Phys. A 33, 1055 (2000).

[9] A. J. Lichtenberg and M. A. Lieberman, Regular and
Chaotic Motion (Springer-Verlag, New York, 1992),
p. 258.

[10] M. Abramowitz and I. A. Stegun, Handbook of Mathemat-
ical Functions (Dover, New York, 1972), p. 376.

[11] I. Gradshteyn and J. Ryzhik, Table of Integrals, Series, and
Products (Academic Press, San Diego, 1994), 5th ed.

[12] B. V. Chirikov, Phys. Rep. 52, 5 (1979).
074001-12


