
PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS, VOLUME 5, 061001 (2002)
Luminosity optimization near the beam-beam limit by increasing bunch length or crossing angle
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We discuss the choice of bunch length and crossing angle near the beam-beam limit in a storage-ring
collider. First, we derive expressions for the tune shifts of either bunched or continuous round beams
which are induced by a single collision with arbitrary crossing angle and bunch length and for the
associated luminosities. Then, considering two collision points with alternating planes of crossing, we
demonstrate that, if the total beam-beam tune shift is held constant, the collider luminosity increases
as a function of bunch length and crossing angle. This implies a corresponding increase in the bunch
intensity. As an illustration, we present numerical examples for a Large Hadron Collider upgrade and
for the Very Large Hadron Collider.
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I. INTRODUCTION

Beam-beam tune shifts [1,2] and luminosity [3] for
coasting beams colliding under a small crossing angle have
been derived in the early days of the CERN intersecting
storage rings. Most of the analyses at that time considered
round beams, but included the variation of the beta func-
tions around the collision point. The luminosity for the
collision of beams of finite length with zero crossing angle
was computed during the same period at SLAC [4], and, in-
cluding a nonzero crossing angle, at LBL [5]. Luminosity
formulas for a variety of cases were compiled in Ref. [6].
A compact expression for the zero crossing angle can be
found in Ref. [7]. The report by Montague [2] extended
the treatment of the beam-beam tune shift also to flat beams
and nonzero dispersion. The effect of a finite bunch length
on the beam-beam interaction of round beams was stud-
ied by Krishnagopal and Siemann in Ref. [8]. They found
that due to the finite bunch length the Fourier coefficients
in the beam-beam Hamiltonian are suppressed by a Gauss-
ian form factor. During the design of the B factories, it
was pointed out by Hirata that a large crossing angle can
be beneficial for the collision of bunched electron-positron
beams [9]. Even more recently, the collision of long pro-
ton “superbunches” (much longer than b�

x,y) with a large
crossing angle was suggested as a means to attain higher
luminosity in future hadron colliders [10].

In this paper, we first derive a general expression for the
tune shift of round beams of arbitrary bunch length col-
liding under an arbitrary crossing angle in a single col-
lision point. In the limit of small crossing angles and
for coasting beams, the formula obtained reproduces the
earlier results [1,2]. We then present an expression for
the total beam-beam tune shift for a colliding-beam stor-
age ring with two interaction points (IPs) in which the
(round) beams are crossed horizontally and vertically, re-
spectively. We next derive expressions for the luminosity,
again considering an arbitrary bunch length and crossing
angle. Comparing the parameter dependence of the total
tune shift with that for the luminosity, we conclude that, if
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a collider operates near the beam-beam limit, the luminos-
ity can be raised by a simultaneous increase in the product
of the crossing angle and bunch length, and in the bunch
intensity [see Eqs. (21) and (29)], while it is independent
of the emittance. In the appendix, we describe a recipe
for computing the tune shift for a particle at an arbitrary
betatron amplitude and the associated tune footprint in the
tune diagram, for both bunched and continuous beams. Al-
though we do not explicitly consider parasitic beam-beam
encounters (for bunched beams), their effect could be com-
puted as well using the formalism presented here.
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FIG. 1. (Color) Schematic of coordinate system for two beams
colliding under a crossing angle u. The s� coordinate with
asterisk is aligned with the axis of the “strong” beam, but points
opposite to its direction of motion. The s coordinate without
asterisk refers to the frame of the “weak” beam for which the
tune shift is to be calculated. The two frames are related via
a rotation in the s-x plane by the angle u. The vertical ( y)
axis is perpendicular to the plane drawn and identical in the two
coordinate systems.
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We illustrate our discussion by numerical examples for
possible upgrade scenarios of the Large Hadron Collider
(LHC) [11], presently under construction at CERN, and for
the Very Large Hadron Collider (VLHC) [12], proposed in
the U.S.

In the following, we use the coordinate system depicted
in Fig. 1. The coordinates with the asterisk refer to the
frame aligned in the direction of the “strong” beam, those
without the asterisk to the reference frame of the “weak”
beam, for which the tune shift is to be calculated. Through-
out this paper, we consider ultrarelativistic beams whose
energy is much larger than their rest mass.

II. TUNE SHIFT FOR A SINGLE INTERACTION
OF TWO ROUND BEAMS

We first study the case of continuous beams. Without a
crossing angle, the coordinate frames aligned with the two
beams are identical. In this case, and for a round proton
beam with Gaussian distribution in the radial direction, the
force, e.g., in the strong-beam coordinate frame, easily
follows from Maxwell’s equations. Namely, a particle
experiences the acceleration

≠2x�

≠s�2 �
4lrp

g

x�

r�2

∑
1 2 exp

µ
2

r�2

2s�s�2

∂∏
, (1)

≠2y�

≠s�2 �
4lrp

g

y�

r�2

∑
1 2 exp

µ
2

r�2

2s�s�2

∂∏
, (2)

where r�2 � x�2 1 y�2, x� and y� are the horizontal and
vertical coordinates with respect to the beam center, l

denotes the line density of the strong beam in units of m21,
rp is the classical proton radius [for other particle species
of mass M and charge Q, the corresponding radius rM �
Q2��4pe0Mc2� should be taken], and s�s� � sx�s� �
sy�s� is the transverse rms beam size, which varies with
the longitudinal position s.

If the colliding beams were flat instead of round,
Eqs. (1) and (2) would need to be replaced by more
complicated expressions involving the complex error
functions and the two rms transverse beam sizes [13].
This would add considerable complexity to the calculation
and, more importantly, it would prevent a simplification
and cancellation between the two planes which appears
essential to our scheme of raising the luminosity. In the
following, we will consider only the collision of round
beams, which is described by Eqs. (1) and (2).

In the case with the crossing angle, say in the horizontal
plane, we must apply a coordinate transformation to the
weak-beam frame (without the asterisk):

x� � x cosu 2 s sinu , (3)

s� � s cosu 1 x sinu . (4)

Figure 1 shows a schematic of the two coordinate systems.
The associated transformations of the electric and magnetic
fields are
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Ey � E�
y and Ex � E�

x cosu , (5)

By � B�
y and Bx � B�

x cosu , (6)

Fx � eEx 1 ceBy and Fy � eEy 2 ceBx , (7)

and, thus, the forces acting on a particle in the weak beam
are

Fx � eE�
x �1 1 cosu� � F�

x
1 1 cos u

2
, (8)

and

Fy � eE�
y�1 1 cosu� � F�

y
1 1 cosu

2
. (9)

For ease of notation we define the coefficient

K �
4lrp�1 1 cosu�

2g
, (10)

and abbreviate the trigonometric expressions as C � cosu
and S � sinu. The coefficient K of Eq. (10) is positive if
the two colliding beams have equal sign of charge, as in
the LHC. Otherwise the value of l should be chosen with
a negative sign.

Using Eqs. (1), (2), (8), and (9), we can now write the
acceleration of a particle in the weak beam as

fx �
≠2x
≠s2 � K

xC 2 sS
�xC 2 sS�2 1 y2

3

∑
1 2 exp

µ
2

�xC 2 sS�2 1 y2

2s�s�2

∂∏
,

fy �
≠2y
≠s2 � K

y
�xC 2 sS�2 1 y2

3

∑
1 2 exp

µ
2

�xC 2 sS�2 1 y2

2s�s�2

∂∏
.

The tune shift is obtained by integrating the transverse
derivative of the force times the corresponding beta func-
tion over the longitudinal direction s, namely,

DQx � 2
1

4p

Z l�2

2l�2

≠fx

≠x

Ç
x�y�0

bx ds , (11)

DQy � 2
1

4p

Z l�2

2l�2

≠fy

≠y

Ç
x�y�0

by ds , (12)

where we assume that the beams are separated or shielded
from each other at distances larger than l�2 from the in-
teraction point.

Computing the above derivatives yields

≠fx

≠x

Ç
x�y�0

� KC

Ω
2

1
s2S2

∑
1 2 exp

µ
2

s2S2

2s�s�2

∂∏

1
1

s�s�2 exp

µ
2

s2S2

2s�s�2

∂æ
,
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≠fy

≠y

Ç
x�y�0

� K

Ω
1

s2S2

∑
1 2 exp

µ
2

s2S2

2s�s�2

∂∏æ
.

Inserting this into the preceding equations, and assum-
ing b�s� � b��1 1 s2�b�2� where b� � b�

x � b�
y de-

notes the beta function at the collision point (no quadrupole
magnets over the length of the beam-beam interaction), we
obtain the final expressions for the tune shift of two round
coasting beams, or long superbunches, colliding under a
horizontal angle u:

DQx � 1
lrpb�

pg

µ
1 1 cosu

2

∂
cosu

Z l�2

2l�2

µ
1 1

s2

b�2

∂

3

Ω
1

s2 sin2u

∑
1 2 exp

µ
2

s2 sin2u

2s2

∂∏

2 exp

µ
2

s2 sin2u

2s2

∂
1

s2

æ
ds , (13)

DQy � 2
lrpb�

pg

µ
1 1 cosu

2

∂ Z l�2

2l�2

µ
1 1

s2

b�2

∂

3

Ω
1

s2 sin2u

∑
1 2 exp

µ
2

s2 sin2u

2s2

∂∏æ
ds ,

where s � s�s� � s�
p

1 1 s2�b�2, s� �
p

eb� �p
eNb��g using the geometric transverse emittance e

(taken to be equal in the horizontal and vertical planes)
and the corresponding normalized emittance eN , and, for
a long superbunch of total length lb and bunch population
Nb ,

l �
Nb

lbunch
�superbunch�. (14)

For u ø 1 the formulas (13) agree with those quoted
by Keil in Ref. [3]. If we add the horizontal and vertical
tune shifts, the first term in the expression for DQx almost
cancels the full expression for DQy , apart from a factor
�2cosu�. For a small crossing angle, the sum of the two
tune shifts is determined by the last term in DQx , which
is proportional to 1�s�s�2. This cancellation between the
terms describing the horizontal and vertical tune shifts, re-
spectively, has an analog in the first order compensation of
the linear tune shifts from (parasitic) long-range collisions
for bunched beams, which occurs if at two (or more) in-
teraction points the two beams are crossed alternatingly in
the horizontal and vertical planes [14,15].
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As an aside, in the case of flat-beam collisions it is dif-
ficult, if not impossible, to achieve a similar cancellation
between two collision points, since, in general, the emit-
tances, beta functions, and beam sizes are different in the
two planes, and, in addition, the latter two vary differ-
ently with the longitudinal position s. For a related rea-
son, the tune shifts of bunched flat beams which arise
from long-range collisions differ by a factor k � ey�ex

in the horizontal and vertical planes [16]. Therefore, the
long-range tune shifts of flat beams cannot be compensated
by alternating the plane of the beam crossing.

The expression for the tune shift in the case of bunched
beams of Gaussian profile is similar to the previous result.
However, we must take into account the fact that the den-
sity of the opposing beam now varies as

G�s, x� � exp

µ
2�s 1 sC 1 xS�2

2s2
z

∂
. (15)

As a consequence, both fx and fy must be multiplied
with G�s, x�, and the expressions for ≠fx�≠x and ≠fy�≠y
become

≠fx

≠x

Ç
x�y�0

� K

Ω
2

C
s2S2

∑
1 2 exp

µ
2

s2S2

2s�s�2

∂∏

1
C

s�s�2 exp

µ
2

s2S2

2s�s�2

∂
1

�1 1 C�
s2

z

3

∑
1 2 exp

µ
2

s2S2

2s�s�2

∂∏æ
g�s�

�Gaussian bunch�,

≠fy

≠y

Ç
x�y�0

� K

Ω
1

s2S2

∑
1 2 exp

µ
2

s2S2

2s�s�2

∂∏æ
g�s�

�Gaussian bunch�,

where g�s� � G�s, x�jx�0 denotes the form factor

g�s� � exp

µ
2

s2�1 1 cosu�2

2s2
z

∂
�Gaussian bunch�. (16)

Note that now there is an additional term in the expression
for ≠fx�≠x. The other difference to the coasting-beam
case is that the field of the opposing beam is encountered
only over a finite length and not over the full interaction
region, which gives rise to the form factor g�s�. The ex-
pressions for the tune shift become
DQx �
lrpb�

pg

µ
1 1 cosu

2

∂ Z l�2

2l�2

µ
1 1

s2

b�2

∂ Ω
cosu

s2 sin2u

∑
1 2 exp

µ
2

s2 sin2u

2s2

∂∏
2 cosu exp

µ
2

s2 sin2u

2s2

∂
1

s2

2
1 1 cosu

s2
z

∑
1 2 exp

µ
2

s2 sin2u

2s2

∂∏æ
g�s� ds �Gaussian bunch�,

DQy � 2
lrpb�

pg

µ
1 1 cosu

2

∂ Z l�2

2l�2

µ
1 1

s2

b�2

∂ Ω
1

s2 sin2u

∑
1 2 exp

µ
2

s2 sin2u

2s2

∂∏æ
g�s� ds �Gaussian bunch�, (17)
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where l now denotes the peak line density, i.e., l �
Nb��

p
2p sz� for the Gaussian bunch, and s � s�s�.

Again we observe the cancellation, up to a residual term
proportional to �1 2 cosu�, of the first term in the expres-
sion for DQx against the full expression for DQy .

The effect of parasitic long-range encounters on the tune
shift could be taken into account, by including the corre-
sponding bunches in the form factor g�s�, so as to represent
a series of bunches encountered at different longitudinal
positions.

III. TUNE SHIFT FOR TWO ALTERNATING
CROSSINGS OF TWO ROUND BEAMS

If there are two interaction points in the ring, and the
beams cross one time under a horizontal crossing angle
u, and the other time under a vertical angle u, the total
061001-4
tune shift DQtot is the same in both planes and simply
given by the sum of DQx and DQy in Eq. (13) or Eq. (17),
respectively. From (13) we obtain, for coasting beams or
superbunches,

DQtot � 2
lrpb�

pg

µ
1 1 cosu

2

∂ Z l�2

2l�2

µ
1 1

s2

b�2

∂

3

Ω
�1 2 cosu�

1
s2 sin2u

∑
1 2 exp

µ
2

s2 sin2u

2s2

∂∏

1 exp

µ
2

s2 sin2u

2s2

∂
cosu
s2

æ
ds �superbunch�,

(18)

which can also be rewritten as
DQtot � 2
lrpb�

pg

µ
1 1 cosu

2

∂
1

b�2ls� sin3u

3

∑
e2l2 sin2u�8s�2

�2�4b�2�cosu 2 1� 1 l2 cosu�s� sinu	 1 �cosu 2 1� �4b�2 2 l2�s� sinu

1
p

2p l�b�2 sin2u 1 �2 cosu 2 1�s�2� Erf

µ
l sinu

2
p

2 s�

∂∏
�superbunch�,

where Erf�z� � 2
Rz

0 e2t2
dt�

p
p denotes the error function. The analogous expression for Gaussian bunches follows

from (17),

DQtot � 2
lrpb�

pg

µ
1 1 cosu

2

∂ Z l�2

2l�2
�1 2 cosu�

µ
1 1

s2

b�2

∂

3

Ω
1

s2 sin2u

∑
1 2 exp

µ
2

s2 sin2u

2s2

∂∏
1 cosu exp

µ
2

s2 sin2u

2s2

∂
1

s2

1
1 1 cosu

s2
z

∑
1 2 exp

µ
2

s2 sin2u

2s2

∂∏æ
g�s� ds �Gaussian bunch�. (19)
The integral can again be expressed in terms of error func-
tions, but the result is more complex and we omit it here.

As an example, we consider the case of Gaussian
bunches, with a small crossing angle (so that cosu � 1;
sinu � u), and with a bunch length that is much shorter
than the IP beta function b�, but much larger than s�. In
this case, formula (19) simplifies to

DQtot � 2
Nbrpb�

2pgs�
p

s�2 1 u2s2
z �4

�u ø 1, s� ø sz ø b�, Gaussian bunch�. (20)

We recognize that the transverse beam size at the collision
point s� � s�

x,y , the bunch length sz , and the crossing
angle u enter in the combination �usz��2s���, which is
known as the Piwinski parameter. Indeed, the limiting
case, Eq. (20), agrees with the result of Piwinski [17].

Using s� �
p

eb��g, Eq. (20) can be rewritten in
terms of the normalized emittance eN and “brilliance”
Nb�eN as
DQtot � 2

µ
Nb

eN

∂
rp

2p
p

1 1 �u2s2
z g���4eNb��

�u ø 1, s� ø sz ø b�, Gaussian bunch�. (21)

We further note that for u2s2
z g ¿ 4b�eN Eq. (20) sim-

plifies to

DQtot � 2
Nbrpb�

pgs�usz

�u2s2
z g ¿ 4b�eN , u ø 1, s� ø sz ø b�,

Gaussian bunch�. (22)

In the same limit, the formula for the luminosity [see
Eq. (30)] shows exactly the same dependence on emit-
tance, bunch length, and crossing angle. Thus, for a con-
stant total beam-beam tune shift the luminosity can be
raised only by increasing the bunch population or reducing
b�, with an implied simultaneous increase of bunch length
or crossing angle.
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IV. LUMINOSITY FOR CONTINUOUS AND
BUNCHED BEAMS

For the luminosity only collisions occurring within a
region, 2ldet�2 , s , ldet�2 are of interest where ldet
denotes the effective length of the detector.

The luminosity is computed by convolving the two
3-dimensional distribution functions for the two colliding
bunches or beams, r1 and r2, both in time and in space:

L � 2fcollc cos2�u�2�
Z ldet�2

2ldet�2
ds

Z `

2`
dx

Z `

2`
dy

Z `

2`
dt

3 r1�x, y, s 2 ct, s�r2�x cosu 2 s sinu, y,

s cosu 1 x sinu 1 ct, s� . (23)

The factor 2 cos2�u�2� in front of the integral arises from
the relative velocity of the two beams [18,19]. It is equal
to

p
c2� �y1 2 �y2�2 2 � �y1 3 �y2�2�c2, using �y1 � �0, 0, c�

and �y2 � �2c sinu, 0, 2c cosu�. We here ignore the con-
tribution to the relative velocity arising from the angular
spread of the beam, which results in a negligible correc-
tion [5].

Consider first the case of round Gaussian bunches, for
which r1 and r2 are given by the function

ri�x, y, z, s� �
Nb,i

�2p�3�2s�s�2sz

3 exp

µ
2

x2

2s�s�2 2
y2

2s�s�2 2
z2

2s2
z

∂
�Gaussian bunch�, (24)

where i � 1, 2. After integrating over y, t, and x we obtain

L �
fcollNb,1Nb,2 cos2�u�2�

�2p�3�2sz

Z ldet�2

2ldet�2
ds

3
1

s�s�2

1q
1 1 cos2u 1

s�s�2

2s2
z

sin2u

3 exp

∑
2

s2 cos2 u

2 �1 1
s�s�2

s2
z

2 �1 2
s�s�2

s2
z

� cosu�

s�s�2�1 1 cos2u 1
s�s�2

2s2
z

sin2u�

∏
.

(25)

For a small crossing angle, u ø 1, this simplifies to

L �
fcollNb,1Nb,2

�2p�3�2sz

Z ldet�2

2ldet�2
ds

1
s�s�2

1q
2 1 u2�21 1

s�s�2

2s2
z

�

3 exp

∑
2

s2 2s�s�2

s2
z

1 u2s2� 1
2 2

s�s�2

4s2
z

�

2s�s�2 1 u2s�s�2�21 1
s�s�2

2s2
z

�

∏
�u ø 1� . (26)

Further considering the case of Gaussian bunches with
an rms bunch length much shorter than the IP beta function
(negligible hourglass effect) and the detector length, and
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an IP beam size much smaller than the bunch length, the
expression of Eq. (26) becomes

L �
fcollNb1Nb2

4ps�
p

s�2 1 s2
z u2�4

�u ø 1, sz ø b�, sz ø ldet,

s� ø sz , Gaussian�. (27)

The luminosity reduction factor due to the crossing angle is
the same as that for the beam-beam tune shift in Eq. (20).
We can thus use Eq. (20) to reexpress the equation for
the luminosity (27) in terms of the beam-beam tune shift.
Assuming Nb � Nb1 � Nb2, we then obtain

L �
pfcollg

2s�2

r2
pb�2 DQ2

tot

s
1 1

u2s2
z

4s�2

�u ø 1, sz ø b�, sz ø ldet,

s� ø sz , Gaussian�, (28)

which shows that with constant beam-beam tune shift
DQtot, the luminosity increases for larger crossing angles
and longer bunches. The constant beam-beam tune shift
implies, e.g., that the bunch population is increased simul-
taneously, in proportion to the luminosity.

Long-range parasitic collisions may reduce the dynamic
aperture and can also enhance the tune footprint at large
betatron amplitudes. The complete tune footprint could
be computed by including the parasitic bunches of the
opposite beam in the density function g�s� of Eq. (19). The
strength of the long-range force increases for larger bunch
populations, but it is reduced for a larger crossing angle.
Therefore, if the parasitic collisions have a serious impact,
for the luminosity optimization it might be advantageous
to increase the crossing angle rather than the bunch length.
More specifically, in order to ensure that the long-range
effects are not aggravated, the crossing angle should be
increased at least in proportion to the square root of the
bunch population.

Equation (28) can be rewritten in terms of the normal-
ized emittance eN , brilliance Nb�eN , and bunch population
Nb ,

L �
fcollNbg

4pb�

µ
Nb

eN

∂
1p

1 1 �u2s2
z g���4b�eN �

�
fcollg

2rp

Nb

b�
jDQtotj

�u ø 1, sz ø b�, sz ø ldet, s
� ø sz , Gaussian�,

(29)

where, in the second line, we have expressed the luminos-
ity in terms of the total beam-beam tune shift from two
collision points, Eq. (21). Equation (29) shows that the
luminosity at constant beam-beam tune shift jDQtotj is in-
dependent of the emittance and increases linearly with the
bunch intensity.
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In the limit that u2s2
z g ¿ 4b�eN (but still fulfilling all

the previous conditions), the luminosity expression simpli-
fies further, to

L � fcollN
2
b��2puszs

��
�u2s2

z g ¿ 4b�eN , u ø 1, sz ø b�, sz ø ldet,

s� ø sz , Gaussian�, (30)

which can be compared with the expression for the tune
shift in Eq. (22).

For a superbunch, the calculation proceeds analogously,
except that the density ri in Eq. (24) must be replaced by

ri�x, y, z, s� �
Nb,i

2ps�s�2lbunch
exp

µ
2

x2

2s�s�2 2
y2

2s�s�2

∂
�superbunch�. (31)

In this case, for a small crossing angle (u ø 1) and equal
bunch population (Nb � Nb,1 � Nb,2), the result after in-
tegration of the luminosity expression, Eq. (23), over y, t,
and x is [3]

L �
fcolllbunchlg

2p

µ
l

eN

∂ Z ldet��2b��

2ldet��2b��

1
1 1 u2

3 exp

∑
2

b�2u2

4s�2

u2

1 1 u2

∏
du

�u ø 1, superbunch�, (32)

where we have assumed s�s�2 � s�2�1 1 s2�b�2�. We
recall that l � Nb�lbunch.

V. EXAMPLES: LHC UPGRADE AND VLHC

The nominal LHC parameters [11] assume an rms bunch
length sz of 7.7 cm, a crossing angle u of 300 mrad, and a
transverse rms spot size s� � s�

x,y of 16 mm. According
to our above calculation we expect that the luminosity can
be increased by increasing either the crossing angle or the
bunch length, if we maintain a constant beam-beam tune
shift by raising the bunch intensity.

We can compute the relative increase in luminosity L
and bunch population Nb as a function of the product
szu either using the approximations of Eqs. (20) and (28),
which predict exactly the same dependence on sz and u

for both Nb and L, or we can alternatively evaluate the
more accurate Eqs. (19) and (25), varying either the bunch
length or the crossing angle, and always keeping the total
beam-beam tune shift constant.

The result is shown in Fig. 2. Increasing the product
�szu� by a factor of 10 yields an increase in the bunch
population and in the luminosity by more than a factor
of 5.

The analogous calculation can be applied to the VLHC
[12]. The beam-beam tune shift for the first stage of the
VLHC is quite modest, about jx,y � 0.002 for each of two
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FIG. 2. (Color) Relative increase in LHC luminosity as a func-
tion of the relative increase of the product of rms bunch length
and crossing angle, �szu�, starting from a nominal bunch length
sz � 7.7 cm and crossing angle u � 300 mrad [11], and main-
taining a constant total beam-beam tune shift for two colli-
sions with alternating crossing. The transverse rms beam size
is s� � 16 mm and the interaction-point beta function b� �
0.5 m. The subindex “0” refers to the nominal initial parame-
ters listed above.

collision points. It is unlikely to limit the machine perfor-
mance. The situation is different in the second stage of the
VLHC, where the emittances will rapidly shrink due to ra-
diation damping, and where a beam-beam tune shift of the
order of 0.008 per IP may be reached after a few hours of
collisions. We estimate that in the VLHC-II a quasistation-
ary equilibrium between intrabeam scattering and radiation
damping is reached when the rms transverse beam sizes at
the collision point and the rms bunch length have decreased

FIG. 3. (Color) Relative increase in VLHC-II luminosity as a
function of the relative increase of the product of rms bunch
length and crossing angle, szu, starting from the quasiequilib-
rium state between radiation damping and intrabeam scattering
[20,21] as estimated for the stage-II VLHC parameters [12],
sz � 1.5 cm, s� � 0.7 mm, b� � 0.71 m, and u � 10 mrad,
assuming that s� remains unchanged, and maintaining a con-
stant total beam-beam tune shift for two collisions with alternat-
ing crossing. The subindex “0” refers to the initial parameters
listed above.
061001-6



PRST-AB 5 LUMINOSITY OPTIMIZATION NEAR THE BEAM-BEAM … 061001 (2002)
to about 0.7 mm and 1.5 cm, respectively [20,21]. Tak-
ing these numbers as the nominal values, and also assum-
ing the VLHC design crossing angle of 10 mrad, we then
compute the curves displayed in Fig. 3. Since the initial
product of bunch length and crossing angle divided by the
transverse rms beam size is smaller than for the LHC, a
larger increase in bunch length or crossing angle is re-
quired, in order to obtain the same increase in luminos-
ity. The nominal VLHC-II bunch population is small, only
about Nb � 7.5 3 109, and, hence, it can conceivably be
raised, in proportion to the luminosity (vertical axis in the
plot) so as to follow the curve in Fig. 3. Note that a longer
bunch length also reduces the intrabeam scattering, an ef-
fect which has not been included in Fig. 3.

From our discussion it is clear that bunch length and
crossing angle are important beam parameters whose con-
trol and adjustment during the store will not only render
the operation of future colliders much more flexible, but
may also substantially increase the integrated luminosity.

VI. CONCLUSION

In this report, we have derived general analytical ex-
pressions for the beam-beam tune shift of round Gauss-
ian bunches or superbunches of arbitrary length colliding
under an arbitrary crossing angle and for the associated
luminosities. The tune-shift formulas are strictly valid in
the ultrarelativistic limit where the electromagnetic field is
perpendicular to the direction of the beam propagation.

The expressions which we have obtained suggest that
the luminosity of a collider can be raised by simultane-
ously increasing the bunch population and the product of
bunch length and crossing angle, while maintaining a con-
stant beam-beam tune shift. The increase in the crossing
angle or bunch length differs from the conventional design
approach.

We have illustrated our recipe by numerical examples
for a possible LHC upgrade and for the VLHC, indicating
potential gains in luminosity by a factor of 5.

The corresponding formulas for the collision of flat
beams would be more complicated than the round-beam
equations presented in this report. For flat beams the total
tune shifts are not significantly reduced by employing two
collision points with alternating crossing, and, in particu-
lar, the expressions for the total tune shifts do not simplify
in the same way as in the case of round beams. As a conse-
quence, for flat beams the potential luminosity gains from
increasing the crossing angle or the bunch length are likely
to be smaller than those for round beams.
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APPENDIX A: TUNE SHIFT WITH AMPLITUDE

An alternative, more general approach of computing the
beam-beam tune shift, including its dependence on the
transverse amplitude, starts from the beam-beam potential
in action-angle variables. In first order perturbation theory,
the effective potential determining the tune shifts can be
computed by integrating the local beam-beam potential
over the longitudinal coordinate s. The local potential
itself is obtained by integrating the beam-beam force in
the radial direction.

Specifically, considering a particle with arbitrary longi-
tudinal position, i.e., which collides with the center of the
opposing beam at position s0, the effective potential reads

U�Jx , Jy , fx, fy, s0, u�

� 2
�1 1 cosu�rpl

pg

Z l�2

2l�2
ds

3 G�s 2 s0, x�
Z R�s�

2`

dw
w

∑
1 2 exp

µ
2

w2

2

∂∏
,

(A1)

with

R�s� �
µ

x cosu 2 s sinu�2 1 y2

eb�s�

∂1�2

,

x �
q

2Jxbx�s� cosfx ,

y �
q

2Jyby�s� cosfy ,

FIG. 4. (Color) Tune footprints for superbunches colliding un-
der two different crossing angles: u � 400 mrad (blue circles)
and u � 1 mrad (red squares), and betatron amplitudes ex-
tending from 0 to 6s. Other parameters: line density l �
8.8 3 1011 m21, IP beta functions b� � b�

x,y � 0.25 m, total
interaction length per IP l � 40 m.
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where b�s� � b��1 1 s2�b�2�, e is the transverse geo-
metric emittance, and, for a Gaussian bunch, G�s, x� was
defined in Eq. (15), whereas for a superbunch G�s, x� � 1.
We have normalized the potential U such that the azi-
muthal angle around the storage ring would be the associ-
ated time coordinate.

The tune shifts are now obtained by differentiating the
effective potential U with respect to the two action vari-
ables and averaging over the angles, i.e.,
061001-8
DQx,y �

ø
≠U

≠Jx,y

¿
fx ,fy

, (A2)

where the angular brackets denote an average over the
angle variables fx and fy, namely,


�· · ·�� �
1

4p2

Z 2p

0
dfx

Z 2p

0
dfy�· · ·� . (A3)

Explicitly, for superbunches the derivatives entering in
Eq. (A2) are
≠U
≠Jx

� 2
�1 1 cosu�rpl

pg

Z l�2

2l�2
ds

Ω∑
1 2 exp

µ
2

R�s�2

2

∂∏
cosu�x cosu 2 s sinu� cosfx

�x cosu 2 s sinu�2 1 y2

s
b�s�
2Jx

æ
�superbunch�, (A4)

≠U
≠Jy

� 2
�1 1 cosu�rpl

pg

Z l�2

2l�2
ds

Ω∑
1 2 exp

µ
2

R�s�2

2

∂∏
y cosfy

�x cosu 2 s sinu�2 1 y2

s
b�s�
2Jy

æ
�superbunch�. (A5)

Typical tune footprints obtained by solving Eq. (A2) numerically for a possible LHC upgrade using superbunches are
shown in Fig. 4. In order to compute the tune shift of a particle at the head or tail of a superbunch, e.g., a particle which
experiences the field of the other beam only between 2l�2 and smax , l�2, the upper limits of integration in Eqs. (A4)
and (A5) must be adjusted accordingly.

For Gaussian bunches, an additional term in ≠U�≠Jx arises from the derivative of G�s 2 s0, x�:

≠U
≠Jx

� 2
�1 1 cosu�rpl

pg

Z l�2

2l�2
ds

Ω∑
1 2 exp

µ
2

R�s�2

2

∂∏
cosu�x cosu 2 s sinu� cosfx

�x cosu 2 s sinu�2 1 y2

3

s
b�s�
2Jx

2

s
bx�s�
2Jx

cosfx
�s 2 s0� sinu�1 1 cosu�

s2
z

Z R�s�

2`

dw
w

3

∑
1 2 exp

µ
2

w2

2

∂∏æ
G�s 2 s0, x� �Gaussian bunch�, (A6)

≠U
≠Jy

� 2
�1 1 cosu�rpl

pg

Z l�2

2l�2
ds

Ω∑
1 2 exp

µ
2

R�s�2

2

∂∏

3
y cosfy

�x cosu 2 s sinu�2 1 y2

s
b�s�
2Jy

æ
G�s 2 s0, x� �Gaussian bunch�. (A7)
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