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Wakefields due to surface wavesin a beam pipe with a periodic rough surface
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The problem of the wakefields generated by an ultrarelativistic particle traveling in a long beam tube
with a periodic rough surface has been revisited by means of a standard theory based on the hybrid
modes excited in a periodically corrugated rectangular waveguide. Slow surface waves synchronous with
the particle can be excited in the structure, producing wakefields whose frequency and amplitude depend
on the depth of the corrugation. We apply our results to the case of the CERN Large Hadron Collider
beam screen and the Linac Coherent Light Source undulator.

DOI: 10.1103/PhysRevSTAB.5.044401 PACS numbers: 41.75.-i, 41.20.-q

I. INTRODUCTION standard theory based on the hybrid modes propagating in

The effect of surface roughness is a relatively new su the waveguide. We first derive the dispersion relation for

ject, arising in the design of machines with extremely shor{he fields and study the frequency where the synchronous

bunches of the order of tens of microns. In this case, iﬁNaVe can be excited. Then, through the reciprocity prin-

fact, the surface roughness may be a source of wakefiel & le we get the amplitude of the fields excited by the

which might significantly increase the beam emittance ang arge. _The res_ultmg vyakeﬁeld for a point charge d'ST
agrees with previous estimates [6], based on the dielectric

the energy spread. Recently, a corrugation of the Larg .
Hadron Collider (LHC) beam pipe has been proposed a‘%\yer model. An application of our results to the case of the

CERN in order to reduce the reflectivity of the walls and Il_'Ccl:_g;aiT di?gfg?[g]n ;js?ifntgﬁ Lé?;cu;:;g;rent Light Source
therefore decrease the heat load on the cold dipole beafn y '

screen due to photoelectrons accelerated by the proton
beam [1]. II. THE METHOD

The low frequency coupling impedance due to the wall et us consider the periodically corrugated rectangular
surface roughness has been estimated in Ref. [2]. A difwaveguide sketched in Figs. 1 and 2, wittbeing the di-
ferent approach, using a small angle approximation in thenension of the corrugated side 4xis) andb the distance
wall profile, has been developed and gives estimations qhlong they axis) between the corrugations on the oppo-
the coupling impedance based on the statistical propertiesite faces. We model the wall roughness as a series of
of the surface (see, for example, [3]). Small corrugations irperiodic (with periodL) rectangular obstacles of height
the beam pipe were already treated as perturbations of thgd thickness. The beam travels along theaxis; we
wall profile in [4], and estimates were given for the elec-assume <« L andL < A, whereA is the wavelength of
tromagnetic field and the total energy loss up to the seconghe electromagnetic fields. We neglect Ohmic losses in the
order in the perturbation parameter; Ref. [5] reformulatesnaterial.
such an expansion with special focus on the resonant fre- Following [9], we consider a rectangular pipe with cor-
quencies and on a square-wave wall distortion. A dielectriugations at two opposite sides. The periodicity of the ge-
layer model has also been proposed [6]: the roughness ésmetry along; allows the use of Floquet’s theorem which
replaced by a thin dielectric layer at the waveguide wallsimplies a field solution independent of the peribdob-
which supports a surface wave. The synchronous modgined from a single cell). For the reader’s convenience, we
resulting from the interaction of a particle beam and a corfirst apply the method to the case of a charge traveling on
rugated waveguide has been already studied in the framexis (longitudinal problem); the solution for the transverse
work of the synchronous wave pickup proposed in [7].  case (off-axis charge) is given in Appendix E. In order

In this paper we review the problem of the wakefieldsto find the longitudinal wake function per unit length [10],
produced by an ultrarelativistic charge traveling inside ayve go through the following steps. We first solve the ho-
beam tube with a periodic corrugation, making use of anogeneous problem, thus finding the modes propagating
in the corrugated waveguide (Sec. Ill), then we apply the
reciprocity principle including the sources (Sec. IV). Fi-

*Also with Dipartimento di Energetica—Universita La hally, we calculate the coupling impedance and wake func-
Sapienza, Roma. tion (Sec. V). Throughout the paper, we usg, ¢,, ¢;)
"Now with Agilent Co. for the wave numbers of the field in a rough waveguide,
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FIG. 1. Relevant geometry.
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FIG. 2. Schematic view of the waveguide and notations adopted.

(ky, ky, k;) for a smooth waveguide, and (K, K,) for the
propagation inside the corrugation that is in the region
where |y| > b/2.

I1l. HOMOGENEOUS PROBLEM (ON-AXIS
CHARGE)

Since we assumed L < A, the fields inside the corru-
gation do not depend on the z variable and, due to the
rectangular geometry, they can be written as

Ezc = _jwMOZBn S.n[Kyn(b/z + h — |yD)]cos(K ., x),

n

(13
ES =0, (1b)
H =0, (1)
Hy = 5 2 0B, SrlKyn(b/2 + = HD]S(K ),

(1)

H; = _KynZBn Cod:Kyn(b/z + h - |)’|)] COS(Kan),
(1¢)

where B,, isthefield amplitude (depending on the sources),

Ky, =4/(®w/c)?> — K}, and K, = ky, = nw/a,

withn = 1,3,5,.... @)
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Such fields satisfy the boundary condition E = 0 at x =
+a/2andy = *(b/2 + h). Thefields of interest in the
internal region of the waveguide can be derived from the
magnetic Hertz potential I1 = %11, aone:

E=—jou,VII, (33
H = (k¥ + VVII. (3b)

As shown in Appendix A, depending on the symmetry
there are four possible expressions for I1,, namely, II,;
with i = 1,...,4. In our case, with the charge traveling
along the z axis, only II,; corresponding to i = 2 has to
be considered; it gives anonvanishing E, on the beam axis.
A y-directed magnetic Hertz potential is excluded in our
analysis since it would produce an E, vanishing on the
corrugation, because of continuity over the boundary, as
in a smooth conducting rectangular waveguide. Again for
continuity reasons K, does not change going from the cor-
rugation to the waveguide: ¢, = K, = ky,. Eventually
we can write

ki, + €+ &= (w/c) @
The field is continuous over the boundary, i.e.,
E{=E, and H;=H, fory=*b/2, (5
and thus (considering only fields derived from 11 ,,)
Ky, tan(Ky,h) = &, cot(é,b/2). (6)

Equation (6) is usually referred to as the dispersion rela-
tion; for each value of K,,, it has an infinite number of
solutions.

044401-2
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In the limit of a smooth waveguide (2 — 0), ES and H{
vanish in Egs. (5) and we recover the well- knovvn condl
tion &, = k, = ma /b, withm = 1,3,5,.

For finite values of h, solving numerically Eqg. (6) and
plugging the resulting value for £, in Eq. (4), we get the
wave number £,. A convenient graphical representation
for the propagation behavior of these waves is the Bril-
louin diagram; to show the basic features of the solution,
we study the case of a square waveguide of side a and plot
the normalized wave number £,a as afunction of the nor-
malized frequency a/A in Fig. 3.

The dispersion curve of a smooth waveguide (dashed
line) at very high frequencies tends asymptotically to the
wave number of an ultrarelativistic beam w/c = 27 /A
(dot-dashed line), but it never crosses it. However, due to
the corrugation, there may be a crossing of the dispersion
curves at particular frequencies where the waveguide mode
and the beam are synchronous (that is, ¢, = w/c), and
a coherent exchange of energy is possible. These cross-
ing frequencies depend on the depth of the corrugation 4.
When ¢, = w/c, from Eq. (4)

§§ = _k)%n = & = jkan - (7)

If h is small with respect to A and to the waveguide di-
mension a, we may aso write

K)n tan(K} n h) yn h (8)

Then using the definition of K, [Eq. (2)], we rewrite the
dispersion relation Eqg. (6) as

7 \2
(ﬁ) — k)%n = kﬂ COth(é kxn) > (9)
C h 2

thus obtaining the crossing frequencies

8

0 i . ‘
0.5 0.75 1 1.25 1.5

FIG. 3. Dispersion diagram for a square waveguide of side
a with corrugation on two opposite sides. The solid lines are
obtained from Eq. (6): line (a) isfor h/a = 0.1, whileline (b) is
for h/a = 0.01. The dashed line corresponds to the unperturbed
TM,; mode of the smooth waveguide and the dot-dashed line
represents an ultrarelativistic beam.
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b
fn = \/ +—cothk 5). (10)

For very small h, the second term in the square root domi-
nates, resulting in abehavior £, « 1/+/h, analogous to the
case of a pipe covered with a dielectric layer of thickness
h [6].

The modes propagating in the corrugated waveguide are
called hybrid modes [9], since they can be derived by a
superposition of the standard TE and TM modes (along
the z axis). The hybrid modes in general do not satisfy an
orthogonality condition; physically this means that they
are coupled to each other. Since the coupling coefficients
are proportiona to the height of the corrugation %, for
very small corrugation depths the modes are practically
decoupled.

The minimum frequency beyond which a mode can
propagate in the guide (namely, its cutoff frequency f.)
depends on the corrugation depth as well. Mathemati-
cally the cutoff frequency is found by imposing the condi-
tion £, = 0, which implies ¢, = /(w/c)?> — k2, = K,
[from Eq. (4)]. The dispersion relation becomes

K, tan(Ky, h) =

that is, cos(Ky,,

Ky, cot(K,,b/2),

h+b
5 >=0. (12)

Solving for K,, and using Eq. (2), it is straightforward to

get
2 2
f= c <n77> n < mar )

2 2h + b

withn = 1,3,5,..., and m=1,3,5,.... (12)

For frequencies higher than cutoff, the solution of Eq. (6)
combined with Eq. (4) gives red values for &,, while &,
is purely imaginary for lower frequencies. In the limit of
h — 0, we find the well-known cutoff frequencies for the
modes of a smooth waveguide. Equation (12) concerns
only the subset of modes obtainable from I1 .

Moreover, for small 2 we can write aformulafor &, as
afunction of the wave number &, of the smooth waveguide
(see Appendix B):

gzz Z kb yn

Since k. and K, are both depending on the frequency f,
it isnontrivia to get Eq. (10) directly from Eqg. (13).

If the wave number of our hybrid modefallsin theregion
below (above) the dot-dashed line in Fig. 3, the wave is
usually referred to as fast (dow) because its phase velocity
is larger (smaller) than the speed of light. Moreover, for
a rough waveguide £, can exceed the wave number of
the smooth one, meaning that the solution &, of Eq. (6)
is purely imaginary [see Eq. (4)]. In that case the wave
is said to be a surface wave, because it is exponentially
damped in the y direction.

(13)

044401-3
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IV. INCLUDING THE SOURCES

Having solved the homogeneous problem, i.e., having
derived the modes of the structure, the field generated by
a point charge can be found by means of the Lorentz reci-
procity principle [11]. Referring to Appendix C, we may
write

— Z bmeij(fznié’zm)ZAnm —
m
Za e —jEmtém ZB

— Z ame_j(gzn_é:
m

Z bm e —Jj(éa +§zm)ZBnm
m

j J-Efav, (143
Sm)ZAn’n —

=[J'E;dV, (14b)
\%4

where J is the spectral current density of a point charge
traveling on axis (Z, unit vector along the z axis),

J(x,y,z;0) = qg8(x)8(y)e 7@/Fez, . (15)

a, (b,) isthe coefficient of the expansion of thefield using
the forward (backward) propagating modes of the structure
E  H (E,;,H,). Denoting by S. the cross section of
the guide,

Ay = f (etn X by + €yn X hyy) - ZodS., (164q)
Se

B, = [ (em X hyy — ey X hyy) - 2,dS., (16b)
s,

where e; and h; are the transverse modal function, i.e.,
the transverse behavior of the mode field. For instance in
a smooth waveguide, where the modes are orthogonal, it
holds

Apm = 28, and B, = 0, (17)

resulting in well-known relations for a,, b, [11] (8.
stands for the Kronecker’s symbol).

In arough waveguide the (hybrid) modes are no longer
orthogonal. Nevertheless only the mode synchronous with
the beam can exchange energy over an infinite interaction
length [10] (surfing effect), thus we may treat modes one
by one; moreover the coupling itself goes to zero in the

E.(x,y,z;0) ~ — 47 quﬁL{Coth<2 a)[w —

b

X cos(a )cosh( )e_jz"’/c[é(a)/c — &) + Sw/c + )],

044401 (2002)
limit » — 0 that we are presently interested in. In this
case Egs. (14) become

anAnn _] J - En_ dv and
|4
(18)
bnAnn = _f J - E,de
Vv
Since, as shown in Appendix D,
b sin(¢ b)}
_ 2 . y
Ao = wmaléd 02~ k) 5~ S27 | 9)

and

f J - E; dv = ijqa),uof},ZWS(ﬂ * fzn>, (20)
v Be

the electric field has a resonant behavior around the cross-
ing frequencies:

E.(x,y,z;0)=

qZO[a(% - fzn) + 5(% + fzn)]
7 alb/2 — Sin(¢,b)/2&,]
2
X Wcos(kmx) coS(é,y)e 2@/Pe,

(21)

where & is the Dirac delta function, ¢ is the light veloc-
ity in vacuum, k = w/c, B is the relativistic factor, Z,
is the free-space characteristic impedance, and ¢, is ob-
tained by solving Eq. (6). Thefield is non-null only at the
crossing frequencies f given by Eq. (10), i.e., those such
that £, = w/Bc. It isworth noting that all the frequency
dependent quantities in Eq. (21), i.e., &, and k, have now
to be computed at the crossing frequency because of the
Dirac functions; thus we may simplify Eq. (21) since for
h < A and from Eq. (6):

& knh

= — . 22
k? — k2, coth(ky, b /2) (22)

The synchronism between the field in the waveguide and
the beam is possible because of the slowing effect due to
the surface roughness.

For ultrarelativistic particles (8 = 1) and small 1 (h <
A) , the electric field at the lowest frequency (n = 1) is

ik

wb/a

(23)

providing that Eq. (7) holds for £, at the crossing frequency. First of all, E, has a phase difference of 7 relative to the
charge field (the minus sign), meaning that it is a decelerating field. The field is confined in the waveguide region near
the corrugated wall (it is exponentially growing for y — *=5/2), as we expect for a surface wave. The height of the
corrugation fixes not only the resonant frequency through &, but also the field amplitude through the factor #/a: the
field decreases in amplitude and increases in frequency as i decreases.

044401-4
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A structure of finite length € will result in a spread of
frequencies that can be excited, since
S-n[(w/ﬁc * ézn)€/2]

2mdlw/Be = &) = O s v g Ve

. (24)

V. LONGITUDINAL COUPLING IMPEDANCE
AND WAKE FUNCTION

Following the standard definition of the (specific) longi-
tudina coupling impedance [10]
—dZ(w) = —lEz(x =0,y = 0,z,w)ejzw/c, (25)
dz q

from Eq. (23) we get the (real) coupling impedance due to
the surface wave:

dil—(z“’) = 4w220§£{coth<g g) [%/ba/a) B 1}}_1

X [8(w/c = &) + 8(w/c + &a)].
It is straightforward now to get the wake function for unit
length and for a point charge [10], i.e.,

dw(r)  H(7) fm dZ(®) ,»
= e’"dow
dz T J-« dz

(26)

(27)

where 7 isthe time distance of the trailing charge from the
leading oneand H (7) isthe Heaviside function. Eventually
we get

dv:l_ir) = wo(a, b, h)cos2w f,7)H(7), (28)
where
wola,b,h) = 8 % g
7 b\[ sinh(wb/a) -1
<o 3 2) e -]

(29)

To get the wake function for a bunch, one has to perform
the convolution of Eg. (28) with the bunch spectrum. For
instance, the wake function is

dW(7) f e T2 -
= ,b,h ————cos(2w ft) dt
dZ W()(d ) 0 \/EO' S( 7Tf1 )
(30)

for a Gaussian bunch of rms bunch length o, and this
integral has to be performed numerically.

A. Application to the LHC beam screen

The amplitude wy(a, b, h) of the sinusoidal wake func-
tion for an LHC-like geometry! (¢ = 3.6 X 1072 m, b =
43 X 107>m, and A = 30 um) is =03 VpC 'm!

1In the LHC the corrugations are on the vertical, shorter sides.
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and the first crossing frequency £ is83 GHz (and 1 < A,
as assumed). Since the rms bunch length is oo = 7.5 cm,
the bunch cutoff frequency ¢/(27 o) is of the order of
1 GHz, i.e, nearly a factor of 100 lower than the wake
resonant frequency (that is the crossing frequency).

Until now we have shown that the wakefield due to the
synchronous mode has a resonant behavior and the quality
factor O of such a resonance is infinite, since we have
assumed an infinite interaction length, no Ohmic losses,
and an ideal geometry. This is clearly an approximation
and, to estimate the threshold of the longitudinal instability,
we will consider the standard resonator model [12]. We
assume that the amplitude of the wake function given by
Eq. (29) is produced by a high (but finite) Q resonator
impedance with a shunt resistance R, given by

R, — Lvolo
27Tf1
with afinite Q value. The LHC parameters we will use
are given in Table I.

The impedance at frequencies well below the reso-
nator frequency (for example, at the frequency founch =
¢ /2 o associated with the bunch length) is inductive and
such that

=1.6 X 100 Q, (31)

R fo
Q fi

i.e, 2 orders of magnitude smaler than the LHC
impedance budget (n is the harmonic number n = f/f,).
At the resonator frequency f1, the impedance |Z/n| isreal
and equal to that of Eq. (32) multiplied by the Q factor.
An estimate of the longitudinal instability threshold (for
mode numbers of the order of f1/fpuncn = 130) can be
done by using the Boussard criterion [13], derived from
the coasting beam theory, which we write here in the form

_ m)P(Ey/e)a.oom
celZ/n| ’
with E, the nominal energy, e the electron charge, «.
the momentum compaction, oo the energy spread, and
Z the coupling impedance at a frequency corresponding to
harmonic number n. For the top energy of 7 TeV we get

7.22 x 10U
N = ——Z—
o

1Z/n| ~ ~2mQ, (32)

th (33)

(34)

TABLE I. LHC parameter list for two operating conditions,
namely, at top energy (top) and at injection energy (inj.).

Momentum compaction (107%)  a, 3.47

Machine length (km) L, 26.66

Revolution frequency (kHz) fo 11

Average beta function (m) B 100

Energy (GeV) E, 7 X 10° (top) 450 (inj.)
Bunch length (mm) o 75 (top) 130 (inj.)
Energy spread (107%) 05 1.1 (top) 4.7 (inj.)
Synchrotron tune (1073) Qs 212 (top) 6 (inj.)

044401-5



PRST-AB 5 A. MOSTACCI et al. 044401 (2002)

protons per bunch, while in the case of injection energy 107 ‘ ,
(450 GeV), the threshold is a factor of 2 higher. AE'"™ | E '
In the most pessimistic case in which the perturbation
of the unstable oscillation mode has the same resonant 107
frequency f, of the wake, we obtain a threshold of
3.37 X 10™
Nth Q (35) 10_4>

protons per bunch, depending on the value of Q. Quality

factors Q higher than 2 X 103 (equivalent to effective in-

teraction lengths longer than about 4 m) are therefore dan- 10° 1

gerous for the LHC, whose ultimate intensity is 1.6 X L

10" protons per bunch. h ( [T)
On one hand, a more accurate stability analysis includ- 10° ‘ ‘

ing azimuthal [12] and radial [14] mode coupling would 107 10°° 107° 107

then be in order. On the other hand, several mechanisms, FIG. 4. Energy spread for ageometry approximating the LCLS
not included in the previous derivation, will limit the qual- undulator as afunction of the depth of the corrugation (a = b —

ity factor @, including Ohmic losses and geometric im- 4 ym 1. = 112m, Ng = 1 nC, E = 143 GeV, and o =
perfections. In particular, pumping dlotsinthe LHC beam 15 um).

screen induce mixing of the modes propagating in the beam
pipe and attenuation of the synchronous surface wave, pre-
sumably after a distance of a few meters [15].

maximum allowed corrugation depth of 100 nm, techni-
cally not easy to achieve. This result differs by 2 orders
of magnitude with ours and such a discrepancy cannot be
explained only by the different model of the pipe (we ap-

The longitudinal wake discussed so far isrelevant also  proximate a circular beam pipe with a square one). Our
for very short bunches; aninteresting exampleisthe LCLS  method applied to acircular beam pipe (more similar to the
undulator [8], where the expected bunch is short (therms  rea shape of LCLS) gives an energy spread even smaller
bunch length is o = 15 um) and rather rectangular in  of about a factor of 3—4 than the one discussed here [17].
shape. For a rectangular charge distribution, with half

B. Application to the LCL S undulator

width T = /3 o/, therms energy spread (over thewhole VI. TRANSVERSE WAKE FUNCTION AND
machine) is simply given by [16] COUPLING IMPEDANCE
AE™S  NgL.wo(a,b,h) We now consider a point charge moving on a trajectory

£ E parallel to the z axis vertically displaced by yo. The cross-
ing frequency f,., is different from the previous one, as
\/ 1 [ sin(4w1T)} [Sin(wlT)T shown in Eq. (E4); the electromagnetic field components
2| P - > arereported as well in Appendix E.
2enT) doiT @1f 36 To derive the (specific) longitudinal and transverse
(36) dipole impedance, we follow away dlightly different from
i i i that of Sec. V, simply applying the definitions reported
where E isthe energy, L isthelength of themachine, N¢  j, [10]. Longitudinal and transverse wake functions are

is the bunch charge, and w, = 27 f,. Figure4 shows  rqnortional to the Lorentz force; in the z direction
the result for a geometry similar to the LCLS undulator

(the circular beam pipe of radius » = 2.5 mm is approxi- dw(x,y,z;7) F(x,y,z;7)
mated by a square one with a side of a = 4 mm). Thus, dz - 719
concerning the effect of a synchronous mode, the require-

ment of having a relative energy spread increase smaller  where F' is the Lorentz force in the z direction, ¢ is the
than 5 X 1074 is satisfied if the beam pipe roughness is  trailing charge, and ¢, the leading one. Approximating
kept below 10 um. Applying the dielectric layer model ~ for ultrarelativistic particles and for small 2 and y, at the
with an analogous choice of parameters, Ref. [16] founda  lowest frequency (n = 1), we find

A7) _ g 000 Lo ) S )| ) 0oy

dz aaa 2a wb/a a

: (37)

(38)

044401-6 044401-6
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after a Fourier transform, we get the dipole component of the longitudinal impedance per unit length:

Az (x,y, z; @) _
dz

47?7 hyo 1

SECE

o a (G

i )

(39)

Similarly, the transverse wake function per unit length is defined as

dwy(x,y,2,7)

Fy(x’y’Z;T)

dz

: (40)
q1q

where F, is the Lorentz force in the y direction; in the usual approximations it becomes

dw,(x,y,2,7)

dz a

X cos(%) cosh(%) snRafim)H(r).

(1) 20 L 7 b

a ab

2a wb/a

(41)

Thetransverse impedance Z, is defined as the Fourier transform of the transverse wake function (in the frequency domain)

times the imaginary unit [see Eq. (97) in Ref. [10] ]; thus,

dZ,(x,y,z; @)
dz

s ) " (G T )

(o2 - 50)-

Usually the dipole component of the transverse kick is |
the dominant term for ultrarelativistic particles. Since this
term is proportional to the displacement y, of the charge
q1, itisusually defined as a transverse dipole wake func-
tion (impedance) as atransverse wake (impedance) per unit
of transverse displacement. This can be easily obtained
from our formulas simply dividing them by y, resulting in
the usual unitsfor transverse dipole wake function (V/Cm)
and impedance (2 /m).

Application to the LHC beam screen

For the evaluation of the effect of the surface roughness
wakefields on the transverse dynamics, we use the the-
ory of transverse mode coupling instability, which occurs
when the frequencies of two neighboring head tail modes
approach each other due to the detuning caused by the cur-
rent. The instability threshold is given by [18]:

2m(Eo/e)QsF ()
fLiBe®RE/Q) "

where the transverse wake frequency £, is 79 GHz, ac-
cording to Eq. (E4). F(o) isaform factor which, for short
bunches, is =1; for longer bunches, it increases propor-
tionally to o [19]. We consider the most pessimistic case
with F(o) = 1. For calculating the shunt impedance R},
we use the same hypothesis of the longitudinal case, i.e.,
we assume a high Q transverse resonator with a shunt re-
sistance given by

N, tt = (43)

044401-7

R o
L WOlyLO 4
R; =Qﬁz10QQ/m, (44)

where wg, isthe amplitude of the transverse wake function
per unit length of Eq. (41) (wg, = 0.20 V pC~!m~2). By
using parameters from Table | in Eq. (43), we get athresh-
old value of 7.4 X 10'? (1.34 X 10'?) protons per bunch
a top (injection) energy, which is much higher than the
respective longitudina one.

VIlI. CONCLUSIONS

In this paper we have derived the longitudinal and the
transverse wakes due to a periodic corrugation in a rect-
angular beam pipe. For a point charge, the amplitude of
the sinusoidal wake function is proportional to the corruga-
tion depth & and the oscillation frequency is proportional
to 1/+/h. For h — 0 the frequency of the wake function
goes to infinity, while its amplitude vanishes. This last re-
sult disagrees from the one abtained in [6] with adielectric
layer model, where the amplitude of the wake does not de-
pend on the corrugation depth. The results reported in [6]
are aso difficult to apply directly. Computer simulations
are needed to establish the correct value of the parameter
of the equivalent dielectric layer (i.e., its dielectric constant
sinceitsthicknessis chosen equal to /). Those simulations
are also not easy for very small corrugation depth and they
need, in principle, to be repeated for any change in the
sizes of a given geometry.

044401-7
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Application of our results to the case of the LHC beam APPENDIX A
screen indicates that the Q factor of the synchronous sur-
face wave should not exceed 2000 to ensure longitudinal
beam stability. In the case of the LCLS undulator, a beam

pipe roughness below 10 wm is acceptable. I, = [Acos(é,x) + BSn(£,x)]
X [C COS(fy)’) + Dgn(fyy)]e_jézv (A1)

The magnetic Hertz potential II, sdtisfies the wave
equation, thus

ACKNOWLEDGEMENT where A, B, &, and &, are constants. Since the tangential
The authors are grateful to Professor F. Frezzaand Dr. J.  €electric field vanishes onthe boundary x = *a/2, thefour

Gareyte for useful discussions. | possible expressions are
I1,, = ZA COS<77T x) Cos(fyy)e_jff”Z n=13,5,..., (A2
M, = ZA cos(—%)s'n(gyy)e*ffwz n=1,3,5,..., (A3)
,; = ZAn sm( il x> cos(£,y)e T n=0,2,4,..., (Ad)
O = ;Ansin(jx)Sin(fyy)e_jff”z n=0,24,..., (A5)

where A, depends on the source and ¢, is related to the other boundary condition. For instance, in a smooth guide,
the electric field vanishes also on the boundary y = *b/2 leading to &, = k, = m /b with m an even (odd) integer
number for Hxl and Hx3 (sz and Hx4).

APPENDIX B

In this appendix we derive Eg. (13), showing that £, isthe sum of the wave number of a smooth guide (k) plus aterm
depending on the corrugation depth ~ and vanishing for 2 — 0.

Considering the roughness as a perturbation of a smooth waveguide, &, can be written as

&y = ky + 6ky, (B

where 6k, is the difference from the unperturbed k, = m /b and it vanishes for h — 0. We may write Eq. (6) as
cos(mar /2) cos(6kyb /2) — sin(mar/2)sin(6kyb/2)
sin(mr /2) cos(6kyb/2) + cos(mar/2) Sin(8kyb/2)
= —(k, + Oky)tan(6kyb/2), (B2)

Ky tan(Ky,h) = (ky + Sky)

having to consider only odd values for m since Eq. (6) is obtained from I1,,. Therefore, using tan(x) = x and solving
a second order algebraic equation, we get

k ky \2
Oky = =75 % \/<?)> p Ky

were only the + sign is physically meaningful. Same arguments (and same result) hold in simplifying Eq. (E3) for m
even. Therefore the wave number becomes

E =k~ ki — &=k — ki —kj — 2ky8k,, (B4)

(B3)

and then

bk}
eventually taking the first order term of the square root, we get Eq. (13).

n 4K n
E2~K -k - kf,\/l gk tan(K,,h) =~ k> + T’tan(Ky,,h), (B5)
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APPENDIX C

In this Appendix we derive Egs. (14). The Lorentz reci-
procity theorem [11] states that

yg(E,f><H—E><Hni)~ndS=fJ'Enth,
S |4
(C1)

where E, H is the field radiated by the source of current
density J in the volume V closed in the surface S with
inward normal n. E,, H, are the normal modes of the
structure; that is

iz — Tz

Ei
Hi

n

(e, = e)e and
= h,feir"Z = (*h; + hz,,)eir”z.

-
=e, ¢

(C2)

Theindex = stands for forward and backward propagating
waves with respect to a fixed origin z = 0. The field

radiated in the positive z direction by the current filament J
can be represented by

E* =Y a,El, H" =)>a,H, (C3)
while the field propagating in the negative z direction is
E-=>b,E,, H =)>bH,. (C4)

For any perfectly conducting cylindrical waveguide, thein-
tegral over S reduces to one over the generic cross sections
S1 and SH:

f...‘ndS:f ...'ﬂ]dSl"‘f R TX AV
S Sy S>

where n; = 2z, and n, = —%,. Specifically Eq. (C3)
gives the radiated field on the cross section S,, while
Eq. (C4) givesthefield on S,. Substituting Egs. (C3) and
(C4), Eq. (C1) becomes

f (E,,+ X > buH, — > byE, X H,‘f) - 20dS) +
M m m

—f (E,j X > anH,, — > anE}, X H,j) - 20dSy = f J - Efdv,
Sz m m \%4

thus, since

20-e,~t><hf=
A + +
20+ e X hy =

we get eventually

_mee—(l",,—l",,,)zf 20+ (em X My,
m Sl

—}}me*“”wﬁ/204anth-—amthﬁwz=]ﬂJ-E:dv,
m ) \%

(CS)
+Z0 - en X hyj, 6
i20'€n’><htj, ( )
+ epn X hm) dSl +

(C7)

that is, Eq. (14a) with Eq. (16) and ' = j&.. With the |
same reasoning, Eq. (14b) can be derived from Eq. (C1).
The integrals defining A,,,, and B,,,, should be performed
on the whole section of the rough waveguide; nevertheless
in our working hypothesis, the transversal field inside the
slots is null, thus giving no contribution.

For a smooth waveguide, where the modes are orthogo-
nal, it holds

f e; X hyj - Z0dS = 0jj, (C8)
s

leading to Eq. (17).

APPENDIX D

In this appendix we derive Eq. (21) for the electric field
from Eq. (18). Being

044401-9

A = 2] 20 - em X hyy dS
S

= 2[ 20 - [(exn + eyn) X (hy, + hyn)] ds
S

= —ZLey,,hm as, (D1)
from Eg. (3) with II,,, it holds

eyn = —wuoléznl coslky,x) sin(é,y),  (D2)

heo = (& = k,) coslkyx) SiNE,y), (D3

and Eq. (19) comes directly. Also Eq. (20) is straightfor-
ward since

€; = jwMO‘fy cos(k . x) COS(fyy) > (D4)
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and ey = —wpot.cof "I x)oos,),  (E2D)
T w/Bere.) ’
—Jw cEém)z —
4/100 ¢ dz 2md(w/Be = &) (DY) €; = _jw/-‘v()fy COS(% X>Sin(§yy), (E2c)
The z component of the electric field E,, according to nar \? nar
Egs. (C3) and (C4) is ) hy = [kQ - <—) }COS(—X>COS(§M (E2d)
E. = ayeqe /7 = beq, (D) b= ("7 e s " )smen. (20

that is, after simple agebraic manipulation Eq. (21).
h, = j( >§ sm(—x) cos(éyy) . (E2f)

APPENDIX E _
] ) The boundary conditions at the walls lead to the following
In this appendix we apply our theory to solve the trans- dispersion equation:

verse problem. We consider a point charge moving on a b

trajectory parallel to the z axis, vertically displaced by y. Kyptan(Ky,h) = =&y tan(y7) , (E3)
Analogously to the longitudinal case, we work with the  the cutoff frequencies of the modes are given by Eq. (12)
magnetic Hertz potential; due to the dipole symmetry, we  wjth even values of m (the lowest dipole mode is TEo
choose the first magnetic Hertz potential (see Appendix  \yhose cutoff does not depend on /). Following the same
A): steps used to derive Eq. (10), the crossing frequencies
(where €, = w/c) are

= > A, cos(% x> cos(é,y)e Ié=*
n

o = —\/ + —tanh< %) (E4)

n=13,5,.... (E1)
giving 79 GHz for the first (n = 1) crossing frequency
The fields, as calculated from Eq. (3), are in a LHC-like geometry (¢ = 3.6 X 1072 m, b = 4.3 X
1072 m, and & = 30 um) and for an off-axis charge. Ap-
ex =0, (E2a)  plying the reciprocity relations [see Eq. (14)], we get

qu:@(% - ‘fzn) + 5(% + fzn)] 5)2
alb/2 + sin(£,b)/2£,] k2 — k2

xn

s n(fyyo) coS(ky,x) sin(fyy)eszw/ﬁc’
(ES)

E.(x,y,z;0) = —

Z [6(% - fZﬂ) - 6(% + fzn)] ) ) .
E,(x.y.2:0) = —j2mf a[i)/Z Y. b)fzg] kf}f/k(; SNy y0) COSlk., x) COS(&y y)e 2@/ Be,
y y xn

(E6)
Q[B(% - ng’l) - 5(ﬁc an)] fy
Hy(x,y,z;0) = j2 . sin c0S(k ynx) CO “Jze/Be,
(E7)
!
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