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Wakefields due to surface waves in a beam pipe with a periodic rough surface
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The problem of the wakefields generated by an ultrarelativistic particle traveling in a long beam tu
with a periodic rough surface has been revisited by means of a standard theory based on the hy
modes excited in a periodically corrugated rectangular waveguide. Slow surface waves synchronous
the particle can be excited in the structure, producing wakefields whose frequency and amplitude dep
on the depth of the corrugation. We apply our results to the case of the CERN Large Hadron Collid
beam screen and the Linac Coherent Light Source undulator.
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I. INTRODUCTION

The effect of surface roughness is a relatively new s
ject, arising in the design of machines with extremely sh
bunches of the order of tens of microns. In this case,
fact, the surface roughness may be a source of wakefi
which might significantly increase the beam emittance a
the energy spread. Recently, a corrugation of the La
Hadron Collider (LHC) beam pipe has been proposed
CERN in order to reduce the reflectivity of the walls an
therefore decrease the heat load on the cold dipole b
screen due to photoelectrons accelerated by the pro
beam [1].

The low frequency coupling impedance due to the w
surface roughness has been estimated in Ref. [2]. A
ferent approach, using a small angle approximation in
wall profile, has been developed and gives estimations
the coupling impedance based on the statistical proper
of the surface (see, for example, [3]). Small corrugations
the beam pipe were already treated as perturbations o
wall profile in [4], and estimates were given for the ele
tromagnetic field and the total energy loss up to the sec
order in the perturbation parameter; Ref. [5] reformula
such an expansion with special focus on the resonant
quencies and on a square-wave wall distortion. A dielec
layer model has also been proposed [6]: the roughnes
replaced by a thin dielectric layer at the waveguide wa
which supports a surface wave. The synchronous m
resulting from the interaction of a particle beam and a c
rugated waveguide has been already studied in the fra
work of the synchronous wave pickup proposed in [7].

In this paper we review the problem of the wakefiel
produced by an ultrarelativistic charge traveling inside
beam tube with a periodic corrugation, making use o
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standard theory based on the hybrid modes propagating
the waveguide. We first derive the dispersion relation f
the fields and study the frequency where the synchrono
wave can be excited. Then, through the reciprocity pri
ciple we get the amplitude of the fields excited by th
charge. The resulting wakefield for a point charge di
agrees with previous estimates [6], based on the dielec
layer model. An application of our results to the case of t
LHC beam screen and of the Linac Coherent Light Sour
(LCLS) undulator [8] is finally discussed.

II. THE METHOD

Let us consider the periodically corrugated rectangu
waveguide sketched in Figs. 1 and 2, witha being the di-
mension of the corrugated side (x axis) andb the distance
(along they axis) between the corrugations on the opp
site faces. We model the wall roughness as a series
periodic (with periodL) rectangular obstacles of heighth
and thicknesst. The beam travels along thez axis; we
assumet ø L andL ø l, wherel is the wavelength of
the electromagnetic fields. We neglect Ohmic losses in
material.

Following [9], we consider a rectangular pipe with cor
rugations at two opposite sides. The periodicity of the g
ometry alongz allows the use of Floquet’s theorem which
implies a field solution independent of the periodL (ob-
tained from a single cell). For the reader’s convenience,
first apply the method to the case of a charge traveling
axis (longitudinal problem); the solution for the transvers
case (off-axis charge) is given in Appendix E. In orde
to find the longitudinal wake function per unit length [10]
we go through the following steps. We first solve the h
mogeneous problem, thus finding the modes propagat
in the corrugated waveguide (Sec. III), then we apply th
reciprocity principle including the sources (Sec. IV). F
nally, we calculate the coupling impedance and wake fun
tion (Sec. V). Throughout the paper, we use�jx , jy , jz�
for the wave numbers of the field in a rough waveguid
© 2002 The American Physical Society 044401-1
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FIG. 1. Relevant geometry.
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FIG. 2. Schematic view of the waveguide and notations adopted.
�kx , ky , kz� for a smooth waveguide, and �Kx ,Ky� for the
propagation inside the corrugation that is in the region
where jyj . b�2.

III. HOMOGENEOUS PROBLEM (ON-AXIS
CHARGE)

Since we assumed L ø l, the fields inside the corru-
gation do not depend on the z variable and, due to the
rectangular geometry, they can be written as

Ec
z � 2jvm0

X
n

Bn sin�Kyn�b�2 1 h 2 jyj�� cos�Kxnx� ,

(1a)

Ec
y � 0 , (1b)

Hc
z � 0 , (1c)

Hc
y �

p

a

X
n

nBn sin�Kyn�b�2 1 h 2 jyj�� sin�Kxnx� ,

(1d)

Hc
x � 2Kyn

X
n

Bn cos�Kyn�b�2 1 h 2 jyj�� cos�Kxnx� ,

(1e)

where Bn is the field amplitude (depending on the sources),

Kyn �
q

�v�c�2 2 K2
xn and Kxn � kxn � np�a ,

with n � 1, 3, 5, . . . . (2)
2

Such fields satisfy the boundary condition Ec
z � 0 at x �

6a�2 and y � 6�b�2 1 h�. The fields of interest in the
internal region of the waveguide can be derived from the
magnetic Hertz potential P � x̂Px alone:

E � 2jvm0=P , (3a)

H � �k2 1 ==?�P . (3b)

As shown in Appendix A, depending on the symmetry
there are four possible expressions for Px , namely, Pxi

with i � 1, . . . , 4. In our case, with the charge traveling
along the z axis, only Pxi corresponding to i � 2 has to
be considered; it gives a nonvanishing Ez on the beam axis.
A y-directed magnetic Hertz potential is excluded in our
analysis since it would produce an Ex vanishing on the
corrugation, because of continuity over the boundary, as
in a smooth conducting rectangular waveguide. Again for
continuity reasons Kx does not change going from the cor-
rugation to the waveguide: jx � Kxn � kxn. Eventually
we can write

k2
xn 1 j2

y 1 j2
z � �v�c�2. (4)

The field is continuous over the boundary, i.e.,

Ec
z � Ez and Hc

x � Hx for y � 6b�2 , (5)

and thus (considering only fields derived from Px2)

Kyn tan�Kynh� � jy cot�jyb�2� . (6)

Equation (6) is usually referred to as the dispersion rela-
tion; for each value of Kyn, it has an infinite number of
solutions.
044401-2
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In the limit of a smooth waveguide �h ! 0�, Ec
z and Hc

x
vanish in Eqs. (5) and we recover the well-known condi-
tion jy � ky � mp�b, with m � 1, 3, 5, . . . .

For finite values of h, solving numerically Eq. (6) and
plugging the resulting value for jy in Eq. (4), we get the
wave number jz . A convenient graphical representation
for the propagation behavior of these waves is the Bril-
louin diagram; to show the basic features of the solution,
we study the case of a square waveguide of side a and plot
the normalized wave number jza as a function of the nor-
malized frequency a�l in Fig. 3.

The dispersion curve of a smooth waveguide (dashed
line) at very high frequencies tends asymptotically to the
wave number of an ultrarelativistic beam v�c � 2p�l

(dot-dashed line), but it never crosses it. However, due to
the corrugation, there may be a crossing of the dispersion
curves at particular frequencies where the waveguide mode
and the beam are synchronous (that is, jz � v�c), and
a coherent exchange of energy is possible. These cross-
ing frequencies depend on the depth of the corrugation h.
When jz � v�c, from Eq. (4)

j2
y � 2k2

xn ) jy � jkxn . (7)

If h is small with respect to l and to the waveguide di-
mension a, we may also write

Kyn tan�Kynh� � K2
ynh . (8)

Then using the definition of Kyn [Eq. (2)], we rewrite the
dispersion relation Eq. (6) asµ

2pfn

c

∂2

2 k2
xn �

kxn
h

coth

µ
b
2
kxn

∂
, (9)

thus obtaining the crossing frequencies

FIG. 3. Dispersion diagram for a square waveguide of side
a with corrugation on two opposite sides. The solid lines are
obtained from Eq. (6): line (a) is for h�a � 0.1, while line (b) is
for h�a � 0.01. The dashed line corresponds to the unperturbed
TM11 mode of the smooth waveguide and the dot-dashed line
represents an ultrarelativistic beam.
044401-3
fn �
c

2p

s
k2
xn 1

kxn
h

coth

µ
kxn

b
2

∂
. (10)

For very small h, the second term in the square root domi-
nates, resulting in a behavior fn ~ 1�

p
h, analogous to the

case of a pipe covered with a dielectric layer of thickness
h [6].

The modes propagating in the corrugated waveguide are
called hybrid modes [9], since they can be derived by a
superposition of the standard TE and TM modes (along
the z axis). The hybrid modes in general do not satisfy an
orthogonality condition; physically this means that they
are coupled to each other. Since the coupling coefficients
are proportional to the height of the corrugation h, for
very small corrugation depths the modes are practically
decoupled.

The minimum frequency beyond which a mode can
propagate in the guide (namely, its cutoff frequency fc)
depends on the corrugation depth as well. Mathemati-
cally the cutoff frequency is found by imposing the condi-
tion jz � 0, which implies jy �

p
�v�c�2 2 k2

xn � Kyn

[from Eq. (4)]. The dispersion relation becomes

Kyn tan�Kynh� � Kyn cot�Kynb�2� ,

that is, cos

µ
Kyn

2h 1 b
2

∂
� 0 . (11)

Solving for Kyn and using Eq. (2), it is straightforward to
get

fc �
c

2p

sµ
np

a

∂2

1

µ
mp

2h 1 b

∂2

with n � 1, 3, 5, . . . , and m � 1, 3, 5, . . . . (12)

For frequencies higher than cutoff, the solution of Eq. (6)
combined with Eq. (4) gives real values for jz , while jz

is purely imaginary for lower frequencies. In the limit of
h ! 0, we find the well-known cutoff frequencies for the
modes of a smooth waveguide. Equation (12) concerns
only the subset of modes obtainable from Px2.

Moreover, for small h we can write a formula for jz as
a function of the wave number kz of the smooth waveguide
(see Appendix B):

jz � kz 1
2Kyn

kzb
tan�Kynh� . (13)

Since kz and Kyn are both depending on the frequency f,
it is nontrivial to get Eq. (10) directly from Eq. (13).

If the wave number of our hybrid mode falls in the region
below (above) the dot-dashed line in Fig. 3, the wave is
usually referred to as fast (slow) because its phase velocity
is larger (smaller) than the speed of light. Moreover, for
a rough waveguide jz can exceed the wave number of
the smooth one, meaning that the solution jy of Eq. (6)
is purely imaginary [see Eq. (4)]. In that case the wave
is said to be a surface wave, because it is exponentially
damped in the y direction.
044401-3
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IV. INCLUDING THE SOURCES

Having solved the homogeneous problem, i.e., having
derived the modes of the structure, the field generated by
a point charge can be found by means of the Lorentz reci-
procity principle [11]. Referring to Appendix C, we may
write

2
X
m

bme
2j�jzn2jzm�zAnm 2

X
m

ame
2j�jzn1jzm�zBnm �

Z
V

J ? E1
n dV , (14a)

2
X
m

ame
2j�jzn2jzm�zAnm 2

X
m

bme
2j�jzn1jzm�zBnm �

Z
V

J ? E2
n dV , (14b)

where J is the spectral current density of a point charge
traveling on axis (ẑo unit vector along the z axis),

J�x, y, z; v� � qd�x�d�y�e2jzv�bcẑo , (15)

an �bn� is the coefficient of the expansion of the field using
the forward (backward) propagating modes of the structure
E1

n , H1
n �E2

n , H2
n �. Denoting by Sc the cross section of

the guide,

Anm �
Z

Sc

�etn 3 htm 1 etm 3 htn� ? ẑodSc , (16a)

Bnm �
Z

Sc

�etn 3 htm 2 etm 3 htn� ? ẑodSc , (16b)

where et and ht are the transverse modal function, i.e.,
the transverse behavior of the mode field. For instance in
a smooth waveguide, where the modes are orthogonal, it
holds

Anm � 2dnm and Bnm � 0 , (17)

resulting in well-known relations for an, bn [11] (dnm

stands for the Kronecker’s symbol).
In a rough waveguide the (hybrid) modes are no longer

orthogonal. Nevertheless only the mode synchronous with
the beam can exchange energy over an infinite interaction
length [10] (surfing effect), thus we may treat modes one
by one; moreover the coupling itself goes to zero in the
044401-4
limit h ! 0 that we are presently interested in. In this
case Eqs. (14) become

anAnn � 2
Z

V
J ? E2

n dV and

bnAnn � 2
Z

V
J ? E1

n dV .
(18)

Since, as shown in Appendix D,

Ann � vm0jjznj �k2 2 k2
xn�a

∑
b
2

2
sin�jyb�

2jy

∏
, (19)

andZ
V

J ? E6
n dV � 6jqvm0jy2pd

µ
v

bc
6 jzn

∂
, (20)

the electric field has a resonant behavior around the cross-
ing frequencies:

Ez�x, y, z; v� �

2 2pb
qZ0�d� v

bc 2 jzn� 1 d� v

bc 1 jzn��
a�b�2 2 sin�jyb��2jy�

3
j2
y

k2 2 k2
xn

cos�kxnx� cos�jyy�e2jzv�bc,

(21)

where d is the Dirac delta function, c is the light veloc-
ity in vacuum, k � v�c, b is the relativistic factor, Z0
is the free-space characteristic impedance, and jy is ob-
tained by solving Eq. (6). The field is non-null only at the
crossing frequencies f given by Eq. (10), i.e., those such
that jz � v�bc. It is worth noting that all the frequency
dependent quantities in Eq. (21), i.e., jy and k, have now
to be computed at the crossing frequency because of the
Dirac functions; thus we may simplify Eq. (21) since for
h ø l and from Eq. (6):

j2
y

k2 2 k2
xn

� 2
kxnh

coth�kxnb�2�
. (22)

The synchronism between the field in the waveguide and
the beam is possible because of the slowing effect due to
the surface roughness.

For ultrarelativistic particles �b � 1� and small h �h ø
l� , the electric field at the lowest frequency �n � 1� is
Ez�x, y, z; v� � 2 4p2qZ0
h
a

1
ab

Ω
coth

µ
p

2
b
a

∂ ∑
sinh�pb�a�

pb�a
2 1

∏æ21

3 cos

µ
p

a
x

∂
cosh

µ
p

a
y

∂
e2jzv�c�d�v�c 2 jz1� 1 d�v�c 1 jz1�� , (23)

providing that Eq. (7) holds for jy at the crossing frequency. First of all, Ez has a phase difference of p relative to the
charge field (the minus sign), meaning that it is a decelerating field. The field is confined in the waveguide region near
the corrugated wall (it is exponentially growing for y ! 6b�2), as we expect for a surface wave. The height of the
corrugation fixes not only the resonant frequency through jz1, but also the field amplitude through the factor h�a: the
field decreases in amplitude and increases in frequency as h decreases.
044401-4
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A structure of finite length � will result in a spread of
frequencies that can be excited, since

2pd�v�bc 6 jzn� ! �
sin��v�bc 6 jzn���2�

�v�bc 6 jzn���2
. (24)

V. LONGITUDINAL COUPLING IMPEDANCE
AND WAKE FUNCTION

Following the standard definition of the (specific) longi-
tudinal coupling impedance [10]

dZ�v�
dz

� 2
1
q
Ez�x � 0, y � 0, z, v�ejzv�c, (25)

from Eq. (23) we get the (real) coupling impedance due to
the surface wave:

dZ�v�
dz

� 4p2Z0
h
a

1
ab

Ω
coth

µ
p

2
b
a

∂ ∑
sinh�pb�a�

pb�a
2 1

∏æ21

3 �d�v�c 2 jz1� 1 d�v�c 1 jz1�� . (26)

It is straightforward now to get the wake function for unit
length and for a point charge [10], i.e.,

dw�t�
dz

�
H�t�

p

Z `

2`

dZ�v�
dz

ejvt dv , (27)

where t is the time distance of the trailing charge from the
leading one and H�t� is the Heaviside function. Eventually
we get

dw�t�
dz

� w0�a,b, h� cos�2pf1t�H�t� , (28)

where

w0�a, b, h� � 8p
Z0c
ab

h
a

3

Ω
coth

µ
p

2
b
a

∂ ∑
sinh�pb�a�

pb�a
2 1

∏æ21

.

(29)

To get the wake function for a bunch, one has to perform
the convolution of Eq. (28) with the bunch spectrum. For
instance, the wake function is

dW �t�
dz

� w0�a, b, h�
Z `

0

e2�t2t�2�2s2

p
2p s

cos�2pf1t� dt

(30)

for a Gaussian bunch of rms bunch length s, and this
integral has to be performed numerically.

A. Application to the LHC beam screen

The amplitude w0�a, b, h� of the sinusoidal wake func-
tion for an LHC-like geometry1 (a � 3.6 3 1022 m, b �
4.3 3 1022 m, and h � 30 mm) is � 0.3 V pC21 m21

1In the LHC the corrugations are on the vertical, shorter sides.
044401-5
and the first crossing frequency f1 is 83 GHz (and h ø l,
as assumed). Since the rms bunch length is s � 7.5 cm,
the bunch cutoff frequency c��2ps� is of the order of
1 GHz, i.e., nearly a factor of 100 lower than the wake
resonant frequency (that is the crossing frequency).

Until now we have shown that the wakefield due to the
synchronous mode has a resonant behavior and the quality
factor Q of such a resonance is infinite, since we have
assumed an infinite interaction length, no Ohmic losses,
and an ideal geometry. This is clearly an approximation
and, to estimate the threshold of the longitudinal instability,
we will consider the standard resonator model [12]. We
assume that the amplitude of the wake function given by
Eq. (29) is produced by a high (but finite) Q resonator
impedance with a shunt resistance Rs given by

Rs �
Qw0L0

2pf1
� 1.6 3 104Q V , (31)

with a finite Q value. The LHC parameters we will use
are given in Table I.

The impedance at frequencies well below the reso-
nator frequency (for example, at the frequency fbunch �
c�2ps associated with the bunch length) is inductive and
such that

jZ�nj �
Rs

Q
fo

f1
� 2 m V , (32)

i.e., 2 orders of magnitude smaller than the LHC
impedance budget (n is the harmonic number n � f�fo).
At the resonator frequency f1, the impedance jZ�nj is real
and equal to that of Eq. (32) multiplied by the Q factor.

An estimate of the longitudinal instability threshold (for
mode numbers of the order of f1�fbunch � 130) can be
done by using the Boussard criterion [13], derived from
the coasting beam theory, which we write here in the form

Nth �
�2p��3�2��E0�e�acss

2
´0

cejZ�nj
, (33)

with E0 the nominal energy, e the electron charge, ac

the momentum compaction, s´0 the energy spread, and
Z the coupling impedance at a frequency corresponding to
harmonic number n. For the top energy of 7 TeV we get

Nth �
7.22 3 1011

j
Z�n
V j

(34)

TABLE I. LHC parameter list for two operating conditions,
namely, at top energy (top) and at injection energy (inj.).

Momentum compaction �1024� ac 3.47
Machine length (km) Lo 26.66
Revolution frequency (kHz) fo 11
Average beta function (m) b 100
Energy (GeV) Eo 7 3 103 (top) 450 (inj.)
Bunch length (mm) s 75 (top) 130 (inj.)
Energy spread �1024� s´o 1.1 (top) 4.7 (inj.)
Synchrotron tune �1023� Qs 2.12 (top) 6 (inj.)
044401-5
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protons per bunch, while in the case of injection energy
(450 GeV), the threshold is a factor of 2 higher.

In the most pessimistic case in which the perturbation
of the unstable oscillation mode has the same resonant
frequency f1 of the wake, we obtain a threshold of

Nth �
3.37 3 1014

Q
(35)

protons per bunch, depending on the value of Q. Quality
factors Q higher than 2 3 103 (equivalent to effective in-
teraction lengths longer than about 4 m) are therefore dan-
gerous for the LHC, whose ultimate intensity is 1.6 3

1011 protons per bunch.
On one hand, a more accurate stability analysis includ-

ing azimuthal [12] and radial [14] mode coupling would
then be in order. On the other hand, several mechanisms,
not included in the previous derivation, will limit the qual-
ity factor Q, including Ohmic losses and geometric im-
perfections. In particular, pumping slots in the LHC beam
screen induce mixing of the modes propagating in the beam
pipe and attenuation of the synchronous surface wave, pre-
sumably after a distance of a few meters [15].

B. Application to the LCLS undulator

The longitudinal wake discussed so far is relevant also
for very short bunches; an interesting example is the LCLS
undulator [8], where the expected bunch is short (the rms
bunch length is s � 15 mm) and rather rectangular in
shape. For a rectangular charge distribution, with half
width T �

p
3 s�c, the rms energy spread (over the whole

machine) is simply given by [16]

DErms

E
�

NqLcw0�a, b,h�
2E

3

s
1

2�v1T �2

∑
1 2

sin�4v1T �
4v1T

∏
2

∑
sin�v1T �

v1T

∏4

,

(36)

where E is the energy, Lc is the length of the machine, Nq
is the bunch charge, and v1 � 2pf1. Figure 4 shows
the result for a geometry similar to the LCLS undulator
(the circular beam pipe of radius r � 2.5 mm is approxi-
mated by a square one with a side of a � 4 mm). Thus,
concerning the effect of a synchronous mode, the require-
ment of having a relative energy spread increase smaller
than 5 3 1024 is satisfied if the beam pipe roughness is
kept below 10 mm. Applying the dielectric layer model
with an analogous choice of parameters, Ref. [16] found a
044401-6
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FIG. 4. Energy spread for a geometry approximating the LCLS
undulator as a function of the depth of the corrugation (a � b �
4 mm, Lc � 112 m, Nq � 1 nC, E � 14.3 GeV, and s �
15 mm).

maximum allowed corrugation depth of 100 nm, techni-
cally not easy to achieve. This result differs by 2 orders
of magnitude with ours and such a discrepancy cannot be
explained only by the different model of the pipe (we ap-
proximate a circular beam pipe with a square one). Our
method applied to a circular beam pipe (more similar to the
real shape of LCLS ) gives an energy spread even smaller
of about a factor of 3–4 than the one discussed here [17].

VI. TRANSVERSE WAKE FUNCTION AND
COUPLING IMPEDANCE

We now consider a point charge moving on a trajectory
parallel to the z axis vertically displaced by y0. The cross-
ing frequency f1,� is different from the previous one, as
shown in Eq. (E4); the electromagnetic field components
are reported as well in Appendix E.

To derive the (specific) longitudinal and transverse
dipole impedance, we follow a way slightly different from
that of Sec. V, simply applying the definitions reported
in [10]. Longitudinal and transverse wake functions are
proportional to the Lorentz force; in the z direction

dw�x, y, z; t�
dz

� 2
F�x, y, z; t�

q1q
, (37)

where F is the Lorentz force in the z direction, q is the
trailing charge, and q1 the leading one. Approximating
for ultrarelativistic particles and for small h and y0 at the
lowest frequency �n � 1�, we find
dwdipole�x, y, z; t�
dz

� 4pZ0c
h
a

y0

a
1
ab

Ω
tanh

µ
pb
2a

∂ ∑
sinh�pb�a�

pb�a

∏æ21

cos

µ
px
a

∂
sinh

µ
py
a

∂
cos�2pf1,�t�H�t� ;

(38)
044401-6



PRST-AB 5 WAKEFIELDS DUE TO SURFACE WAVES IN A BEAM … 044401 (2002)
after a Fourier transform, we get the dipole component of the longitudinal impedance per unit length:

dZdipole�x, y, z; v�
dz

� 4p2Z0
h
a

y0

a
1
ab

Ω
tanh

µ
pb
2a

∂ ∑
sinh�pb�a�

pb�a

∏æ
21

3

∑
d

µ
v

c
2 jz1,�

∂
1 d

µ
v

c
1 jz1,�

∂∏
cos

µ
px
a

∂
sinh

µ
py
a

∂
. (39)

Similarly, the transverse wake function per unit length is defined as

dwy�x, y, z; t�
dz

�
Fy�x, y, z; t�

q1q
, (40)

where Fy is the Lorentz force in the y direction; in the usual approximations it becomes

dwy�x, y, z; t�
dz

� 2 4p3�2Z0c

µ
h
a

∂3�2 y0

a
1
ab

Ω∑
tanh

µ
pb
2a

∂∏3�2∑
sinh�pb�a�

pb�a

∏æ21

3 cos

µ
px
a

∂
cosh

µ
py
a

∂
sin�2pf1,�t�H�t� . (41)

The transverse impedance Zy is defined as the Fourier transform of the transverse wake function (in the frequency domain)
times the imaginary unit [see Eq. (97) in Ref. [10] ]; thus,

dZy�x, y, z; v�
dz

� 2 j4p5�2Z0

µ
h
a

∂3�2 y0

a
1
ab

Ω∑
tanh

µ
pb
2a

∂∏3�2∑
sinh�pb�a�

pb�a

∏æ21

3

∑
d

µ
v

c
2 jz1,�

∂
2 d

µ
v

c
1 jz1,�

∂∏
cos

µ
px
a

∂
cosh

µ
py
a

∂
. (42)
Usually the dipole component of the transverse kick is
the dominant term for ultrarelativistic particles. Since this
term is proportional to the displacement y0 of the charge
q1, it is usually defined as a transverse dipole wake func-
tion (impedance) as a transverse wake (impedance) per unit
of transverse displacement. This can be easily obtained
from our formulas simply dividing them by y0 resulting in
the usual units for transverse dipole wake function (V�Cm)
and impedance �V�m�.

Application to the LHC beam screen

For the evaluation of the effect of the surface roughness
wakefields on the transverse dynamics, we use the the-
ory of transverse mode coupling instability, which occurs
when the frequencies of two neighboring head tail modes
approach each other due to the detuning caused by the cur-
rent. The instability threshold is given by [18]:

N�
th �

2p�E0�e�QsF�s�
f1,� be�R�

s �Q�
, (43)

where the transverse wake frequency f1,� is 79 GHz, ac-
cording to Eq. (E4). F�s� is a form factor which, for short
bunches, is �1; for longer bunches, it increases propor-
tionally to s [19]. We consider the most pessimistic case
with F�s� � 1. For calculating the shunt impedance R�

s ,
we use the same hypothesis of the longitudinal case, i.e.,
we assume a high Q transverse resonator with a shunt re-
sistance given by
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R�
s � Q

w�
0yL0

2pf1,�
� 104Q V�m , (44)

where w�
0y is the amplitude of the transverse wake function

per unit length of Eq. (41) �w�
0y � 0.20 V pC21 m22�. By

using parameters from Table I in Eq. (43), we get a thresh-
old value of 7.4 3 1012 �1.34 3 1012� protons per bunch
at top (injection) energy, which is much higher than the
respective longitudinal one.

VII. CONCLUSIONS

In this paper we have derived the longitudinal and the
transverse wakes due to a periodic corrugation in a rect-
angular beam pipe. For a point charge, the amplitude of
the sinusoidal wake function is proportional to the corruga-
tion depth h and the oscillation frequency is proportional
to 1�

p
h. For h ! 0 the frequency of the wake function

goes to infinity, while its amplitude vanishes. This last re-
sult disagrees from the one obtained in [6] with a dielectric
layer model, where the amplitude of the wake does not de-
pend on the corrugation depth. The results reported in [6]
are also difficult to apply directly. Computer simulations
are needed to establish the correct value of the parameter
of the equivalent dielectric layer (i.e., its dielectric constant
since its thickness is chosen equal to h). Those simulations
are also not easy for very small corrugation depth and they
need, in principle, to be repeated for any change in the
sizes of a given geometry.
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Application of our results to the case of the LHC beam
screen indicates that the Q factor of the synchronous sur-
face wave should not exceed 2000 to ensure longitudinal
beam stability. In the case of the LCLS undulator, a beam
pipe roughness below 10 mm is acceptable.
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APPENDIX A

The magnetic Hertz potential Px satisfies the wave
equation, thus

Px � �A cos�jxx� 1 B sin�jxx��
3 �C cos�jyy� 1 D sin�jyy��e2jjzz , (A1)

where A, B, jx , and jy are constants. Since the tangential
electric field vanishes on the boundary x � 6a�2, the four
possible expressions are
Px1 �
X
n

An cos

µ
np

a
x

∂
cos�jyy�e2jjznz n � 1, 3, 5, . . . , (A2)

Px2 �
X
n

An cos

µ
np

a
x

∂
sin�jyy�e2jjznz n � 1, 3, 5, . . . , (A3)

Px3 �
X
n

An sin

µ
np

a
x

∂
cos�jyy�e2jjznz n � 0, 2, 4, . . . , (A4)

Px4 �
X
n

An sin

µ
np

a
x

∂
sin�jyy�e2jjznz n � 0, 2, 4, . . . , (A5)

where An depends on the source and jy is related to the other boundary condition. For instance, in a smooth guide,
the electric field vanishes also on the boundary y � 6b�2 leading to jy � ky � mp�b with m an even (odd) integer
number for Px1 and Px3 (Px2 and Px4).

APPENDIX B

In this appendix we derive Eq. (13), showing that jz is the sum of the wave number of a smooth guide �kz� plus a term
depending on the corrugation depth h and vanishing for h ! 0.

Considering the roughness as a perturbation of a smooth waveguide, jy can be written as

jy � ky 1 dky , (B1)
where dky is the difference from the unperturbed ky � mp�b and it vanishes for h ! 0. We may write Eq. (6) as

Kyn tan�Kynh� � �ky 1 dky�
cos�mp�2� cos�dkyb�2� 2 sin�mp�2� sin�dkyb�2�
sin�mp�2� cos�dkyb�2� 1 cos�mp�2� sin�dkyb�2�

� 2�ky 1 dky� tan�dkyb�2� , (B2)

having to consider only odd values for m since Eq. (6) is obtained from Px2. Therefore, using tan�x� � x and solving
a second order algebraic equation, we get

dky � 2
ky
2

6

sµ
ky
2

∂2

2 2
Kyn

b
tan�Kynh� , (B3)

were only the 1 sign is physically meaningful. Same arguments (and same result) hold in simplifying Eq. (E3) for m
even. Therefore the wave number becomes

j2
z � k2 2 k2

x 2 j2
y � k2 2 k2

x 2 k2
y 2 2kydky , (B4)

and then

j2
z � k2 2 k2

x 2 k2
y

s
1 2 8

Kyn

bk2
y

tan�Kynh� � k2
z 1

4Kyn

b
tan�Kynh� , (B5)

eventually taking the first order term of the square root, we get Eq. (13).
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APPENDIX C

In this Appendix we derive Eqs. (14). The Lorentz reci-
procity theorem [11] states that

I
S
�E6

n 3 H 2 E 3 H6
n � ? n dS �

Z
V

J ? E6
n dV ,

(C1)

where E, H is the field radiated by the source of current
density J in the volume V closed in the surface S with
inward normal n. En, Hn are the normal modes of the
structure; that is

E6
n � e6

n e7Gnz � �etn 6 ezn�e7Gnz and

H6
n � h6

n e7Gnz � �6htn 1 hzn�e7Gnz .
(C2)

The index 6 stands for forward and backward propagating
waves with respect to a fixed origin z � 0. The field
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radiated in the positive z direction by the current filament J
can be represented by

E1 �
X
n

anE1
n , H1 �

X
n

anH1
n , (C3)

while the field propagating in the negative z direction is

E2 �
X
n

bnE2
n , H2 �

X
n

bnH2
n . (C4)

For any perfectly conducting cylindrical waveguide, the in-
tegral over S reduces to one over the generic cross sections
S1 and S2:I

S
. . . ? n dS �

Z
S1

. . . ? n1 dS1 1
Z

S2

. . . ? n2 dS2 ,

where n1 � ẑo and n2 � 2ẑo . Specifically Eq. (C3)
gives the radiated field on the cross section S2, while
Eq. (C4) gives the field on S2. Substituting Eqs. (C3) and
(C4), Eq. (C1) becomes
Z
S1

µ
E1

n 3
X
m

bmH2
m 2

X
m

bmE2
m 3 H1

n

∂
? ẑ0dS1 1

2
Z

S2

µ
E1

n 3
X
m

amH1
m 2

X
m

amE1
m 3 H1

n

∂
? ẑ0dS2 �

Z
V

J ? E1
n dV , (C5)

thus, since

ẑ0 ? e6
i 3 h7

j � 7ẑ0 ? eti 3 htj ,

ẑ0 ? e6
i 3 h6

j � 6ẑ0 ? eti 3 htj ,
(C6)

we get eventually

2
X
m

bme
2�Gn2Gm�z

Z
S1

ẑ0 ? �etn 3 htm 1 etm 3 htn� dS1 1

2
X
m

ame
2�Gn1Gm�z

Z
S2

ẑ0 ? �etn 3 htm 2 etm 3 htn� dS2 �
Z

V
J ? E1

n dV , (C7)
that is, Eq. (14a) with Eq. (16) and G � jjz . With the
same reasoning, Eq. (14b) can be derived from Eq. (C1).
The integrals defining Anm and Bnm should be performed
on the whole section of the rough waveguide; nevertheless
in our working hypothesis, the transversal field inside the
slots is null, thus giving no contribution.

For a smooth waveguide, where the modes are orthogo-
nal, it holds

Z
S

eti 3 htj ? ẑ0 dS � dij , (C8)

leading to Eq. (17).

APPENDIX D

In this appendix we derive Eq. (21) for the electric field
from Eq. (18). Being
Ann � 2
Z

S
ẑ0 ? etn 3 htn dS

� 2
Z

S
ẑ0 ? ��exn 1 eyn� 3 �hxn 1 hyn��dS

� 22
Z

S
eynhxn dS , (D1)

from Eq. (3) with Px2, it holds

eyn � 2vm0jjznj cos�kxnx� sin�jyy� , (D2)

hxn � �k2 2 k2
xn� cos�kxnx� sin�jyy� , (D3)

and Eq. (19) comes directly. Also Eq. (20) is straightfor-
ward since

ez � jvm0jy cos�kxnx� cos�jyy� , (D4)
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and

Z 1`

2`
e2j�v�bc6jzn�z dz � 2pd�v�bc 6 jzn� . (D5)

The z component of the electric field Ez , according to
Eqs. (C3) and (C4) is

Ez � anezne
2jjznz 2 bnezne

jjznz , (D6)

that is, after simple algebraic manipulation Eq. (21).

APPENDIX E

In this appendix we apply our theory to solve the trans-
verse problem. We consider a point charge moving on a
trajectory parallel to the z axis, vertically displaced by y0.
Analogously to the longitudinal case, we work with the
magnetic Hertz potential; due to the dipole symmetry, we
choose the first magnetic Hertz potential (see Appendix
A):

Px1 �
X
n

An cos

µ
np

a
x

∂
cos�jyy�e2jjznz

n � 1, 3, 5, . . . . (E1)

The fields, as calculated from Eq. (3), are

ex � 0 , (E2a)
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ey � 2vm0jz cos

µ
np

a
x

∂
cos�jyy� , (E2b)

ez � 2jvm0jy cos

µ
np

a
x

∂
sin�jyy� , (E2c)

hx �

∑
k2 2

µ
np

a

∂2∏
cos

µ
np

a
x

∂
cos�jyy� , (E2d)

hy �

µ
np

a

∂
jy sin

µ
np

a
x

∂
sin�jyy� , (E2e)

hz � j

µ
np

a

∂
jz sin

µ
np

a
x

∂
cos�jyy� . (E2f)

The boundary conditions at the walls lead to the following
dispersion equation:

Kyn tan�Kynh� � 2jy tan�jy
b
2 � , (E3)

the cutoff frequencies of the modes are given by Eq. (12)
with even values of m (the lowest dipole mode is TE10
whose cutoff does not depend on h). Following the same
steps used to derive Eq. (10), the crossing frequencies
(where jz � v�c) are

fn,� �
c

2p

s
k2
xn 1

kxn
h

tanh

µ
kxn

b
2

∂
, (E4)

giving 79 GHz for the first �n � 1� crossing frequency
in a LHC-like geometry (a � 3.6 3 1022 m, b � 4.3 3

1022 m, and h � 30 mm) and for an off-axis charge. Ap-
plying the reciprocity relations [see Eq. (14)], we get
Ez�x, y, z; v� � 22pb
qZ0�d� v

bc 2 jzn� 1 d� v

bc 1 jzn��
a�b�2 1 sin�jyb��2jy�

j2
y

k2 2 k2
xn

sin�jyy0� cos�kxnx� sin�jyy�e2jzv�bc,

(E5)

Ey�x, y, z; v� � 2j2pb
qZ0�d� v

bc 2 jzn� 2 d� v

bc 1 jzn��
a�b�2 1 sin�jyb��2jy�

jyv�c
k2 2 k2

xn
sin�jyy0� cos�kxnx� cos�jyy�e2jzv�bc,

(E6)

Hx�x, y, z; v� � j2pb
q�d� v

bc 2 jzn� 2 d� v

bc 1 jzn��
a�b�2 1 sin�jyb��2jy�

jyc

v
sin�jyy0� cos�kxnx� cos�jyy�e2jzv�bc.

(E7)
These expressions are used in Sec. VI to derive the dipole
wake function and coupling impedance.
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