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Experimental study of a half-integer resonance with space-charge effects in a synchrotron
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Beam losses due to half-integer resonance have been observed in the Heavy Ion Medical Accelerator in
Chiba synchrotron, along with exciting the harmonic component of gradient field errors. During opera-
tion, while varying the defocusing quadrupole to cross a half-integer tune in the vertical space, the region
of bare tunes which causes the half-integer resonance was evaluated. When the initial beam intensity was
high, the bare tune where the beam loss occurred became higher. The beam loss occurred rapidly when
the half-integer tune was crossed upward, but gradually when it was crossed downward. Those results
mean that the half-integer resonance is affected by space-charge-induced tune shifts. This fact was veri-
fied experimentally for the first time. The results from a one-dimensional multiparticle simulation agreed
with those characteristics. Finally, the beam-size growth and the change in distribution were studied
by a simulation.
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I. INTRODUCTION

There are many projects involving high-intensity syn-
chrotrons for experiments of nuclear physics, solid state
physics, and biology, as well as for medical applications.
In realizing such high-intensity machines, one of the most
serious problems is beam loss, which causes the activation
of accelerator components. However, its detailed mecha-
nism is not clear.

One familiar model shows that the betatron tunes of in-
dividual particles are reduced by a space-charge field, and
those oscillations resonate with a periodic external field
[1,2]. However, this model is not self-consistent because
it assumes that both the space-charge field and the tune of
a particle are constant. In fact, it can be derived that the
integer resonance does not occur even when the depressed
tune of a particle is in the integer stop band associated
with the dipole field errors. The reason is that the dipole
field affects all of the particles equally, so that the motion
of a particle moving around the center of mass does not
resonate with those fields. Instead, the motion of the cen-
ter of mass, namely, coherent dipole-mode oscillation, can
resonate with the dipole field errors.

In 1968, Sacherer proposed a self-consistent analysis
of resonances in terms of coherent motions of the particle
distribution [3]. In particular, he analyzed the half-integer
resonance, employing an envelope equation which
describes the motion of the beam size. Based on the as-
sumption of linear external field and a linear space-charge
field, it was found that the growth of the betatron amplitude
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due to half-integer resonance occurs when the coherent
quadrupole mode tune, not the tune of an individual
particle, is near to an integer.

After Sacherer’s work, the coherent motions of a beam
and their tunes, not only for the second moment distribu-
tion, have drawn attention as criteria of the beam intensity
limit, instead of the tunes of individual particles, namely,
incoherent tunes. In 1970, Gluckstern [4] analyzed the
perturbative motion of a two-dimensional cylindrical beam
with uniform density by means of the Vlasov-Poisson
equation and obtained the coherent modes as eigenfunc-
tions of the space-charge potential and their tunes. Those
analyses were generalized for a beam with anisotropic
emittance and external focusing by Hofmann in 1998 [5].

Simulation studies have also been conducted. In 1985,
Hofmann [6] simulated the integer and the fourth-order
resonances when the tune approached an integer or a
quarter-integer. In the simulation of integer resonance, no
displacement of the beam was found when the depressed
tune crossed an integer, while it occurred when the bare
tune crossed an integer. Also, in a simulation of the fourth-
order resonance, emittance growth did not occur, even
when the depressed tune of a particle crossed the quarter
integer. Thus, it was verified in the simulation that neither
an integer nor a fourth-order resonance occurs at incoher-
ent tunes. Similar simulations for half-integer and third-
order resonances were also conducted by Machida [7],
which showed that neither of them occurs when the
depressed tune of a particle crosses a half-integer or a one-
third integer.

Experimental studies for space-charge effect have been
conducted in the Los Alamos proton storage ring [8] and
in the CERN proton synchrotron (CERN PS) [9]. In Los
Alamos, the beam size at a bare tune just above an integer
© 2002 The American Physical Society 044201-1
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was measured as a function of the beam intensity and the
bare tune. The final beam size became larger when the
beam intensity was high or the distance of the bare tune to
the nearest integer was small. The depressed tune was cal-
culated from the final beam size. If we take into account
the Gaussian-like profile measured there, as Baartman
pointed out [10], the depressed tunes of those particles
with a small amplitude are below the integer value. Also,
in the CERN PS, the emittance was measured near to
an integer tune. The results showed that the tune of an
individual particle can cross an integer value without any
emittance blowup. These results from the experiments
conducted in Los Alamos and in CERN mean that integer
resonance does not occur at incoherent tunes. Experiments
for higher order resonances do not exist thus far.

We performed an experimental study of the space-charge
effects in the vicinity of a half-integer resonance and in-
vestigated the beam-size growth and detailed mechanism
of the beam loss. Our experiments were to observe the
beam loss when the vertical tune approaches a half-integer
value.

Compared to the simplified model that Sacherer as-
sumed, there are several issues we should take into account
in order to study space-charge effects in a real synchro-
tron. First, in Sacherer’s analysis, the external focus-
ing structure was simplified and assumed to be constant
all around a machine, which is called a smooth approxi-
mation. In addition, error fields to excite a half-integer
resonance were included as a sinusoidal perturbation. In
reality, almost all synchrotrons today employ an alternating
gradient principle, in which focusing and defocusing are
periodically located. Error fields are excited by local per-
turbation. Second, according to Sacherer [11], the rms en-
velope equation holds the same regardless of the distribu-
tion, except for a parameter (the l) which very weakly de-
pends on the distribution. Therefore, it is said that the be-
havior of the beam near to a half-integer resonance is well
described by an analysis based on the assumption that the
charge distribution is uniform. However, a slight depen-
dence on the distribution, parameterized as l, may cause a
change in the distribution to form a positive-feedback sys-
tem. Third, a real synchrotron does not have enough aper-
ture compared to the emittance. The beam loss is likely
to be determined by the available aperture. In a practical
sense, if Sacherer’s prediction is verified experimentally
and the necessary aperture to avoid beam loss can be de-
duced, it should be a criterion for designing high-intensity
machines. Finally, the first item of Sacherer’s result im-
plies that the condition of half-integer resonance is related
to the quadrupole mode coherent tune, not the incoherent
ones. We will verify this by observing the incoherent and
coherent tunes.

The experiments have been carried out at the syn-
chrotron of Heavy Ion Medical Accelerator in Chiba
(HIMAC) in the National Institute of Radiological Sci-
ences (NIRS), using a He21 beam. In Sec. II, we present
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our experiments and their results. In order to understand
the experimental results, we employed a one-dimensional
multiparticle simulation, which is described in Sec. III.
Finally, we discuss the nature of the half-integer reso-
nance in Sec. IV, along with the results from both the
experiments and the simulations.

II. HIMAC SYNCHROTRON

A. Synchrotron

The HIMAC accelerator [12] was constructed mainly for
studying cancer therapy with heavy-ion beam, such as He,
C, Ne, Si, and Ar. One of the reasons that we have chosen
the HIMAC synchrotron for our experiments is that the
particle energy of 6 MeV�u at injection is low, so that
the space-charge effect becomes strong. The other is that
the large aperture of the beam pipe allows us to observe the
process of beam-resonant blowup before some of particles
hit the pipe wall.

Table I lists the main parameters of the HIMAC syn-
chrotron at the injection energy. The horizontal and ver-
tical beta functions take maximum values of 20 and 19 m
at the center of the focusing (QF) and defocusing (QD)
quadrupole magnets, respectively. In order to obtain a
higher beam intensity, the HIMAC synchrotron adopts
multiturn beam injection with shifting the injection bump
orbit horizontally. With a typical injection current of
600 mA, about 1011 He21 particles can circulate in the
synchrotron. However, when the circulating current is
high, a beam loss occurs immediately after the injection.
In our experiments, we decreased the beam current with
meshed-plate attenuators at the injection beam line in or-
der to observe a beam with a long lifetime.

B. Beam monitors

The circulating beam current is monitored with a dc
current transformer (DCCT). The closed orbit distor-
tion (COD) is measured with electrostatic monitors with
parallel-plate electrodes near the quadrupole magnets. The
horizontal and vertical beam profiles are measured at the
injection beam line with multiwire beam profile monitors
(PRN). There is an emittance monitor (EMN) in the in-
jection beam line, which is composed of a PRN moni-
tor and a movable slit in front of it. The distribution of

TABLE I. Parameters of the HIMAC synchrotron at injection
energy.

Parameter Value

Circumference 2pR � 129.6 m
Lattice structure 12 FODO, superperiod is 6
Beam energy Kinj � 6.0 MeV�u

�g � 1.06, b � 0.113�
Revolution frequency 261.4 kHz
Repetition time 3.3 sec
044201-2
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TABLE II. Design parameters of quadrupole monitor.

Parameter Value

Chamber material SUS316L
Bore radius (electrode) rqm � 104 mm
Electrode length �qm � 400 mm
Electrode thickness t � 3 mm
Electrode gap Drqm � 3 mm
Electrode capacitance Cqm � 192 pF
Voltage gain of amplifier lnGamp � 4610.5

23.0 dB
at 1 kHz 80 MHz

Input impedance of amplifier Ramp � 1.0 MV

particles in the horizontal or vertical phase space is ob-
tained by measuring the profile as a function of the slit
position.

In order to measure the tune shift of the coherent
quadrupole mode oscillation, we installed a capacitive
pickup monitor with four electrodes, namely, a quadrupole
beam monitor. The parameters of the quadrupole monitor
are shown in Table II. As shown in Fig. 1, the voltages
at the electrodes are amplified by low-noise field-effect
transistor amplifiers and processed to four output signals:
horizontal (H), vertical (V), quadrupole (Q), and sum (S)
channels. The output voltage of each channel is given by

VH � 24
p

2 lA�j� , (1)

VV � 24
p

2 lA�h� , (2)

VQ � 28lA��j2� 2 �h2�� , (3)

VS � 22plA , (4)

where l is the line density and j-h is the horizontal and
vertical position normalized in the aperture radius. In this
paper, the brackets, in general, denote the averaged value.
The factor A is calculated by

A � 2G
�qm

2pCqm
, (5)
Q channel

H channel

V channel

S channel
SUM

SUM

DIFF.

DIFF.

SUM

DIFF.

X-

X+

Y+

Y-

amplifiers

FIG. 1. Data processing system of the quadrupole beam monitor. The voltages of four electrodes (X1,X2,Y1,Y2) are amplified
and processed into four channels (V, H, Q, S). The hybrid junctions output the sum (SUM) and difference (DIFF) of the input
signals.
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where G � 104.6 is the gain of the amplifier and �qm and
Cqm � 192 pF are the length and the capacitance of an
electrode. The H and V channels represent the horizontal
and vertical positions of the beam center. Coherent dipole-
mode oscillations are seen in these channel outputs. In the
Q-channel output, the first order dipole mode ��j�� signals
ideally vanish and the coherent quadrupole mode signals
are emphasized. This type of beam monitor has also been
used in LEAR at CERN to measure the quadrupole mode
tune [13].

C. Stop band control

The stop band width of the half-integer resonance was
controlled by a pair of additional quadrupole magnets lo-
cated at exactly opposite sides of the synchrotron. It has
been named the defocusing quadrupole shifter (QDS) [14].
We excited the two magnets of the QDS in counterphase
so that the stop band width could be controlled without
changing the tunes.

The stop band half-width of the half-integer resonance
is calculated by

dny

2
�

q
�aIQDS 1 k1�2 1 k

2
2 , (6)

with

k1 �
1

4p

I
by�s�K�s� cos�2ify�s�� ds , (7)

k2 �
1

4p

I
by�s�K�s� sin�2ify�s�� ds , (8)

a �
1

4p

2byKQDSD�

IQDS
. (9)

Here, s is the longitudinal coordinate, fy�s� is the vertical
betatron phase advance measured from the position of one
of the QDS magnets,
044201-3
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K�s� �
1
B0r

"
≠By�s�

≠x

#
0

�
1
B0r

"
≠Bx�s�

≠y

#
0

, (10)

is the normalized field-gradient error at the center of the
aperture, and B0r is the rigidity of a beam in the bending
magnets. The space-charge effects are not included here.
We assumed that the thickness of the QDS magnet is much
less than the wavelength of the beta function, so that the
vertical beta function is constant there. In our case, the
parameter a is estimated to be 0.0014 �1�A�, while k1,2
should be determined by measurements.
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D. Tunes and tune shifts

We have measured the frequencies of the betatron
sidebands to find the relation between the tunes and the
strengths of the quadrupole magnets. The beam intensity
was limited to be less than 0.6 3 1010 ppp with a meshed-
plate attenuator placed at the injection beam line, in order
to exclude any space-charge effects on the betatron tunes.
The measured tunes showed a linear dependence on the
quadrupole-magnet currents. The fitting results of the
linear coefficients are
∑
dn0x
dn0y

∏
�

∑
10.060 6 0.001 20.007 66 6 0.0001

20.0098 6 0.0005 10.059 66 6 0.000 01

∏ ∑
dIQF
dIQD

∏
, (11)
where the subscript “0” denotes the value at the zero-
current limit. The coefficient dn0y�dIQD was used to
evaluate n0y at an arbitrary time when IQD was varied.
In the presence of a strong space-charge field or external
error field, the betatron tunes are shifted and the �n0x , n0y�
are no longer the actual tunes. We call �n0x , n0y� the un-
perturbed bare tunes.

Next, we measured the space-charge-induced tune shifts
of the coherent quadrupole and dipole-mode oscillations.
Here, we employed a radio-frequency quadrupole (RFQ)
[15] to emphasize the quadrupole mode sidebands. The
RFQ was composed of four magnetic poles and was ex-
cited with broadband signal filling of �20 MHz. The in-
put power was kept at less than 100 W so as to minimize
the effects on the betatron frequencies. The unperturbed
bare tune was (3.68, 3.13).

In the Q-channel output of the quadrupole monitor, two
types of sidebands were observed at the twice vertical be-
tatron frequency measured from every harmonic of revo-
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FIG. 2. Space-charge tune shift of a quadrupole-mode beta-
tron oscillation in a He21 coasting beam at the injection energy.
(A) The spectrogram (two-dimensional plot of the spectrum
versus time) of the Q-channel output from injection (top) to
2800 msec (bottom) after it. The frequency range is 1377 6
10 kHz. A second harmonic of the dipole-mode sideband “2d”
and a quadrupole mode sideband q can be seen. (B) Intensity
of the same beam.
lution frequency. An example is shown in Fig. 2(A). The
center frequency of Fig. 2(A), 1377 kHz, is 21 1 2 3

3.13 times the revolution frequency. At that time, beam
intensity was decreased as shown in Fig. 2(B), because
of the RFQ perturbation. A signal “q” near the second
harmonic of a vertical dipole mode betatron sideband “2d”
was observed. The frequency of the q signal became closer
to that of 2d as the beam intensity decreased, and the
two frequencies agreed at the low-current limit. Thus,
the signal q was identified as a coherent quadrupole-mode
sideband. The intensity dependence of the quadrupole
mode tune was

Dnq

2
� �0.0028 6 0.000 04��1010 �ppp� 3 N measured,

(12)

where N is the number of particles in the synchrotron. The
quadrupole-mode tune shift is defined by

Dnq

2
�
f0,2y 2 fq

2f0
, (13)

where f0 is the revolution frequency, fq is the frequency of
the quadrupole mode sideband, and f0,2y is the frequency
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FIG. 3. Space-charge-induced tune shift of vertical quadrupole
mode coherent oscillation.
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of the second-harmonic dipole-mode sideband in the limit
of low current. The two data points in Fig. 3 show the
tune shifts for different beam intensities in the absence
of RFQ excitation, which agree with Eq. (12). A similar
measurement for the coherent dipole tune shift in vertical
space resulted in

Dnd � �0.0009 6 0.000 01��1010 �ppp� 3 N measured,

(14)

which roughly agrees with the value expected with the
half-integer formula of a Laslett tune shift [16].

E. Emittance

We have observed the phase-space distributions of
an injector beam with an EMN monitor. The 95%
emittances, defined by the phase-space area where the
density is higher than 5% of the maximum, are about
�10.3, 8.8�p mm mrad. The beam profiles were also
measured by a PRN monitor at the end of the injection
beam line, where the beta function is 1.25 m in both
the horizontal and the vertical direction. The rms sizes
of those profiles were 1.79 mm in the horizontal and
1.45 mm in the vertical direction, which correspond to an
rms emittance of �2.6, 1.7�p mm mrad.

The tune shift of the quadrupole mode mainly comes
from the defocusing field due to space charge. It thus
reflects the charge density of the beam. We calculated the
vertical quadrupole mode tune shift as a function of the
vertical emittance and compared it with the experimental
value in order to estimate the vertical rms emittance in the
synchrotron.

In a beam with an elliptic cross section, the vertical
quadrupole mode tune shift is written approximately by
[17]

Dnq

2
�

1
4

µ
3 2

ỹ
x̃ 1 ỹ

∂
Dny , (15)

with

Dny �
1

4pn0y

Nr0R
b2g3

1
ỹ�x̃ 1 ỹ�

, (16)

where the tilde denotes the rms value, N is the number of
particles in the whole ring, r0 is the classical radius of the
particle, and R is the average radius of the synchrotron.
By replacing

x̃ �
p
Exbx , ỹ �

q
Eyby (17)

in Eqs. (15) and Eq. (16), the quadrupole-mode tune shift
can be written by rms emittances Ex-Ey and beta functions
bx-by . We calculated the quadrupole-mode tune shift as
a function of Ey . Here, the horizontal rms emittance was
taken to be Ex � �120 6 14�p mm mrad, based on the as-
sumptions that the full emittance equals an acceptance of
480p mm mrad and the density is uniform because of mul-
titurn injection. The systematic error in Ex comes from the
044201-5
dispersion effect of 2.9 mm at maximum. Comparing the
result with the measured value of Eq. (12), we obtained a
vertical rms emittance of �2.0 6 0.2�p mm mrad, which is
slightly larger than the measured value of 1.7p mm mrad
at the injection beam line.

F. Resonance experiments

We have observed the beam loss in the HIMAC syn-
chrotron while varying the QD current linearly to bring
about a vertical tune across a half-integer value. The QDS
was also excited so as to control the stop band width of
the half-integer resonance. For a comparison, similar data
with low-intensity beams were taken. The beam current
was recorded every 10 msec with a digital oscilloscope
synchronized with HIMAC operation.

Table III lists the parameters. We took two patterns
of QD excitation for upward and downward half-integer
crossing. The QF current was fixed at 77.5 A, which op-
timizes the injected current at around ny � 3.5. The ini-
tial QD current was chosen to be sufficiently far from the
half-integer tune to maintain high intensity injection for
all ranges of QDS current. The initial vertical bare tune
was measured with a very low current. The ramping rate
of the QD current was set to be very slow, as long as the
resonance was crossed in 2500 msec, taking a 800 msec
recovery time of the QD current into account. The excita-
tion patterns of the QD magnets are shown in Fig. 4. The
bare tune at time t can be obtained by

n0y�t� � n0y�0� 1 0.059 66 �1�A� 3
dIQD

dt
t ,

0 , t , 2500 �msec� . (18)

Figure 5 shows the typical beam-loss waveforms. The
qualitative behaviors of the beam loss were obviously
different between the downward and upward half-integer
crossings. In the case that the resonance was crossed
downward, the beam loss occurred gradually, while it

TABLE III. The conditions of the resonance cross experiments
and multiparticle simulation.

(A) downward

Parameter Simulation Experiment �IQDS � 22 A�

n0 (initial) 3.5157 3.567
dn0�dNt 21.126 3 1026 21.126 3 1027

dn 0.01 0.01
Dnq�2 0.0059 0.0052

(B) upward

Parameter Simulation Experiment �IQDS � 22 A�

n0 (initial) 3.4951 3.458
dn0�dNt 11.126 3 1027 11.126 3 1027

dn 0.01 0.01
Dnq�2 0.0066 0.0064
044201-5
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FIG. 4. Excitation patterns of QD magnets in (A) downward and (B) upward resonance crossing experiments. The horizontal axis
shows the time after the master trigger and the vertical axis shows the QD current.
occurred rapidly in the other case. Those characteristics
were independent of the current of QDS. The gradual loss
behavior in the downward cases can be explained by a
detuning effect due to decreasing beam intensity. If a part
of the beam is lost, the space-charge effect is decreased
and the depressed tunes of particles become higher. This
effect makes the tune escape from the half-integer value
when the depressed tune is above it, so that the beam loss
occurs gradually. On the other hand, in the case of upward
crossing, the detuning effect due to beam loss makes the
depressed tune approach the half-integer, and the beam
loss occurs rapidly.

Figure 6 shows the bare tune at the time tc and tf when
the beam loss began or was finished. Those times are
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FIG. 5. (Color) Typical beam loss waveforms when the reso-
nance line was crossed (A),(B) downward or (C),(D) upward.
The initial beam intensity was decreased with an attenuator in
cases (B) and (D). The data for IQDS � 0 A and 4 A are shown.
The red parts of each waveform define the tunes where beam
loss occurred and was finished.
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defined as the red regions of the waveforms in Fig. 5,
where the slope of the beam current is quickly changing.
The bare tune at a given time is calculated by Eq. (18).
The major sources of systematic error on n0y�tc,f� are the
ambiguity of reading the beam loss time, tc,f , and the
accuracy of the initial tune measurement.

If we neglect the space-charge effect in lower current
data, which is of the order of 0.001 in tune shift of a
particle, the n0y�tc� of those data should correspond to the
edge of the stop band at each strength of the gradient error.
The top points of the wedge-shaped function of n0y�tc�
indicate the natural component of the gradient field error.
The fitting parameters in Eq. (6) are√ k1

k2
a

!
�

0B@ �7.1 6 0.5� 3 1023

�3.1 6 0.8� 3 1023

�1.7 6 0.1� 3 1023

1CA , (19)
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FIG. 6. (Color) Bare tunes corresponding to the times where
beam loss began (tc, solid circles) and was finished (tf , stars).
The open circles and cross symbols show the incoherent (with
approximation of linear space-charge field) and half of coherent
tunes corresponding to tc. The red symbols show low-intensity
data.
044201-6



PRST-AB 5 EXPERIMENTAL STUDY OF A HALF-INTEGER … 044201 (2002)
where a is in units of [1�A]. The slope a roughly agrees
with the expected value of 0.0014 [1�A]. It proves that
the beam losses in our experiments are surely caused by
half-integer resonance due to a QDS field.

In the cases of high beam intensity, the tune where beam
loss occurred was shifted upward. That intensity depen-
dence, as well as the beam-loss behavior, is direct evi-
dence of the space-charge effect changing the condition of
the resonant beam loss.

G. Summary

We have observed the beam loss due to a half-integer
resonance, with varying the defocusing quadrupole to cross
a half-integer betatron tune in vertical space. The tune
where beam loss occurred depended on the strength of an
additional gradient field, and that dependence agreed with
the expected value, if we assumed a natural component of
the gradient field error.

When the injected current was high, the tune where
beam loss occurred became higher in terms of an unper-
turbed bare tune. That was the space charge effect on the
condition of beam loss due to a half-integer resonance; we
verified it experimentally for the first time.

The behaviors of beam losses were different between
upward and downward half-integer crossings. When the
half-integer tune was crossed downward, the beam loss
occurred gradually, while it occurred rapidly in upward
crossing. Those behaviors can be understood in terms that
the beam loss weakens the space-charge effect to shift the
depressed tune upward.

III. MULTIPARTICLE SIMULATIONS

A. Simulation method

We employed a one-dimensional multiparticle simula-
tion with space-charge effects in order to understand the
results of the resonance-crossing experiments. Because of
the horizontal multiturn injection and anisotropic aperture
of a vacuum chamber at quadrupole magnets, the HIMAC
beam has about 20 times larger emittance in horizontal
space compared with the vertical space. In such a beam,
the vertical self-field is almost independent of the horizon-
tal position. In addition, coupling between the horizontal
and vertical motions must be small because of the asym-
metric tunes. Therefore, we separated the vertical motion
from the horizontal motion, as if the beam has an infinite
horizontal beam size with a uniform density. That is called
the sheet beam approximation.

As a model of the HIMAC synchrotron, we used a lattice
with 12 FODO cells of equally spaced magnets and two
additional magnets as QDS. The QDS magnets are located
at the middle points of the QD and QF magnets. Because
the length of the magnets was negligible, we took the thin-
lens approximation.
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In order to simplify the equation of motion, we defined
the normalized coordinates of longitudinal �s� and trans-
verse �y� directions by

ś �
48

2pR
s , (20)

ý �

s
48

2pREy
y , (21)

respectively, where 2pR � 129.6 m is the circumference
of the HIMAC synchrotron, 48 is 2 times the number of
focusing quadrupole magnets, and Ey � 2.0p mm mrad
is the vertical rms emittance of a HIMAC beam in the ab-
sence of a perturbation from the QDS magnets. In this
scale, the circumference becomes 48 and the initial emit-
tance becomes unity. Hereafter, we use those coordinates,
written as s-y for ś-ý.

The equation of motion in the drift space between mag-
nets is

y00 � 6
p

3Kscn�y� , (22)

where Ksc � 2pN1r0�
p

3 b2g3 is the parameter of space-
charge forces, n�y� is the fraction of particles inside 6y,
and N1 is the density in the horizontal plane. The dual sign
in Eq. (22) is positive when y . 0 and negative otherwise.
At the location of quadrupole magnets, an impulse of Q2

was interpolated on y0 twice (to monitor the coordinates
of particles at the center of magnets) without changing y.
The parameter 2Q2 represents the field gradient of the main
�2Q2

q� or error �2Q2
e � magnets, and is given by

2Q2 �
2pR
48

1
B0r

µ
≠Bx
≠y

∂
D� , (23)

where D� is the length of those magnets and B0r is the
rigidity of a beam. In dynamic resonance crossing opera-
tions, the strength of the main magnets �Qq� was varied in
a linear function of the revolution number. Once a particle
exceeds the aperture limit �ylim�, it should be removed.

The initial state of macroparticles was specified by the
number of macroparticles �Np�, Twiss parameters �a, b�
at s � 0, mismatch parameter �Xmis�, and a distribution
type— uniform (UN) or parabolic (PA) distribution. In
the case of a�0� � 0, b�0� � 1, and Xmis � 1 (no mis-
match), our distribution function can be written as shown
in Table IV. A general expression can be obtained from
those normalized distributions by the transformationµ
y
y0

∂
�

µ
cosf 2 sinf

sinf cosf

∂ µ
Xmis�F1 0

0 1�F2

∂ µ
y
y0

∂
norm

,

(24)

where

F1 �
q

g cos2f 1 2a sinf cosf 1 b sin2f , (25)

F2 �
q

g sin2f 2 2a sinf cosf 1 b cos2f , (26)
044201-7



PRST-AB 5 TOMONORI UESUGI, SHINJI MACHIDA, AND YOSHIHARU MORI 044201 (2002)
TABLE IV. Normalized expressions of distribution functions
in our simulation. The symbols UN and PA stand for uniform
and parabolic distributions, respectively. f�r� is the density in
phase space as a function of radius r2 � y2 1 y0 2, and p�y� is
the projection on real space.

Symbol f�r� p�y� ymax

UN 1
6p

1p
12r2�3

1
2
p

3

p
3

PA 1
3p �1 2 r2�6� 8

3
p

6 p
�1 2 y2�6�3�2 p

6

f �
1
2

tan21 2a

g 2 b
, (27)

and

g �
1 1 a2

b
. (28)

The Twiss parameters are evaluated by solving the enve-
lope equation, which is described in the next subsection.

In the simulation, once per turn we recorded the second
moments of the particle distribution and the coordinates of
some particles that we chose, at the point corresponding
to s � 0. The coordinates of all particles were recorded
every 2500 turns. The incoherent tune of a particle at the
Nt th turn was obtained by picking up the peak frequency
of the spectrum,

Aj�n� �

É
Nt1dNt�2X
k�Nt2dNt�2

yj,k exp�2pink�

É2
, (29)

where yj,k is the coordinate of the jth particle at the kth
turn and dNt is the turn number used to evaluate the tune.
The assignment of tunes for a peak frequency has the am-
biguity of the integer part. For example, a particle with
tune n � 3.6 has peaks on its spectrum at n � N 6 0.4.
Since the operating points were very close to 3.5 in our
case, the integer part of 3 was chosen. Whether the tune is
higher or lower than 3.5 was judged by the phase relations
between yj,k and y0j,k , checking the signs of

Dinc � yj,ky
0
j,k11 2 yj,k11y

0
j,k . (30)

When Dinc . 0 �Dinc , 0� for the majority of k, we took
4.0 . nj . 3.5 �3.5 . nj . 3.0�. On the other hand, the
quadrupole mode coherent tune is obtained by the track of
ỹ. The coherent spectrum is

A�n� �

É
Nt1dNt�2X
k�Nt2dNt�2

ỹk exp�2pi2nk�

É2
. (31)

In this case, the phase relation between ỹ and �yy0� is used
to choose the region of a coherent tune. The definition of
the determinant is

Dcoh � �� ỹk12 2 ỹk11� 2 � ỹk11 2 ỹk��
3 ��yy0�k11 2 �yy0�k� . (32)

Using the histogram of the real-space distribution, we
defined the 99%, 90%, and 75% beam sizes, inside which
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those amounts of particles exist. The stepwise distribution
function of the histogram data was used directly without
smoothing it. We also recorded those beam sizes every
turn.

B. Numerical solution of the envelope equation

The envelope equation corresponding to Eq. (22) is

ỹ00 2
1
ỹ3 �

�
p

3 yKscn�y��
ỹ

. (33)

According to Sacherer [11] the right-hand side of Eq. (33)
nearly equals Ksc independent of the distribution; we thus
used this replacement. We integrated the above equa-
tion to find a matched solution, using the fourth-order
Runge-Kutta method [18] for ỹ and ỹ0. An impulse of
62Q2ỹ was applied on ỹ0 at the magnets. We required a
matched solution in which the change in both ỹ and ỹ0 in
one revolution was within 0.001%. Because the matched
solution, written by ỹm�s�-ỹ0m�s�, is related to the Twiss
parameter,

a�s� � 2ỹm�s�ỹ0m�s� , (34)

b�s� � ỹ2
m . (35)

The betatron tune can be calculated by

n �
1

2p

I ds
ỹm�s�2

, (36)

where the nonlinearity of the space-charge field is ne-
glected. In a beam with a general distribution, the tunes of
individual particles are spread around the above value.

C. Simulation parameters

Table III lists the simulation parameters together with
the experimental parameters for IQDS � 22 A. In order
to save calculation time, the initial tunes were chosen to be
nearer to the half-integer than in the actual experiments.
In addition, the ramping rate of the defocusing magnets
was 10 times larger than in a simulation of the downward
resonance approach. Similar simulations with more than
10 times larger ramping rate were also performed to verify
that the rms beam size depends only on the tune, regardless
of its ramping rate.

At first, the unperturbed bare tune �n0� is related to Qq
as

2 cos
2pn0

12
� tr�MOMDMOMF�

� tr

∑µ
1 2
0 1

∂ µ
1 0

2Q2
q 1

∂ µ
1 2
0 1

∂

3

µ
1 0

22Q2
q 1

∂∏
, (37)

whereMF andMD are the transfer matrices of the focusing
and defocusing magnet and MO is that of the drift space
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between them. We calculated Eq. (37) to find that it can
be approximated by a linear equation,

n0 � 15.8032Qq 2 6.4530 , (38)

in the region 3.45 , n0 , 3.55 of interest. We used
Eq. (38) to evaluate the initial values of Qq and dQq�dNt .

If a field gradient error �Qe� exists, the tune is shifted
from the unperturbed one �n0�, or the oscillation diverges
when n0 is in the half-integer stop band. The relation
between the stop band half-width �dn�2� and Qe is

dn

2
�

1
4p

be2Q
2
e2 , (39)

where be is the unperturbed betatron amplitude evaluated
at the error magnets. The value of be was obtained by the
matched solution of the envelope equation to be 2.84 6

0.005 for 3.49 , n0 , 3.52. Equation (39) was used to
determine the value of Qe corresponding to the given stop
band width.

We evaluated the value of Ksc to induce the same
quadrupole mode tune shift as in the experiments. Fig-
ure 7 shows the depressed tunes for Ksc � 0.0014 and
0.0005, calculated by Eq. (36) with the matched rms
envelope. The tune shifts were 6.6 times Ksc in both
cases. In a sheet beam, the coherent quadrupole mode
tune shift is 3�4 times the incoherent one, so that

Dnq

2
�

3
4

3 6.6Ksc . (40)

We took Ksc � 0.001 187 for the downward and 0.001 319
for the upward crossing simulation, which corresponded to
Dnq�2 � 0.0059 and 0.0066, respectively.

According to an estimation from the quadrupole mode
tune shift, the vertical rms emittance in the absence of
perturbation is 2.0p mm mrad. Because we took a vertical
aperture limit of 22 mm, while taking account of a 10 mm
COD, the parameter ylim was 10.

The integrated distribution function ���n�y���� was calcu-
lated by dividing the vertical space �y� in Nd and counting
the number of macroparticles within every division.

We divided the vertical space �y� into 30 parts to calcu-
late the integrated distribution function ���n�y����. The value
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FIG. 7. Betatron tune in the presence of (A) gradient error field
or (B) space-charge field.
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of n�y� between grid points was smoothly interpolated
with a quadratic function. Since the minimum value of
the beta function is 1, a transverse size of a beam with
parabolic distribution is larger than 3.6 times the division
size.

D. Simulation results

First, we show the results of a simulation without any
space-charge effects �Ksc � 0�. In this case, the equation
of motion for all particles is linear and all particles have
the same tune regardless of the amplitude, beam size, or
distribution.

Figure 8(B) shows the rms beam size at s � 0 every
turn. The resonant growth can be seen in both sides
of the half-integer tune. The matched solution of enve-
lope oscillation, shown by the dashed line, agrees with
the simulation result as a function of Qq. This means
that the operation with changing the tune has been done
adiabatically.

The quadrupole mode coherent tune and the tunes
of five particles with different amplitudes (emittances)
were calculated with a 1000-turn Fourier transformation.
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FIG. 8. (Color) Simulation results without the space-charge ef-
fect. The betatron tunes are varied to cross the half-integer reso-
nance upward or downward. The horizontal axis corresponds to
the bare tune by Eq. (38). (A) Ratio of survival macroparticles.
(B) rms size of simulated beam (solid line) and those obtained
by the envelope equation (dashed line). (C) Observed tunes: the
solid circles show the half of quadrupole mode coherent tune
and the white characters show the tunes of single particles. The
dashed line is an unperturbed tune, which is identical to n0.
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Figure 8(C) shows that they all agree with the tune calcu-
lated from the matched solution of the envelope equation
by Eq. (36). The stop band width is 0.01, as expected.

Figures 9 and 10 show the simulation results with the
space-charge effect for a uniform and a parabolic beam,
respectively. As shown in Figs. 9(A) and 10(A), the beam
loss occurred gradually when the tune crossed the half-
integer downward, and rapidly in the other direction.
These characteristics are qualitatively consistent with our
experimental results.

According to Figs. 9(B) and 10(B), the rms beam size
at each time agreed with the matched solution of the en-
velope equation with a fixed external field strength there.
The growth of beam size before starting the beam loss
was gradual and rapid in the downward and upward half-
integer crossings, respectively. Those characteristics of
beam-size growth can be understood by the detuning ef-
fect depending on the beam size. If the beam size grows,
the space-charge tune shift decreases and the depressed
tune becomes higher. Therefore, the beam size gradually
grows in the downward approach, keeping the depressed
tune away from the half-integer value. On the other hand,
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FIG. 9. (Color) Simulation results of resonance crossing, tak-
ing account of the space-charge effect. The distributions of
macroparticles are uniform. (A) Ratio of the survival macro-
particles. (B) The rms (lower) and maximum (upper) beam
sizes. The dashed line shows the matched solution of envelope
equation. (C) Observed tunes: the solid circles show the half
of the quadrupole mode coherent tune and the white characters
show the tunes of five single particles, whose initial amplitudes
are 1–2 times the rms beam size. The dashed line is an unper-
turbed bare tune (n0).
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the beam size grows rapidly in the upward crossing be-
cause the beam-size growth accelerates the depressed tune
approaching the half-integer value.

Figures 9(C) and 10(C) show the observed tunes. For
a uniform beam, the tunes of single particles agreed with
those calculated by Eq. (36), as expected. For a parabolic
beam, those tunes were distributed around it. In the down-
ward half-integer crossing, the decrease in tune was de-
celerated compared with the zero-current beam, and the
depressed tunes of the test particles never cross the half-
integer. This is the detuning effect due to beam-size
growth.

Figures 9(B) and 10(B) also show the maximum beam
sizes, ymax. They were calculated by

ymax � Ỹm
y99%�0�
yrms�0�

, (41)

where Ỹm is the maximum value of the matched beam
rms size with respect to s; [y99%�0�, yrms�0�] are the 99%
and the rms beam sizes observed in a simulation at s � 0.
The maximum beam sizes are different between a uniform
beam and a parabolic beam, which causes the difference
in the beam-loss threshold between distributions.

It can be said that the threshold of the beam loss is
independent of the aperture limit or COD in the upward
half-integer crossing, because of the rapid characteristic of
the beam-size growth. On the other hand, the threshold
of beam loss depends directly on them in the downward
half-integer crossing, where the beam size grows gradually.
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FIG. 10. (Color) Same as Fig. 9 but for a parabolic beam.
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FIG. 11. (A) Ratio of 99%, 90%, and 75% beam sizes relative
to the rms size in a simulation with a large aperture limit. The
initial distribution is parabolic. The absolute values of the rms
sizes are also shown. (B) Fraction of the survival macroparticles.

In order to observe the change in the distribution with
beam-size growth, we ran another simulation with a larger
aperture limit (and a little larger intensity) starting with a
parabolic distribution. Figure 11 shows the ratio of 99%,
90%, and 75% beam sizes to the rms beam size. In down-
ward crossing, the ratio of 99% to the rms beam size began
to decrease after the growth of the rms beam size exceeded
�20%�n0 � 3.513�. That means, those particles with a
large amplitude contribute less to the growth of the rms
beam size. On the other hand, that ratio became larger in
the upward crossing.

E. Summary

We developed a multiparticle simulation on the approxi-
mation of the sheet beam and thin lens and reproduced the
experiments of the half-integer tune crossing. The behav-
iors of the beam loss were gradual in the downward and
rapid in the upward cross, as in the experimental results.

The beam loss as well as the growth of the beam size was
gradual in the downward and rapid in the upward cross-
ings. That behavior of the beam-size growth was the same
as the results from Sacherer’s analysis, which is based on
an approximation of uniform external focusing. It can be
explained by a decrease in the space-charge effect due to
044201-11
the beam-size growth itself. The rms beam size agreed
with the matched solution of the envelope equation inde-
pendent of the beam distribution, even if we took account
of alternating-gradient focusing. Though the rms beam
size is independent of the beam distribution, the threshold
of the beam loss depended on it because the condition of
beam loss relates to the full beam size.

The change in distribution with the beam size growth
was observed in a simulation with a large aperture limit,
starting with a parabolic distribution. In the case where
the tune approached the half-integer downward, the charge
density at the beam center became thinner. On the other
hand, the full beam size grew rather than the rms beam
size.

IV. DISCUSSION AND CONCLUSION

As described in Sec. II, we measured the beam current
in the HIMAC synchrotron when the vertical bare tune
approached a half-integer by changing the strength of the
defocusing quadrupole. With exciting the gradient error
field as a source of the half-integer resonance, beam losses
due to that resonance were observed there. In order to un-
derstand the experimental results, the beam losses in the
experiments were reproduced in a one-dimensional multi-
particle simulation with a thin-lens focusing model, as
described in Sec. III.

As shown in Fig. 12, the results from both the experi-
ments and simulations show that the beam loss occurred
gradually when the tune approached a half-integer down-
ward, and rapidly in the other direction. In addition, com-
paring Figs. 12(A) and 12(B), the bare tune where beam
loss occurred in such processes was shifted higher when
the initial beam intensity was high. In other words, the
space-charge-induced tune shift changed the tune where
a beam loss occurs due to the half-integer resonance in a
synchrotron. This fact was verified experimentally in this
work for the first time.

In the simulation, the beam size near a half-integer tune
was observed at the center of a defocusing magnet ev-
ery turn. The result showed that the growth of the beam
size, in addition to the beam loss, occurred gradually when
the tune crossed a half-integer downward, and rapidly
when it crossed upward. Those characteristics agree with
Sacherer’s analysis. When the betatron tune decreases to
meet a half-integer, a growth of the beam size occurs and
the charge density becomes lower. Thus, the depressed
tune stays away from a half-integer. This feedback sta-
bilizes the beam above the zero-current stop band. After
some particles of a beam reach the aperture of the vacuum
chamber, beam loss starts, which lowers the charge density
to keep the depressed tune away from the half-integer. This
is why the beam loss and growth occurred gradually above
the half-integer tune. On the other hand, when tune ap-
proaches a half-integer upward, both the beam-size growth
and the beam loss make the depressed tune approach the
044201-11
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FIG. 12. Comparison of the beam loss waveform between the
simulation (thin lines: UN for uniform beam and PA for para-
bolic beam) and experimental results (thick jagged lines). In
(A), the vertical axis for the simulation data is scaled so as to
have the same coherent quadrupole mode tune, using Dnq�2 �
0.0028�1010 ppp, while it is arbitrary in (B).

half-integer more, so that the beam is lost rapidly. From
the characteristics of the beam-size growth, it can be said
that the tune where the beam loss occurs directly depends
on the aperture limit in the downward half-integer cross-
ing, and is the same in the upward crossing whether the
aperture limit is large or small.

We numerically solved the envelope equation for the rms
beam size with any boundary condition in which the rms
size and its derivative do not change after a revolution.
That is called a matched solution. The rms size in the
simulation, when it was less than the aperture limit, was in
good agreement with the matched solution of the envelope
equation, independent of the distribution (Figs. 9 and 10).
In addition, the tunes of single particles in a uniform beam
agreed with those calculated from the matched solution.
Thus, the growth of the rms beam size due to the half-
integer resonance can be estimated by solving the rms
envelope equation. It is independent of the distribution.
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On the other hand, the beam loss is not determined by
the rms beam size, but by the full size, so that the tune
where the beam loss occurs depends on the distribution.
Actually, the tune where the beam loss occurred differed
between a uniform beam and a parabolic beam in the simu-
lation. Therefore, we must know the distribution, or full
beam size, to estimate the tune where beam loss occurs ac-
curately. According to Fig. 11, the ratio of 99% to the rms
beam sizes is constant unless the rms size grows more than
�20% of the initial value (far from the half-integer tune)
when the bare tune approaches the half-integer downward.

If the aperture limit exists near the full beam size, beam
loss occurs when the beam size growth is still very small.
In such a situation, the full beam size is expected to be
proportional to the rms size until the beam loss begins.
Therefore, if the distribution of injected beam is known,
the condition of beam loss can be estimated from the initial
value of the full size �Y �, the rms beam size � ỹ�, aperture
limit �Ylim�, and the maximum value of rms beam size
� ỹmax� calculated by the envelope equation as a function
of the bare tune and the beam intensity. That is, the beam
loss occurs when

Ylim ,
Y
ỹ
ỹmax (42)

is satisfied.
If the aperture is sufficiently large, we must take into

account the change in the distribution in order to estimate
the tune where beam loss occurs. In a simulation of the
downward half-integer tune approach, the charge density at
the beam center decreases faster than that of the beam tail,
so that the full beam size does not grow in proportion to the
rms beam size. Thus, the tune where the beam loss occurs
becomes closer to the half-integer tune than evaluated by
Eq. (42). In the upward approach, the full beam size grows
faster than does the rms size, where the beam loss occurs
far from the half-integer.

The change in the distribution can be understood by the
tune of individual particles, depending on their amplitudes,
where “amplitude” means that of real space oscillation,
not the phase-space area (emittance). In the downward
approach to a half-integer tune, the tunes of the individual
particles with small amplitude are closer to the half-integer,
so that they grow faster than the others and the density at
the beam center becomes low faster than the tail density.
However, as the simulation showed in Fig. 11, this process
does not necessarily cause beam loss because the tunes
of those particles increase with their amplitude’s growth.
This is why the incoherent model of beam loss is not
self-consistent. Figure 13 shows that particles with small
amplitude contribute to the growth of the rms beam size
more than large-amplitude particles. In Fig. 13, the Twiss
parameters and emittances of four particles are calculated
as functions of the bare tune by fittting the phase-space tra-
jectory over 500 turns to gy2 1 2ayy0 1 by02 � e. The
growth of beta functions is faster for those particles with
044201-12
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FIG. 13. Twiss parameters and emittances of four macro-
particles, which were calculated by fitting the 500 turn phase
trajectory to gy2 1 2ayy0 1 by0 2 � e. The solid line corre-
sponds to a macroparticle with the lowest initial emittance.

a small emittance than for those with a large emittance.
In the upward approach, the particles with large ampli-
tude have tunes closer to the half-integer. Since the beam
size growth occurs rapidly to cause a rapid beam loss, the
change in the distribution is not important in this case.

In summary, we experimentally investigated the behav-
ior of a beam near a half-integer tune with the help of a
multiparticle simulation. The results showed that:

(i) The space-charge effect on the condition of half-
integer resonances was observed experimentally for the
first time. In the presence of the space-charge effect, the
bare tune where beam loss occurred due to the half-integer
resonance became higher.

(ii) The beam size grows gradually when the tune ap-
proaches a half-integer value downward. Therefore, the
tune where beam loss occurs due to the half-integer reso-
nance depends directly on the aperture in such a process.
On the other hand, the beam size grows rapidly in the up-
ward approach.

(iii) An analysis of a half-integer resonance using the
rms envelope equation gives a fairly good explanation to
an actual beam in a synchrotron, where the external field
employs an AG focusing scheme.

(iv) When the tune approaches a half-integer value
downward, the beta function becomes larger, especially
for particles with a small emittance, whose depressed
tunes are nearer to the half-integer than the other particles.
This is an incoherent picture. However, the growth of the
beta function for those particles is limited because of the
detuning effect.
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