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Simulations of three one-dimensional limits of the strong-strong beam-beam interaction
in hadron colliders using weighted macroparticle tracking
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We develop the method of weighted macroparticle tracking (WMPT) for simulating the time evolution
of the moments of the phase space densities of two beams which are coupled via the collective (strong-
strong) beam-beam interaction in the absence of diffusion and damping. As an initial test we apply this
method to study thep mode and thes mode in three different 1D limits of the beam-beam interaction.
The three limits are flat beams and transverse motion in the direction of the small width, round beams,
and flat beams and motion in the direction of the large width. We have written a code (BBDeMo1D) based
on WMPT, which allows testing of all three limits and is suited for extension to 2 degrees of freedom.
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I. INTRODUCTION

At high energy hadron colliders the need for hig
luminosity requires highly focused intense beams at
interaction points (IPs). These high current densities im
a strong interaction of both beams. Therefore the ph
space densities of both counterrotating beams bec
strongly coupled. Under simplifying assumptions, th
evolution may be described by an integro partial diffe
ential equation (PDE), the Vlasov equation (VE). Vario
methods can be used to simulate the Vlasov evolut
of the phase space densities numerically. The idea
tracking phase space densities to follow beam evolut
in nonlinear fields was proposed by Kauffmannet al. [1].
Here we study a method that is based on comput
the expectation values of functions on phase space
the time dependent density by “weighted macroparti
tracking” (WMPT). This method, to be explained in mo
detail in Sec. II B, has the great advantage that it sho
be easy to implement in every reasonable multiparti
tracking code.

In the strong-strong treatment, the collective force b
tween the two beams depends on the phase space den
Moreover, the relative strength of the beam-beam inter
tion depends on the particle species, the beam ener
the beam emittances, the optics at the interaction regi
the number of IPs, and the phase advance between the
Here we study simplified models of the strong-strong c
for head-on collisions in 1 spatial degree of freedom a
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absorb all parameters of the beam-beam interaction i
the linear beam-beam tune shift parameterj. We assume
that a self-consistent common closed orbit at the IP exi
and that it does not change with time.

Assuming bunches of length large compared to th
transverse dimensions but still small compared to the b
functions at the IPs and no crossing angle at the IPs,
beam-beam interaction is intrinsically 2D, i.e., acts on
4D phase space. Nevertheless, as a first step one m
look at various 1D limits which require less computin
time than 2D problems. Typically three different limit
from 2D to 1D can be considered: (i) flat beam and m
tion in the “thin” direction, (ii) an axially symmetric beam
and motion in a “radial” direction, and (iii) a flat beam an
motion in the “thick” direction. The first limit [2] and the
third limit [3,4] have been studied analytically and to som
extent numerically, and the second limit, while turning o
to be basically inconsistent, leads to a beam-beam fo
that is of the same form as the one used in weak-stro
simulations for round beams. When studying the centro
motion of the phase space densities, two modes, the s
(s mode) and the difference (p mode), have been previ-
ously calculated with different characteristic frequencie
depending on the 1D model [2–4] or the 2D aspect ra
[5,6]. One task of the initial stage of this study is to iden
tify these two modes and see if a fully nonlinear numeric
treatment yields results similar to the analytic approxim
tions made in [2–4]. Moreover, the 2D simulations fo
equal vertical and horizontal beam sizes performed in
can be compared to some extent to the axially symme
limit of our 1D simulations.

Flat beams seem more suitable for the description
e6 beams. On the other hand, the assumption of ax
symmetry will, in the following, turn out to be too strong
© 2002 The American Physical Society 024401-1
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under the strong-strong premises. Therefore, this first part
of our study can be seen only as a starting point for fur-
ther investigations. For this purpose, one of the authors
has developed a numerical code (BBDeMo1D) that allows the
simulation of all three above cases, is easily extended to
2D, and offers a wide variety of diagnostic features.

Section II describes the model of the ring (rotate-kick)
we will be using throughout this paper and the simulation
method (WMPT). Section III defines and describes the
three 1D limits. In Sec. IV the accuracy of the method is
analyzed in two ways. First, the stability of an equilibrium
solution of the linearized beam-beam force under the fully
nonlinear evolution is discussed. Second, the effect of
the redistribution of the trajectories after many turns on
the sampling of the phase space is analyzed. Section V
contains results of our simulations with the three limits;
in particular, we calculate the dipole mode spectra of the
beams and look for the p and s modes. We examine the
changes in these spectra as the tunes of the two beams
are separated and also as the difference in beam-beam
parameters is varied. Section VI gives a short summary
and outlook. Appendices A and B discuss technical details
of the simulation for one of the three limiting 1D cases,
and Appendix C gives a summary of short definitions of
the symbols and conventions used in this paper.

II. THE ROTATE-KICK MODEL

This preliminary study is restricted to head-on interac-
tions between two short, counterrotating bunches at a given
IP and a linear lattice elsewhere.

The VE that governs the beam-beam interaction is for-
mally symmetric in the two densities. Therefore we will
use the notation that if x represents some quantity of “one
beam” , then x� represents the same quantity of “ the other
beam.”

Let cu��z� � cu�q,p� be the phase space density at azi-
muth u [ �0, `� and at the phase space point �z � �q,p�
and ru�q� :�

R
� cu�q,p� dp the density in configuration

space, both normalized so that
R

�2 cu d2z �
R

� ru dq �
1 for all u. Let uc denote the azimuth at the collision point.
Then the one turn map for turn m to m 1 1 at the azimuth
u1
c 1 m2p directly after the IP is

�Tm � �K�r�
u2
c 1m2p � ± �R , (1)

where �K�r�
u2
c 1m2p� is the map for the nonlinear beam-

beam kick due to the collective force which depends on
the spatial density r

�
u2
c

of the other beam directly before
the IP and �R��z� � R �z, R [ SP�2� is the linear map from
u1
c to u2

c of the rest of the lattice. We will often call this
the rotate-kick model. In the following we will suppress
the azimuth advance m2p from u0 � 0 to m2p in the
subscripts of r and c and abbreviate u2

c 1 m2p with u2
c

where the possible variation from turn to turn is implicitly
understood. The beam-beam kick is explicitly
024401-2
�K�r�
u2
c

� �q,p� �

µ
q

p 1 K�r�
u2
c

� �q�

∂
,

K�r�
u2
c

� �q� :� z
Z

�
G�q, q0�r�

u2
c

�q0� dq0,

(2)

with some model dependent kernel G�q,q0� and some
strength parameter z . It seems reasonable to assume that
a0 � 0 at the IP for the unperturbed linear lattice, and
hence

R �

µ
cos2pQ0 b0 sin2pQ0

2b
21
0 sin2pQ0 cos2pQ0

∂
. (3)

We can now precisely define our model for the evolution
of the phase space density c . Because the one turn map
�Tm is symplectic, conservation of particles gives

cu1
c 1�m11�2p ��z� � cu1

c 1m2p � �T21
m ��z�� . (4)

When we discuss the accuracy of WMPT we mean relative
to the density as defined by Eq. (4). This can be viewed
as the solution of the associated VE to be discussed in the
next section. However, the VE is not well defined with a
d-function kick as we mention in the next section.

Before proceeding we discuss the beam-beam tune
shift parameter constructed by linearizing the beam-beam
kick. The spatial coordinates of the two beam centroids
are �q� �

R
� qr dq and �q�� �

R
� qr� dq. One may

linearize the beam-beam kick around q � 0 for head-on
collisions (�q� � �q�� � 0) with symmetric densities
[ �K�r�

u2
c

� �0,p� � 0] yielding �K�r�
u2
c

� ��z� � K �z 1 O��z 2�,
where

K :�

µ
1 0

k�r�
u2
c

� 1

∂
, k�r�

u2
c

� :�
d
dq

K�r�
u2
c

�
Ç
q�0

.

(5)

The Jacobian of the one turn map in Eq. (1) is then T �
KR , and a stable solution of the linearized motion exists
if and only if jcos2pQ0 1

kb0

2 sin2pQ0j , 1. Then, us-
ing the Courant-Snyder functions of the linearly perturbed
lattice a, b, g and the linearly perturbed tune Q, the Ja-
cobian of the one turn map can be brought to the standard
form

T �

µ
cos2pQ 1 a sin2pQ b sin2pQ

2g sin2pQ cos2pQ 2 a sin2pQ

∂
,

(6)

where

Q �
1

2p
arccos

µ
cos2pQ0 1

kb0

2
sin2pQ0

∂

� Q0 2
kb0

4p
1 O�k2b2

0� , (7)
024401-2
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b � b0
sin2pQ0

sin2pQ
, a � 2

k

2
b ,

g �
1
b

1
k2b

4
.

(8)

This analysis contains the parameter k which depends
on r

�
u2
c 1m2p which in principle must be assumed to be

changing from turn m to turn m 1 1 because of the non-
linear collective beam-beam interaction. Nevertheless, it
gives an intuitive interpretation of the initial strength of
a beam-beam interaction in the sense that the beam-beam
tune shift parameter j is defined by

Qjm�0 2 Q0 � j 1 O�k2b2� ,

j :� 2
k�r�

u2
c

�b0

4p
.

(9)

Note that a positive (defocusing) k, as it is in the case of
pp interactions, results in a negative tune shift parameter.

A. The Vlasov equation

In the absence of damping and diffusion the phase
space densities cu and c

�
u evolve according to the coupled

Vlasov equations

≠uc 1 ≠qc≠pH 2 ≠pc≠qH � 0 , (10)

≠uc
� 1 ≠q�c�≠p�H 2 ≠p�c�≠q�H � 0 , (11)

where

H�c , c�� ��z, �z �, u� � H0��z, u� 1 H�
0 ��z �, u�

1 d2p�u 2 uc�
3 ���H1�c�

u2
c

� ��z� 1 H�
1 �cu2

c
� ��z �����

(12)

is the Hamiltonian including the collective force and d2p

is the 2p-periodic d function assuming one IP. Note that
H1 depends on the densities directly before the collision.
This Hamiltonian is equivalent to the rotate-kick model
(4) we are going to use. If H1 contained cu (or c

�
u), the

resulting VE would not be well defined since the d func-
tion would be multiplied with ≠qH1, which is discontinu-
ous at u mod 2p � uc. However, in a real accelerator
the beam-beam interaction takes place over a small finite
range in azimuth and the d function is replaced by a regu-
lar distribution in u. A finite interaction length would then
lead to a thick-lens representation of the beam-beam in-
teraction. Moreover, note that the asterisks on H0 and H1
reflect the fact that in our model “ the other beam” may
have a different unperturbed tune Q�

0 and beam-beam tune
shift parameter j�.

In principle, one needs to solve the VE in order to ob-
tain complete knowledge of the coupled multiparticle sys-
tem. Numerous analytical approximations and numeri-
cal simulation methods exist and have been applied to
the strong-strong beam-beam interaction. We mention
024401-3
only some of the numerical approaches: (i) standard PDE
solvers (divided difference schemes), (ii) particle-in-cell
(PIC) codes [7,8], (iii) the Perron-Frobenius (PF) operator
method [9,10], and (iv) weighted macroparticle tracking
(yields moments of the distribution). The first two meth-
ods are well known and will not be discussed here.

The PF operator method employs the conservation of the
phase space density along trajectories according to Eq. (4).
Given a map �T , the action of the PF operator � on a density
c is simply

�c��z� � c��� �T21��z���� , (13)

and thus Eq. (4) yields

cu1
c 1�m11�2p � �cu1

c 1m2p . (14)

The action of � is completely defined by the map �T . Now
the densities and � are discretized on a square n 3 n grid
in phase space, the density being defined at off-grid points
by local polynomial interpolation. The kick is calculated at
grid points from values of the density at grid points. Note
that the kick �K depends only on q and that the kernel K
acts on the spatial density r�q� so that the computation
of the kick for all N :� n2 grid points is obtained by
the multiplication of an n vector with an n 3 n matrix
and thus is an O�N� operation. Then cu1

c 1m2p ��� �T21
m ��z����

is computed for grid points �z by interpolation to give an
update of c on grid points. Note that the interpolation
implies an intrinsic smoothing of the representation of the
density on the grid at every step. The PF method has been
shown to be stable for the Vlasov-Fokker-Planck equation
(using operator splitting to handle the Fokker-Planck part)
in beam physics [9,10]. Moreover, its main premise, the
conservation of the density along trajectories, is also a key
concept for the method of WMPT.

B. Weighted macroparticle tracking

Let f��z� be a (integrable) function on phase space. Then
its average at azimuth u is defined as

�f�u :�
Z

�2
f��z�cu��z�d2z

�
Z

�2
f��z�c0��� �M21

u ��z���� d2z

�
Z

�2
f��� �Mu��z����c0��z� d2z , (15)

where �Mu is the map from 0 to u, and where in the third
equality we used the fact that the determinant of the Jaco-
bian of a symplectic map is 1. In this study f is chosen
to be either the (sufficiently regular) kernel of the col-
lective force fq��z0� :� G�q, ��z0�, where the projector �
is defined via ��z :� q, or a �y 1 w�th order monomial
fy,w��z� :� qypw of the beam distribution. In the first case
the average �fq�u2

c
is the beam-beam kick exerted by the

“unstarred” beam on the “starred” beam, and, in the second
024401-3
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case, �fy,w�u is a �y 1 w�th order moment of the phase
space distribution of the unstarred beam. The averages
�fq��

u2
c

and �fy,w��
u are analogously defined. Equation (15)

means that, in order to compute the expectation value of f,
it suffices to compute �f ± �Mu�0 or, algorithmically speak-
ing, for some representation of c0 on a (not necessarily
square) initial mesh 	�zij
 1#i#nq

1#j#np
, an approximation of �f�u

is given,

�f�u �
nq ,npX
i,j�1

wijc0��zij�f��� �Mu��zij���� , (16)

where the wij are the weights of the quadrature formula.
In this study an initially square mesh with nq �

np �: n, qi21 2 qi � Dq, pj21 2 pj � Dp for all
i, j and the Gaussian midpoint rule have been used
so that the quadrature weights are particularly simple:
wij �: w � DqDp . Note that once the total weights

�ij :� wijc0��zij� (17)

are assigned to every trajectory
024401-4
�hij�u� :� �Mu��zij� (18)

starting at �zij , the double index ij can be replaced by one
linear index k since the result of a finite sum does not
depend on the ordering of the terms. This WMPT proce-
dure requires only forward tracking of macroparticles, and
as a by-product to the distribution moments it produces
N :� n2 particle trajectories and the associated Poincaré
sections, etc. Moreover, the conservation of probability is
guaranteed by construction [set f � 1 in Eq. (16)].

It has been shown for an example of the VE taken
from plasma physics [11–13] that, for fixed u, the tra-
jectories obtained by WMPT converge at least linearly in
Dq 1 Dp 1 Du to the exact trajectories of the Hamilto-
nian system Eq. (12). However, the upper bounds on the
error given in [11–13] depend exponentially on u and are
thus not of great use in the case of multiturn tracking.

Finally, it should be mentioned that with WMPT one can
obtain an approximation of the phase space density. Let
	�zmn :� �qm,pn�
 1#m#ñqøn

1#n#ñpøn
be a uniform rectangular mesh

and
xmn��z� :�

(
1, qm 2

Dq

2 , q # qm 1
Dq

2 and pn 2
Dp

2 , p # pn 1
Dp

2 ,
0, otherwise,

(19)
be the indicator function of the rectangular “bins” Rmn :�
�qm 2

Dq

2 , qm 1
Dq

2 � 3 �pn 2
Dp

2 ,pn 1
Dp

2 �. These in-
dicator functions define a partitioning of unity, in the sense
that xmn $ 0 and

P
m,n xmn��z� � 1 for all �z. Then

�xmn��z��u �
Z
Rmn

cu��z� d2z �
Z

�2
xmn��z�cu��z� d2z

�
X
i,j

�ijxmn��� �hij�u���� (20)

is an approximation of cu on the mesh defined by 	�zmn
.
The effective smoothness of this approximation depends
on the average number of macroparticles in each bin.
Therefore the mesh defined by �zmn has to be coarser than
the initial mesh defined by �zij . In Sec. IV we will make use
of this mesh projection to qualitatively discuss the stability
of WMPT. Note that instead of the indicator function xmn

we could have used any other partitioning of unity that re-
flects the mesh structure.

Application of WMPT to the rotate-kick model

Let �hij���u1
c 1 2p�m 2 1���� and �h�

ij���u1
c 1 2p�m 2 1����

be given. Then �hij�u2
c 1 2pm� � R �hij���u1

c 1 2p�m 2

1���� and �h�
ij�u2

c 1 2pm� � R� �h�
ij���u1

c 1 2p�m 2 1����
give the phase space position of the �ij�th particle of each
beam just before the kick. The kick on a particle of the
unstarred beam at position qij :� � �hij�u2

c 1 2pm� is
given by
K�r�
u2
c 12pm� �qij� � z

Z
�2
G�qij , ��z0�c�

u2
c 12pm��z0� d2z0 � z

Z
�2
G�qij , ��z0�c�

0 ��� �M�21
u2
c 12pm��z0���� d2z0

� z
Z

�2
G���qij , � �M�

u2
c 12pm��z0����c�

0 ��z0�d2z0. (21)

We then approximate the kick by

K�r�
u2
c 12pm� �qij� � K	 �h�
u2

c 12pm�qij� :� z

nX
k,l�1

G���qij , � �h�
kl�u

2
c 1 2pm������

kl . (22)

The phase space positions after the kick are thus

�hij�u1
c 1 2pm� � �K	 �h�
u2

c 12pm��� �hij�u2
c 1 2pm����, �h�

ij�u
1
c 1 2pm� � �K	 �h
u2

c 12pm��� �h�
ij�u

2
c 1 2pm���� , (23)

where �K	 �h�
u is the kick map (2) with K�r�
u2
c 12pm� replaced by K	 �h�
u2

c 12pm according to Eq. (22).
024401-4
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Note that the kicks must be calculated at N :� n2 posi-
tions qij and that the calculation of K	 �h�
 �q� for fixed q
takes in principle N evaluations of the kernel G�qij , � �h�

kl�
and N multiplications with the total weights �kl . There-
fore the kicks require, in principle, O�N2� flops where N
is the number of macroparticles tracked.

Let Dq � Dp �: D. Then the quadrature error is
bounded by CDsk �Muk, where s depends on the smooth-
ness of the integrand and the order of the quadrature
formula, k �Muk is some derivative norm of �Mu , and C is
a constant independent of D and �Mu . It is to be expected
that k �Muk increases with u and so it is natural to ask
what the optimal D is for a given interval u [ �0, Q�.
Our trajectory calculations indicate that, in a typical setup
as in Sec. V, particles which are started inside 1s0 fill
that region densely. Thus two particles which start 2s0
apart can become close, and this can give a jaggedness to
an initially smooth density [since trajectories carry their
initial density with them; see Eqs. (4), (17), and (18)].

However, the situation is not as bad as it might seem
since we are calculating expectation values which poten-
tially can average out any fast oscillating part present in
�Mu . We are investigating optimal D for fixed Q and will

report that elsewhere.
Finally, we compute phase space averages via

�f�u �
X
i,j

�ijf��� �hij�u���� ,

�f��
u �

X
i,j

��
ijf��� �h�

ij�u���� .

(24)

This is an O�N� calculation and thus is not an important
factor in the flop count, as long as the flop count of the
kick computation is of higher order in N . The quadrature
error in the calculation of the averages can be discussed as
above; however, the pessimistic view is ameliorated by the
inherent smoothing due to integration.

If the integrand can be guaranteed to be sufficiently mod-
erately varying, WMPT, in contrast to methods that require
an explicit mesh at each time step, has the advantage that
the mesh layout depends only on the initial conditions. As
an example, consider a strictly linear one turn map, in par-
ticular, no beam-beam interaction and an initial beam dis-
tribution with a coherent betatron amplitude with respect
to (w.r.t.) the origin (closed orbit) of, say, xs0 in normal-
ized coordinates. Then in an explicit mesh method one
requires a mesh that is large enough to contain not only
the initial distribution up to some reasonable cutoff (say,
cs0) but to also contain a circle of �x 1 c�s0. Alterna-
tively, if one wants to keep a smaller mesh, one has to re-
compute the mesh every time step or every few time steps.
For the linear case, WMPT has been tested with large ini-
tial coherent betatron amplitudes and an initial mesh cen-
tered around the beam centroid with width cs0. In this
case, WMPT carries its mesh along with the trajectories,
and the moments computed with WMPT were close to
024401-5
those computed analytically using Eq. (4) to a very high
precision.

C. The Gaussian source approximation

In the previous section we saw that WMPT might be-
come time consuming due to the loss of the mesh structure
and inaccurate due to the buildup of rapid variations in
c0��z�f��� �Mu��z����. These rapid variations would be averaged
away in an exact integration but might degrade the accu-
racy of the result of the numerical quadrature. In particu-
lar, errors in the computation of the collective beam-beam
kick can become dangerous since they can corrupt the com-
plete dynamics of the coupled two beam system. There is a
method [14] that smooths the distribution as far as the col-
lective force is concerned and at the same time makes its
computation O�N�. The method simply consists of com-
puting some set of moments 	�qk��

u
 of the actual distribu-
tion and inserting them as parameters in an analytic for-
mula for the beam-beam kick assuming some test density
r̃,

K̃�q; 	�qk��
u2
c


� :�
Z

�
G�q, q0�r̃�q0; 	�qk��

u2
c


�dq0. (25)

The form of the starred test density in the computation
of the collective form stays fixed—only the change of
the parameters reflects the evolution of the density of the
other beam. This method is not completely consistent with
Vlasov-Poisson evolution since, in general, the form of
r

�
u2
c

�q� is different from r̃�q; 	�qk��
u2
c
; 
�. Nevertheless, this

method has the benefit of intrinsic smoothing (with suit-
ably chosen r̃) and allows the simulation of the evolution
with a much larger number of macroparticles at a still rea-
sonable computation time. Even then it is still not clear
which shape r̃ should have, and, in principle, the results
to be presented in Sec. IV suggest that it is not a Gauss-
ian shape. There we will see that under the influence of
the beam-beam force, the initially Gaussian phase space
distributions develop a skewness (third-order centered mo-
ment) which is oscillating around zero but with finite am-
plitude. The core of the density oscillates while the tails
are almost stationary. Obviously, a Gaussian-shaped test
density cannot represent this skewness properly. Recently,
Yokoya [15] showed that a perturbative 2 degrees of free-
dom model approximating the source term in Poisson’s
equation by a Gaussian underestimates the phase space
averaged beam-beam kick. This leads to a too small fre-
quency shift for the antisymmetric dipole mode (p mode).

However, as the starting point for this study, whenever
we approximated the collective kick by Eq. (25), we chose
r̃ to be a Gaussian,

r̃�q; m�, s�� �
1

p
2p s�

e2��q2m��2�2s�2�. (26)

Note that m� and s� are the actual centroid position
w.r.t. the common closed orbit of both beams and width
024401-5
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of the starred beam, respectively. They have to be up-
dated at each bunch crossing. In the following we will call
Eq. (25) with r̃ defined by Eq. (26) the Gaussian source
approximation (GSA). This approximation is also called
the “quasi-strong-strong” or “soft Gaussian” approxima-
tion. We want to stress the point that in the GSA the
evolution of the densities of the two beams is not faked
by some phenomenological evolution law for the parame-
ters m and n of a Gaussian, but they evolve according to
Eq. (4) with a modified collective kick. Only the collective
beam-beam kick is approximated. This method (together
with tracking an initially Gaussian ensemble of macropar-
ticles of identical weight) has been used in 2D to compute
the frequencies of the p and s modes with various aspect
ratios sx�sy [6].

III. 1D MODELS OF THE BEAM-BEAM KICK

As pointed out in the Introduction, one may take at
least three different limits when breaking down the 2D
beam-beam interaction into 1D models.

(i) The Chao-Ruth (CR) limit [2].—The beams at the
IP are assumed to be flat, e.g., sx ¿ sy , and the motion
is studied in the phase plane associated with y,

Kcr�r�
u2
c

� �y� � z
Z

�
sgn�y 2 y0�r�

u2
c

�y0� dy0. (27)

(ii) The axially symmetric (AS) limit.—The beams
are assumed to be round, i.e., sx � sy , and the motion
w.r.t. an arbitrary transverse direction �r� is studied,

Kas�r�
u2
c

� �r� �
z

r

Z r

0
r�

u2
c

�r 0�r 0 dr 0. (28)

(iii) The Yokoya-Koiso-Zenkevich (YO) limit [3,4].—
Again, the beams are assumed to be flat, e.g., sx ¿ sy ,
but the motion in the phase plane associated with x is
studied,

Kyo�r�
u2
c

� �x� � z
Z r

�
u2
c

�x0�
�x 2 x0�

dx0, (29)

where
R

denotes the Cauchy principal value.
Figure 1 shows the three limits of beam-beam kick

K�r� �q� for a standard Gaussian density r�q; 0, 1� and
for z chosen so that the slope at the origin is unity (i.e.,
k�r� � 1).

We note that the Chao-Ruth limit, as well as the Yokoya-
Koiso-Zenkevich limit, seems to be more suited for e6

colliders.
On the other hand, as it will turn out later, the assump-

tion of axial symmetry is too strong and therefore possibly
not a realistic model of two hadron beams coupled by the
collective beam-beam force.

In the following three subsections we will discuss the
three limits in more detail and, in particular, derive the
explicit dependence of the tune shift parameter j on the
strength parameter z [see Eq. (2)] under the assumption
024401-6
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FIG. 1. (Color) The beam-beam kicks Kcr�r� �q�, Kas�r� �q�,
and Kyo�r� �q� for a standard Gaussian r�q; 0, 1�. In all three
cases k�r� is chosen to be 1.

of an initially Gaussian beam. Then j�z � can be inverted
to obtain the strength for the beam-beam tune shift parame-
ter in the “physical parameters” of a practical collision
scheme,

jx,y �
rpN�bx,y

2pgLsx,y�sx 1 sy�
, (30)

where rp is classical particle radius, gL is the Lorentz
factor, andN� is the number of particles in the other bunch.
Moreover, we will derive the form of the beam-beam kick
in the GSA K̃�q; m�

u2
c
, s�

u2
c

�.

A. The Chao-Ruth force

In the Chao-Ruth case, the kick is given by Eq. (27).
The Chao-Ruth model can be considered as a 1D Pois-
son problemKcr�r� �q� � z

R
� ≠qG̃�q, q0�r�q0� dq0. Here

G̃�q, q0� :� jq 2 q0j is the 1D Green’s function which ful-
fills ≠2

qG̃�q,q0� � 2d�q 2 q0�. Therefore the integral ker-
nel G�q, q0� for the CR beam-beam kick can be identified
with ≠qG̃�q, q0� � sgn�q 2 q0�.

It follows immediately from the form of the kernel that
the CR kick on a particle at q is proportional to the number
of particles of beam � at a spatial position less than q minus
the number of particles at a spatial position larger than q.
In particular, we find limq!6`Kcr�r� �q� � 7z fi 0. This
appears unphysical only at first sight. Since we assume flat
beams and motion in the perpendicular plane, the charge
distribution of the macroparticles of beam � are actually
represented by planes of constant planar density. Similar
to the case of a capacitor with infinitely large plates, the
field on a test particle due to each of the charge planes does
not depend on the distance of the particle to the plane.

Moreover, the simple structure of the CR kernel G
allows the computation of the beam-beam kick on N
macroparticles exerted by an ensemble of N� � N par-
ticles, both located at arbitrary position in configuration
space, with less than O�N2� operations. We can order the
024401-6
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N 1 N� particles in sequence of increasing q. This can
be done, for example, by the HEAPSORT algorithm [16],
at an expense of O�N logN�. Then one starts with the
“ leftmost” particle which receives a kick of 2z , the next
particle receives a kick of 2z if it belongs to the same
beam as the leftmost particle or 2z �1 2 �l� if it belongs
to the other beam, and so on. Here �l is the weight of
the leftmost particle. This last step only has an operations
count of O�N� so that the total asymptotic order count
of the algorithm is determined by the sorting and hence
O�N logN�.

With the Gaussian density r�q; m�, s�� :�
1��

p
2p s�� exp�2 �q2m��2

2s�2 �, we find

Kcr�r� �q� � z
Z

sgn�q 2 q0�r�q0; m�, s��dq0

� z

∑
2 erf

µ
q 2 m�

s�

∂
2 1

∏
, (31)

where we define erf�q� :�
Rq

2` r�q0; 0, 1� dq0, m� as
the instantaneous distance of the centroid of the other
beam from the common closed orbit, and s� as the
instantaneous rms width of the other beam. This formula
describes the nonlinear beam-beam kick in the GSA and
determines j�z � for initially Gaussian beams. From
Eq. (5) and d

dqKcr�r� � 2zr�q; m�, s��, we find

jcr :�
b0

d
dqKcr�r�jq�m��0

4p
� �2p�23�2 zb0

s�
. (32)

B. The axially symmetric force

In the axially symmetric case the kick is given by
Eq. (28). Assuming infinitely long axially symmetric
bunches in both beams, i.e., in cylindrical coordinates
with origin at the centroid ���x, y���, the spatial density of
each beam fulfills ≠zr � ≠fr � 0. Note that, although
we treat the head-on case only, the instantaneous centroids
of the beams are not required to be on the common closed
orbit nor are they required to be identical for both beams.
The beam-beam force after a Lorentz boost into the rest
frame of the source beam is then given by the electric
field �E �: E�r�r̂, where r̂ is the radial unit vector and
r �

p
x2 1 y2. Gauss’ law yields, for any cylinder Z

with radius r and length Dl ,Z
≠Z

�E ? r̂ dS � Dl2prE�r� �
Z
Z

r�r�dV

� Dl2p
Z r

0
r�r 0�r 0 dr 0, (33)

and thus E�r� � 1�r
Rr

0 r�r 0�r 0 dr 0. Undoing the Lorentz
boost and absorbing all constants into z we find Eq. (28).
We can then, under the premise that the beam stays round,
choose an arbitrary transverse direction for r̂ . This pro-
cedure is applied usually to the strong source beam in
weak-strong simulations.
024401-7
Unfortunately, under the full Vlasov evolution the as-
sumption of axial symmetry is not self-consistent. For
a 1D model this means that the consistency constraint
that the density is left-right symmetric about the cen-
troid [ru��q�u 1 q0� � ru��q�u 2 q0� ;q0] is in general
not fulfilled for all u. In particular, the above constraint im-
plies that all odd order centered moments ��q 2 �q��2n11�u
vanish identically. In order to obtain a self-consistent 1D
approximation of a round beam we modify the beam-beam
kick to use the symmetrized density 1

2 �ru��q�u 1 q0� 1

ru��q�u 2 q0��. This is equivalent to taking the average of
ru��q�u 1 x� at 1q0 and at 2q0. Thus we can write the
beam-beam kick

Kas�r�
u2
c

� �q� �
1

q 2 �q��
u2
c

3
Z 1jq2�q��

u
2
c
j

2jq2�q��
u
2
c
j

r���q��
u2
c

1 q0� jq0j dq0.

(34)

One can easily see that for any r such that �jqj� exists, the
limit q ! 6` of Kas�r� �q� vanishes at least linearly with
1�jq 2 �q��j.

The kernel for the AS beam-beam kick is

G�q, q0� �
1

q 2 �q��
u2
c

x��q��
u2
c
, q, q0� jq0 2 �q��

u2
c
j ,

x�m, q, q0� :�

Ω
1, jq0 2 mj , jq 2 mj ,
0, jq0 2 mj $ jq 2 mj .

(35)

Note that here the kernel itself depends on the first moment
of r

�
u2
c

.
With a Gaussian density r�q0; m�, s�� as in Sec. III A,

the beam-beam kick is

Kas�r� �q� �

s
2
p

z
s�

q 2 m�
�1 2 e2��q2m��2�2s�2�� .

(36)

And, analogously to Sec. III A,

jas �
z

2
�2p�23�2 b0

s�
. (37)

As yet, no algorithm for computing the exact AS beam-
beam kick (34) at a lower order count than O�N2� has
been found. However, the preliminary numerical results
of this study, to be presented in Sec. V, seem to indicate
that once the axial symmetry is put in by hand, the addi-
tional assumption of a Gaussian source does not change the
moment calculation significantly. This is consistent with
Yokoya’s observation [15] that the major flaw of the GSA
is its inability to represent the (acquired) skewness of the
density. The symmetrization in Eq. (34) already removes
the skewness from the actual density even before a test
density is introduced.
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C. The Yokoya-Koiso-Zenkevich force

In the Yokoya-Koiso-Zenkevich case the kick is given by
Eq. (29). The Yokoya-Koiso-Zenkevich force was derived
[3] from the limit sx ¿ sy in the integral that solves the
2D Poisson problem

Kyo�r� �x� � z lim
sy�sx!0

3
Z

�2
≠xG̃�x, y, x0, y0�r�x0, y0� dx0 dy0,

(38)

where G̃�x, y, x0, y0� is the 2D Green’s function
log�

p
�x 2 x0�2 1 �y 2 y0�2�. Its kernel is singu-

lar and therefore a more careful treatment of the
Yokoya-Koiso-Zenkevich force in the context of WMPT is
needed. We do this in Appendix A and note here only that
the Cauchy principle value is not very well represented in
WMPT unless the GSA is used.

It can be shown with some algebra (see Appendix B) that
with a Gaussian density r�x; m�, s��, as in Secs. III A and
III B, the beam-beam kick is

Kyo�r� �x� �

r
p

2
z

s�
�W

µ
x 2 m�

p
2 s�

∂
,

W�z� :� e2z2

µ
1 1

2i
p

p

Z z

0
et

2

dt

∂
, z [ �.

(39)

Here W is the complex “error” function [17] which is im-
plemented, for example, in the CERNLIB [18]. And, analo-
gously to Secs. III A and III B,

jyo �
z

4p

b0

s�2 . (40)

Note that in the YO limit the beam width s� appears
squared in the denominator in contrast to the CR and the
AS limit where it only appears linearly in the denominator.
This is because the kernel has the dimension of q21 in
the YO case and is dimensionless in the CR and the AS
cases.

In the last two sections we will discuss only the beam-
beam interaction in the pp case. Therefore, z and thus
jcr, jas, and jyo are negative by definition. Nevertheless,
we will for convenience redefine j in the pp case via
Q � Q0 2 j 1 O�k2b2�, i.e., j ! 2j.

IV. ACCURACY CONSIDERATIONS FOR WMPT

The primary error in the method comes from the compu-
tation of the kicks, as discussed in Sec. II B. As mentioned
there, we are looking at simple models to try to obtain a
feel for the optimal D given Q. Wollman [11–13] has
given a convergence proof for a 1D model used in plasma
physics to describe Coulomb-interacting electrons with a
fixed ion background. Here we present some preliminary
simulations which give us some confidence in the method
before proceeding to the simulations of the p and the s

modes.
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We first discuss the choice of the mesh size. We then
discuss the evolution of the first four moments of q in
the case where the two beams are identical and the initial
distribution is an equilibrium of the linearized beam-beam
force. Finally, we discuss in Figs. 3 and 4 the particle
distribution after 217 � 131 072 turns in a special case.

The discretization scale D is (in principle for p and q
independently) given by the initial mesh size divided by
the number of macroparticles per dimension. Here and
in Sec. V we chose normalized coordinates (b0 � 1 )
sq,0 � sp,0 �: s0), a square mesh from 25s0 to 15s0,
and between 51 �D � 0.2s0� and 401 �D � 0.025s0�
macroparticles per phase space dimension, initially uni-
formly distributed on a square mesh for both beams. We
cannot expect dynamics on a spatial scale that are much
smaller than the discretization scale D of the initial mesh to
be visible during our simulations. In fact, we should con-
sider every effect that appears at a scale øD, e.g., small
amplitude fluctuations of the position of the beam centroid
or of the square root of the beam emittance, as an artifact
of the unavoidable discretization noise.

In the case of the linearized beam-beam force there are
stationary densities in which each beam has the same den-
sity. Given a density such that �q� � 0 there is a k defined
by Eq. (5). This k gives the perturbed betatron ellipses
defined by Eq. (8). It can be shown that there are den-
sities whose equal density contours match the associated
betatron ellipses. A special example for such a stationary
solution of the linearized beam-beam force is the double
Gaussian

c��z� �
1

2ps2 e
2�1�2��zTC21 �z , C :� s2

µ
b 2a

2a g

∂
,

(41)

where the perturbed Courant-Snyder functions are given
by Eq. (8). This is discussed in some detail in [10]. It
is also announced there that in the corresponding Vlasov-
Fokker-Planck system (i.e., with the addition of damping
and diffusion due to, for example, radiation) there exists
a unique stationary solution. Numerical simulations sug-
gest that this solution is stable for small current. It is not
yet known if equilibria exist in the radiation free case or
if the equilibria are stable in the radiation free case with a
linearized force. In [19,20] we have shown that, for suffi-
ciently small j, densities that depend only on the orbital
action are quasiequilibria of the CR force in the sense that
they only change O�j� on time scales O�1�j�. The re-
sults of WMPT below are consistent with an approximately
stable density over 217 turns. This is also consistent with
the behavior of actual beams in colliders which normally
show only a slow emittance growth.

In the CR case, which is so far the only one where
WMPT can be done at less than O�N2� without GSA, we
studied the evolutions of a distribution that is stationary
under the linearized beam-beam force. Using Eq. (8) with
Q0 �

p
5 2 2, j � 3 3 1023, b0 � 1, and a0 � 0, we
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find b � 1.0018, a � 20.0188, and g � 0.9985 just af-
ter the kick. Note that this is still fairly close to the invari-
ant circles of the unperturbed motion. We chose identical
double Gaussians for each beam, given by Eq. (41). We
simulate 217 turns with and without the Gaussian source
approximation with n � 51, 101, 201, 401 and with n �
51, 101, and 201 macroparticles per phase space dimen-
sion, respectively.

Figure 2 shows the evolution of the centroid amplitude
�q�m2p as a function of the number of turns m. The verti-
cal scale is the logarithm to base 10 of �q�m2p in units of
s0, and the horizontal scale is m. All scatter plots start at
around 10216 (double precision). With the “exact” com-
putation of Kcr�r�� (Fig. 2, left) the centroid amplitude
024401-9
immediately jumps to about 1025 and then exponentially
(linearly in the logarithmic scale) grows until a saturation
limit is reached. With the additional smoothing of the GSA
(Fig. 2, right) the centroid amplitude grows exponentially
from 10216 to a saturation limit.

The decrease in the saturation level with n seems to be
significant, and the saturation level itself is consistent with
the size of D under the assumption of a quasistationary
state with �q� � 0. The logarithmic slope of the envelope
seems to be independent of n in the exact case, whereas
in the case of the GSA the logarithmic slope seems to be
roughly proportional to n23�4. We do not understand this
slope nor the jump from 10216 to 1025 in the exact case.

The second-order centered moments and therefore the
beam emittance
e :�
q

��q 2 �q��2� ��p 2 �p��2� 2 ��q 2 �q�� �p 2 �p���2 (42)
stay constant on the 0.1%–5% level (monotonically im-
proving with decreasing discretization scale) in all simu-
lations starting with a stationary Gaussian density of the
linearized motion. The centered fourth-order moments are
consistent with the assumption of a Gaussian beam (e.g.,
��q 2 mq�4�u � 3���q 2 mq�2�u�2 with mq � �q�u) also
on the level of a couple of percent.

The centered third-order moments oscillate around
0. Similar to the first-order moments, their oscillation
amplitude grows exponentially with time until it satu-
rates. The saturation level decreases with decreasing
D, but at a higher value than the level for �q�. Note
that, for a Gaussian distribution, as for any distribution
whose density is even around its mean, all odd centered
moments vanish identically. Thus the relatively high
saturation level of the third-order moments suggests that
the GSA should be revised and a different test density
which allows odd centered moments should be used in
Eq. (25).
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FIG. 2. (Color) The centroid position �q� of the linearly matched phase space distribution with WMPT for the CR beam-beam force.
�q� is normalized by s0. Only each 64th turn is actually printed. Left: “exact” [O�N logN�] computation of the beam-beam kick
(n � 51, 101, and 201). Right: Gaussian source approximation (n � 51, 101, 201 and 401).
In all simulations discussed so far the agreement be-
tween �qypw�u and �qypw��

u was better then 1024, which
is not surprising for an evolution equation being symmet-
ric under c $ c� and identical initial conditions for both
beams.

Similar simulations exist for the AS and the YO beam-
beam limits, both in the Gaussian source approximation,
and they show qualitatively the same stability properties
as the case of the CR interaction. Moreover, they give
quantitatively similar results concerning saturation ampli-
tudes and logarithmic slopes. The approximate saturation
levels of the fluctuations of the first and third moments, as
well as the fluctuations in the beam emittance, are shown
in Table I.

The numerical simulations shown in Fig. 2 and Table I
not only give some confidence in WMPT, but also seem
to indicate the existence of at least quasistationary phase
space densities under the full nonlinear collective beam-
beam interaction in 1D.
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TABLE I. The approximate bounds of �q� and ��q 2 �q��3� and the approximate maximum
deviation of the emittance from s

2
0 for the four model forces under numerical study. D is the

grid spacing.

Force D�s0 maxj�q�j�s0 maxj1 2 e�s
2
0 j maxj��q 2 �q��3��s

3
0 j

CR 0.200 0.06 0.05 0.2
1.000 0.025 0.015 0.1
0.050 0.01 0.001 0.05

CR�GSA 0.200 0.025 0.004 0.2
0.100 0.008 0.0008 0.1
0.050
0.025

No saturation in 217 turns

AS�GSA 0.200 0.05 0.0025 0.25
0.100 0.02 0.001 0.12
0.050 0.007 0.0005 0.04

YO�GSA 0.200 0.06 0.01 0.4
0.100 0.015 0.002 0.1
0.050 0.006 0.0004 0.04
Since in the WMPT approach the phase space integrals
in the expectation values �f�u and in the beam-beam kicks
K�r�

u2
c

� are approximated by sums over the trajectories
�hij and �h�

ij , respectively, it has to be checked whether
or not the effective distribution of the trajectories leads
to a sufficiently slowly varying coarse grained density in
the sense of Eq. (20). Although “spikes” and “holes” in
the coarse grained density might as well be of physical
origin, one might expect that the numerical accuracy of
the numerical representation of the phase space integral
suffers if the coarse grained density is too rapidly varying.

Figure 3 (left) shows a scatter plot of all the trajectories
of one beam after 217 turns. The initial mesh was set up
identically to the simulations for Fig. 2 with 201 3 201
macroparticles per beam, but the beams were initially ex-
actly round (in the normalized coordinates) and the “other”
beam (not shown) had an initial coherent betatron ampli-
tude of 0.1s0. Again the beam-beam tune shift parameter
was chosen to be 3 3 1023. The unperturbed tunes were
Q�

0 �
p

5 2 2 and Q0 � Q�
0 2 5 3 1026. Therefore the
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FIG. 3. Scatter plots of �hij�u� (left) and ��� �hij�u�, �ij��� after 217 turns. q and p are normalized by s0.
beams are expected to show persistent collective modes
[2–6,21] and, indeed, in Sec. V the existence of a p and
a s mode will be demonstrated. It has to be noted that
in all simulations performed for this study thus far, the un-
perturbed tunes were chosen far away from all lower order
resonances of the single particle motion.

The scatter plot in Fig. 3 (left) shows the distribution
of the trajectories in the phase plane after 217 turns. Note
that the initial mesh was square from 25 to 15s0 in both
phase space dimensions. Thus the particles with the largest
initial incoherent betatron amplitude are at a distance of
�
p

52 1 52 � 7�s0 from the center. The distribution ap-
pears uniform except for a halolike ring of reduced point
density. The appearance of this halolike ring from about
5s0 to about 7s0 is most likely an artifact of the square
initial mesh. We thus conclude that the macroparticles re-
main uniformly distributed in a coarse grained sense.

Figure 3 (right) shows a 3D scatter plot of the macropar-
ticle weights �ij � c0��zij�wij over the actual position of
the trajectory �hij�u� after 217 � 131 072 turns. Since in
024401-10
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CR without GSA / ξ=0.003 / MeshProj.
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FIG. 4. Mesh projections �xmn�u after 0 turns (� initial data) (left) and after 217 turns (right). The mesh that cu was projected
on was in both cases given by 41 3 41 mesh points from 25 to 15s0 and the initial mesh of the macroparticles had 201 3 201
points in the same range. q and p are normalized by s0. To emphasize the shape of the core, only the range from 23.5 to 13.5s0
is shown.
the current implementation of the algorithm wij � w �
const, and since the initial density was a round centered
Gaussian, the vertical coordinate of each point is a mea-

sure for the initial distance from the origin:
q
q2
i 1 p2

j �q
22 ln�2pc0��zij��. Obviously the majority of particles

that initially belonged to the core stay relatively close to
the core. Otherwise the scatter plot would look less similar
to a “bell” and more similar to a uniform cloud.

Figure 4 shows projections of cu [Eq. (20)] on a mesh
of 41 3 41 mesh points for the initial Gaussian (left) and
after 217 turns (right). The parameters of the simulation
were the same as for Fig. 3. A scatter plot of the initial
data would of course coincide with the surface of Fig. 4
(left). But after 217 turns the scatter plot Fig. 3 (right) is
a diffuse bell-shaped cloud and the coarse grained mesh
projection gives an indication of the actual density. The
mesh projection of Fig. 4 (right) looks a little jagged. This
is due in part to the particular choice of the partition of
unity in this mesh projection. It is also due in part to the
dynamics that can bring two initially separated particles,
with significantly different densities, close together. How-
ever, the mesh projection has a well-defined core, and each
of the core bins has a significant amount of probability as-
signed to it. Moreover, the projected density at the edge
of the core decreases relatively smoothly, and there are no
islands outside the core. The coarse grained density as ob-
tained by 217 turns of WMPT therefore has a slowly vary-
ing component (the bell) and a rapidly varying component
(the peaks and valleys). In phase space averages the slowly
varying part will be represented with relative high accu-
racy and the rapidly varying part, which contributes only
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little to the average, will be represented with relatively low
accuracy.

Since WMPT is designed to compute integrals includ-
ing the density rather than computing the density itself, we
have gained confidence that the “smoothness” observed in
the presented example, together with the apparent conver-
gence in D observed in Table I and Fig. 2, seems sufficient
to provide a relatively accurate time evolution of the low
order moments on scales well above the discretization scale
and for a finite number of turns.

V. SIMULATIONS

One key task of this stage of the study was to identify
the p and s modes for the three different 1D limits of
the beam-beam force in head-on collisions and to discuss
their dependence on the difference of the unperturbed tunes
DQ :� Q0 2 Q�

0 and Dj :� j 2 j�. Moreover, the on-
set of Landau damping for DQ . j should be observable.

We performed a large number of simulation runs with
different parameter sets, but only a fraction of them can be
presented here.

For comparison we will use a trivial extension of the
rigid bunch model described in [21]. Under the assumption
of rigid bunches and a linearized beam-beam force, the
motion of the beam centroids X :� �q� and X� :� �q�� is
equivalent to a system of two coupled linear oscillators,

d2

du2 X 1 �Q2
0 1 Q0j�X 2 Q0jX

� � 0 , (43)

d2

du2 X
� 1 �Q�2

0 1 Q�
0j

��X� 2 Q�
0j

�X � 0 . (44)

The eigentunes Q1 and Q2 are easily found to be
�Q6�2 �
1
2

�Q2
0 1 Q�2

0 1 Q0j 1 Q�
0j

�

7 sgn�j�
q

�Q2
0 2 Q�2

0 �2 1 �Q0j 1 Q�
0j

��2 1 2�Q2
0 2 Q�2

0 � �Q0j 2 Q0j�� � . (45)
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In the case of j� � j this reproduces the result presented in [21], and for Q�
0 � Q0 one easily finds that the eigentunes

Q1 and Q2 depend only on Q0 and the mean �j 1 j���2. Finally, for both j� � j and Q�
0 � Q0, we have

�Q6�2 � Q2
0 1 Q0j 7 sgn�j� jQ0jj )

Q1

Q2

æ
jjjøQ0

!

Ω
Q0

Q0 1 j . (46)
In this case, the eigenmodes for Q1 and Q2 correspond to
the s mode �X 1 X�� and the p mode �X 2 X��. It is not
surprising that in this simple model the p mode frequency
for jjj ø Q0 does not contain the Yokoya factor Y �Qp �
Q 1 Yj� which was predicted to differ from one in [3] by
means of the linear Vlasov theory. Note that for Q�

0 fi Q0
the p mode and the s mode are not the eigenmodes even
of the rigid bunch model.

In the following, we will discuss the spectra obtained by
simulations using WMPT and the onset of Landau damp-
ing of the modes and compare the most prominent frequen-
cies of the spectra with the eigentunes Q1 and Q2 of the
rigid bunch model.

A. The dependence of the p and s modes on DQ

In this section we will present results of simulations in
the three cases: CR without GSA in Fig. 5, AS with GSA
in Fig. 6, and YO with GSA in Fig. 7. The parameter sets
will be basically identical. In particular, the beam-beam
tune shift parameter is the same �jjj � 3 3 1023� for all
simulations in this section. The figures are structured as
follows: the first three plots are tune spectra, i.e., the
modulus of the Fourier amplitude computed by a fast
Fourier transform (FFT) based on 217 turns, for the p

mode �q� 2 �q�� (light/green) and the s mode �q� 1 �q��

(dark/blue). The spectra are normalized so that the largest
amplitude is 1. The thick vertical (dark/red) lines (cursors)
that appear in all spectra are markers, e.g., Ql , Qr , Ql 2

jjj, Qr 2 jjj, Q1, and Q2. The initial conditions for the
simulations used to compute the spectra are round Gauss-
ians, i.e., Gaussians matched to the unperturbed optics in
normalized coordinates, with s0 � 1 for both beams, one
beam (clockwise, right, “ r” ) being initially centered around
the common closed orbit and the other beam (counter-
clockwise, left, “ l” ) having an initial coherent betatron am-
plitude of 0.1s0. The unperturbed tune of beam (l) was
always set to Ql :�

p
5 2 2 � 0.236 067 98 and the un-

perturbed tune of beam (r) was set to Qr :� Ql 2 DQ,
where DQ � 5 3 1026, 1.5 3 1023, or 6 3 1023 for the
top left, top right, and bottom left plots, respectively. The
only exception is the YO case (Fig. 7) where, because of
reasons to be explained later, the top right plot has a DQ of
0.5 3 1023 instead of 1.5 3 1023. In all cases, the bot-
tom right plot shows the time evolution of �ql� (red crosses)
and the beam emittance (light/green line) of beam (l) for
the first 104 turns and for DQ � 6 3 1023. There the ini-
tial coherent betatron amplitude of beam (l) was 1.0s0.

The viewpoint for all simulations is u1
c , i.e., the position

directly after the IP, and the initial mesh has 201 3 201
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points uniformly distributed on a rectangle in phase space
from 25 to 15s0.

Since the CR limit is the only one where a reason-
ably fast [O�N logN�] algorithm for the computation of
the beam-beam kick without the additional simplification
of the Gaussian source approximation has been found,
Fig. 5 is the only figure that shows the results of simu-
lations with the exact WMPT without GSA. The main
and clearly visible features in Fig. 5 (top left) are the p

and s modes and the noisy continuum. The continuum
originates from the single particle motion. It reflects the
incoherent tune spread and falls off sharply at Ql 2 jjj.
In addition, it goes strongly to zero as the tuneQ ! Ql . In
the weak-strong approximation, the weak beam has an am-
plitude dependent tune spread from Ql at infinitely large
amplitude to Ql 2 jjj at zero amplitude. Since the ini-
tial phase space mesh has a cutoff at 65s0, and since
the outermost macroparticles carry a basically vanishing
weight, the amplitude of the continuum decreases strongly
as the frequency parameter Q approaches Ql . The s mode
(blue) has a sharp peak at Ql as expected by the theory
[2–5,21]. The position of the peak amplitude of the p

mode (green) is at 0.231 537 � Ql 2 1.51jjj. We cross
checked the result with the PF method in [19,22] and found
the same Yokoya factor. Moreover, we derived an aver-
aged Vlasov equation for the CR limit [20] and found ex-
actly the Yokoya factor 1.513. We are quite surprised that
the linearization of the averaged Vlasov equation yields
essentially the same Yokoya factor as the fully nonlinear
and completely self-consistent simulation. Note that the p

mode contains the noisy continuum whereas the s mode
does not. This is a peculiarity of the CR force and we do
not yet have an explanation.

Figure 5 (top right) shows the spectrum with DQ �
jjj�2. Very close to Q1, at 0.235 45 lies the most promi-
nent peak of the s mode. Now both the s mode and the
p mode show a continuum that ends at Qr 2 jjj. The
largest peak of the p mode is at a distance of 1.61jjj left
of the largest peak of the s mode. We note that the p and
s modes are not the eigenmodes of the linearized motion
when DQ fi 0. In fact, both modes have two prominent
peaks at the same position. As we will see later, this is
true for all three forces.

The envelopes of �q�u 6 �q��
u and the beam emittances,

which are not shown here, are in both cases (DQ � 5 3

1026 and 1.5 3 1023) basically constant and neither show
significant damping of the centroid motion nor emittance
blowup up to 130 000 turns. This situation changes when
DQ � 2jjj (bottom two plots of Fig. 5). Note that both
spectra have a strong peak close to Q1. Moreover, the
024401-12
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FIG. 5. (Color) Chao-Ruth limit: FFT analysis of the p and s modes for DQ � 5 3 1026, 1.5 3 1023, and 6.0 3 1023 (clockwise
top left to bottom left). Bottom right: time evolution of �ql� and el for the first 10 000 turns.
continuum now has two disjoint parts. One continuum
ranges from Ql 2 jjj to Q1. The second part of the con-
tinuum ranges from about Qr 2 0.4jjj to Qr 2 jjj, and
slightly left of the continuum at 0.226 91 lies the second
strong peak of both the p and the s modes. The two peaks
are separated by 2.61jjj. The strongest peak in both spec-
tra is a little left of Qr 2 jjj. We conclude that with this
tune separation the characteristic separation of the main
peak of both modes disappears. Nevertheless, with the
CR force, even at DQ � 2jjj there are still two distinct
main peaks in the spectra. In Fig. 5 (bottom right) the am-
plitude (red points) of the centroid motion of the initially
excited beam (r) decays with increasing revolution number
on a scale larger than but comparable to 1�jjj. The emit-
tance er (light/green line) grows on the same time scale
from initially 1s

2
0 to between 1.4 and 1.5s

2
0 . These ef-

fects indicate the onset of the so-called Landau damping
and are predicted by the linearized Vlasov theory [3–5]
for DQ ¿ jjj. Comparing with Figs. 6 and 7 for the AS
and the YO limits, respectively, we see that there the Lan-
dau-damping process leads to a much smaller stationary
amplitude and a much more stable beam emittance.
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Figure 6 shows a qualitatively similar situation for the
AS interaction as in Fig. 5. Both plots on the top show
clearly separated p and s modes. With DQ � 5 3 1026,
i.e., Qr � Ql � Q1, the s mode has its dominant peak at
Ql and the single particle continuum, which is now visible
in both modes, has a sharp boundary at Ql 2 jjj � Q2.
The p mode appears at about Ql 2 1.27jjj. Relative to
the CR case it is therefore shifted towards the s mode
(and the continuum). In a similar simulation without GSA
but with only 75 3 75 macroparticles, the p-mode peak
which was much noisier was even shifted a little farther
�Ql 2 1.25jjj� towards the s mode. This case can to
some extent be compared to the predictions of the lin-
earized Vlasov theory [3,4], to the 2D simulations re-
cently performed by Zorzano and Zimmermann [6], Herr
et al. [23], and our own most recent 2D simulation [22].
The linearized Vlasov theory predicts the separation of p

and s modes of about 1.21jjj. The 2D simulations, pre-
sented in [6], using an initially round beam represented by
104 nonweighted macroparticles and employing the GSA,
yield a separation of about 1.10jjj. Their more recent re-
sult [23], using a completely self-consistent hybrid fast
024401-13
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FIG. 6. (Color) Axially symmetric limit: FFT analysis of the p and s modes for DQ � 5 3 1026, 1.5 3 1023, and 6.0 3 1023

(clockwise top left to bottom left). Bottom right: time evolution of �ql� and el for the first 10 000 turns.
multipole method [24,25] but still using only 104 non-
weighted macroparticles per beam, reproduces the result
of the linear Vlasov theory. We have also recently per-
formed 2D simulations [22] using our own implementation
of the hybrid fast multipole method and 454 � 4.1 3 106

weighted macroparticles per beam and found a Yokoya fac-
tor of 1.28 for initially round beams. Our 1D result in the
AS limit with 2012 � 4 3 104 weighted macroparticles
and in GSA, namely Y � 1.27, is surprisingly consistent
with the fully self-consistent 2D simulations, provided the
phase space is sampled in a comparable way. The analytic
approach in [15] applied to a round beam in 2 degrees of
freedom shows that, for infinitesimally small amplitudes,
the GSA yields approximately half the value of �Y 2 1�
than the exact linearized Vlasov model. However, our
simulations using the axially symmetric 1D model in the
GSA and the self-consistent 2D model for initially round
beams predict a Yokoya factor which is slightly above the
result obtained from the linearized Vlasov theory. It is
possible that, in contrast to the CR limit where we have
found excellent agreement between theory and simulation,
the round beam case is more sensitive to the nonlinear-
024401-14
ity of the beam-beam force introduced by the tails of the
distribution. We note that in the conventional macropar-
ticle approach the beam is represented by a Monte Carlo
generated ensemble of macroparticles of equal weight. An
initially Gaussian distribution therefore samples the core
and the tail in different ways.

In the top right plot of Fig. 6 with DQ � 1.5 3 1023 �
jjj�2 we see that the s mode has its major peak close to
Q1 between Ql and Qr . The position of the s-mode peak
is basically the same as compared to the CR interaction, but
slightly shifted from Q1 towards the right. The p mode
appears at Qs 2 1.41jjj but is already very close to the
boundary of the single particle continuum at the leftmost
cursor Qr 2 jjj.

Figure 6 (bottom left) with DQ � 2jjj does not show
any prominent singular peak in either spectra. The absence
of any dominant frequencies in the spectra shows that the
coherent modes have disappeared. The plot at the bottom
right of Fig. 6 supports this result. The amplitude of the
initially excited beam is Landau damped to the discretiza-
tion scale of the simulation, while the beam emittance is
increased to about 1.37s

2
0 .
024401-14
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FIG. 7. (Color) Yokoya-Koiso-Zenkevich limit: FFT analysis of the p and s modes for DQ � 5 3 1026, 0.5 3 1023, and 6.0 3
1023 (clockwise top left to bottom left). Bottom right: time evolution of �ql� and el for the first 10 000 turns.
Figure 7 shows the equivalent simulations for the YO
limit. As we can easily see in the top left plot, the p mode
is now separated by 1.14jjj from the s mode and thus
even closer to the continuum. This again can be compared
to the linear Vlasov theory applied in [3,4,15] and the case
of a flat beam (where “fl at” means sx�sy � 16) studied
numerically in [6]. Yokoya and Koiso predict 1.33jjj, and
Zorzano and Zimmermann find 1.15. In [15] the Yokoya
factor for the YO limit in the GSA is calculated as 1.148.
Since the p mode is so close to the continuum already with
DQ ø jjj, it is not a surprise that with DQ � jjj�2 (not
shown) the system is in a Landau-damped regime. In this
case, the amplitude of the centroid motion is damped to
some intermediate value and the spectra show no clear sig-
nature of well-defined p and s modes. Therefore, Fig. 7
(top right) shows the spectra of the p and s modes for
DQ � 0.5 3 1023 instead of 1.5 3 1023 as in the CR and
the AS case. Here the p mode is about 1.17jjj separated
from the s mode. When DQ is increased to 6 3 1023

(bottom two plots), similar to the AS limit, the beam’s
centroid motions are more or less completely decoupled
024401-15
and the initial amplitude of beam (l) is quickly damped to
a value below the discretization scale.

B. The dependence of the p and s modes on Dj

It was suggested in [5] and numerically confirmed in
[23] that the p mode for round beams moves back into
the continuum when the ratio j�j� is reduced to less
than 0.6. In this section we briefly discuss our results in
the three 1D cases. Figure 8 contains spectra of the p

(light/green) and s modes (dark/blue) for CR (top row),
AS with GSA (center row), and YO with GSA (bottom
row), and for jr�jl � 0.5 (left column, upper two rows),
jr�jl � 0.6 (left column, bottom row), and 0.1667 (right
column). Both unperturbed tunes were chosen to be iden-
tical Ql � Qr �

p
5 2 2, and the left beam had an initial

coherent betatron amplitude of 0.1s0. jl � 20.003 was
kept constant, and jr was varied. The thick red cursors
mark Q1 �

p
5 2 2 (right) and Q2 (left).

It is easy to see that in all six plots the s mode
has its most pronounced peak at Q1. Moreover, if
024401-15
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FIG. 8. (Color) FFT analysis of the p and s modes for the three limits and for two ratios jr�jl each (left) and 0.1667 (right).
Top row: CR, jr�jl � 0.5 (left) and 0.1667 (right); center row: AS, jr�jl � 0.5 (left) and 0.1667 (right); bottom row: YO,
jr�jl � 0.6 (left) and 0.1667 (right).
jr�jl � 0.1667 (right) then the p-mode peak has either
disappeared completely (AS and YO) or is just a noisy
maximum at the edge of the continuum (CR). In all three
cases (CR, AS, and YO), the initial excitation is damped,
accompanied by a slight emittance growth. In the case of
CR we found that indeed a ratio of jr�jl � 0.1667 was
024401-16
needed to move the p mode at the edge of the continuum.
At jr�jl � 0.5 (top left) the Yokoya factor, now defined
by Y � 2�Qp 2 Qs���j 1 j��, is 1.53 and even slightly
higher than at jr�jl � 1, where it is 1.51.

In the AS limit, the p mode merges with the continuum
already at jr�jl � 0.5 (middle left), but only little actual
024401-16
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damping of the amplitudes or increase of the emittance
(both not shown) was observed during the simulation. Ac-
tually both modes are clearly visible and we find Y � 1.33.
We note that at jr�jl � 0.6 (not shown) the mode is still
discrete. This result seems to be partly inconsistent with
the predictions of [5,23]. However, it is consistent with the
observation in Sec. V A that the Yokoya factor computed
with WMPT and finite amplitude oscillations is slightly
larger than the Yokoya factor computed using nonweighted
macroparticle simulations or linearized Vlasov theory.

Finally, in the YO limit the p mode merges with the con-
tinuum at jr�jl � 0.6 (bottom left), but again the damp-
ing is only marginal and the Yokoya factor is 1.19.

As expected, the intensity ratio at which the p mode just
emerges from the continuum depends on the model of the
force. Furthermore, it seems that in order to attain efficient
Landau damping the intensity ratio has to be well below
this limit. The simulations presented in this section and in
Sec. V A suggest for all three 1D limits that whenever the
intensity ratio is decreased or the split of the bare tunes
is increased, respectively, the Yokoya factor increases es-
sentially until both eigenmodes disappear. In other words,
the p-mode peak “fl ees” from the continuum before it is
finally absorbed by continuum, and the eigenmodes are
Landau damped.

VI. CONCLUSION AND OUTLOOK

We studied the strong-strong beam-beam interaction by
means of a method for simulating the evolution of the
moments of the phase space distribution under collec-
tive Hamiltonian forces following the VE. This method,
WMPT, has been implemented in a code for simulations,
namely, BBDeMo1D.
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Three different limits, the Chao-Ruth, the axially sym-
metric, and the Yokoya-Koiso-Zenkevich, have been stud-
ied numerically. The results in the CR case are in almost
perfect agreement with independent simulations using
the Perron-Frobenius operator technique [19,22] and
(surprisingly) also the averaged/linearized Vlasov theory
[20]. In the axially symmetric model our results agree
very well with our more recent 2D WMPT simulations for
round beams [22]. However, there is no complete quanti-
tative agreement with the results of [23] using 2D conven-
tional macroparticle tracking as well as with the linearized
Vlasov theory [3–5]. We believe that the differences are
due to the different types of phase space sampling. In the
YO limit, which is basically accessible to WMPT only via
the Gaussian source approximation, the simulations agree
well with those performed in [6] and the discrepancy
between the numerical results and the linearized Vlasov
theory are seemingly due to the GSA [15].

The motion of the beam centroids under the collec-
tive force shows two dominant modes if the separation
of the unperturbed tunes DQ is much smaller than the
beam-beam tune shift parameter j. The modes are damped
when DQ is significantly larger than j. The relative sepa-
ration �Qs 2 Qp ��j depends not only on the model of
the collective force but also on the separation of the unper-
turbed tunes DQ. In the intermediate regime, the results
depend on the type of the limit under consideration. More-
over, our simulations suggest that the modes are efficiently
damped when the ratio j�j� differs strongly from 1. For
CR, AS, and YO the p mode merges into the continuum
at j�j� � 0.1667, 0.5, and 0.6, respectively. The main
results of Secs. V A and V B are summarized in Table II.

Only some aspects of the analysis have been presented.
The way in which BBDeMo1D keeps track of and stores
TABLE II. Summary of results for CR, AS, and YO.

Force DQ jr�jl Qs 2 Qp Damping

CR 0 0.5 1.53�jl 1 jr ��2 no
0 0.1667 1.67�jl 1 jr ��2a yes

5 3 1026 1 1.51j no
1.5 3 1023 1 1.60j no
6.0 3 1023 1 �2.61j�a yes

AS�GSA 0 0.5 1.33�jl 1 jr ��2 (yes)b

0 0.1667 · · · yes
5 3 1026 1 1.27j no

1.5 3 1023 1 1.41j no
6.0 3 1023 1 · · · yes

YO�GSA 0 0.6 1.19�jl 1 jr ��2 (yes)b

0 0.1667 · · · yes
5 3 1026 1 1.14j no

0.5 3 1023 1 1.17j no
6.0 3 1023 1 · · · yes

aThe difference of the two prominent peaks has been taken.
bThe p mode has reached the edge of the continuum but no or only weak reduction of the
initial amplitudes is observed.
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different intermediate physical quantities (e.g., the
macroparticle trajectories) allows a variety of postsimula-
tion data analyses. Various postprocessing facilities, e.g.,
for the Fourier analysis of the trajectories and for fre-
quency maps for the moments as well as the trajectories,
have already been written and tested.

We extended the code to 2D motion. The basic structure
of the code allows this to be done in a straightforward
manner. Our first results for round beams are published
in [22]. However, in order to efficiently handle the large
number or macroparticles needed to grant a sufficiently
dense sampling of the 4D phase space, it seems obligatory
to parallelize the code, which will be our next step.

Furthermore, we plan to implement a more realistic rep-
resentation of the lattice, long-range (parasitic) interac-
tions, synchrotron motion, and, finally, more IPs and com-
plex filling schemes.
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APPENDIX A: NUMERICAL REPRESENTATION
OF THE YOKOYA-KOISO-ZENKEVICH FORCE

In Sec. III C we noted that the kernel of the beam-beam
kick in the Yokoya-Koiso-Zenkevich limit is singular and
therefore its treatment in the WMPT approach is more
critical than in the case of the Chao-Ruth limit and the
axially symmetric limit. We start the discussion of the
Yokoya-Koiso-Zenkevich limit by computing the beam-
beam kick, assuming we know c

�
u2
c

.

Kyo�r�
u2
c

� �q� � lim
e&0

√Z 1`

q1e

r
�
u2
c

�q0�
q 2 q0

dq0 1
Z q2e

2`

r
�
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�q0�
q 2 q0

dq0
∂

� lim
e&0

Z
�22Aq�e�
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��z0�
q 2 q0

d2z0 � I1
h �q� 1 I2

h �q� ,

(A1)

where
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�22Aq�h�

c
�
u2
c

��z0�
q 2 q0

d2z0, I2
h �q� :� lim

e&0
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Aq�h�2Aq�e�

c
�
u2
c

��z0�
q 2 q0

d2z0, (A2)

and where Aq�x� � � 3 �q 2 x,q 1 x� is the (open) ribbon of width 2x around q. In the last step we split the domain
of integration into two parts. In the first one ��2 2 Aq�h� ! I1

h � we can perform an ordinary numeric quadrature,
and in the second one �Aq�h� 2 Aq�e� ! I2h � with h chosen suitably small, we can expand c

�
u2
c

around q w.r.t. q0,
jq0 2 qj , h,

c�
u2
c

�q0,p0� �
LX
l�0

c �l��q,p0�
l!

�q0 2 q�l 1 O��q0 2 q�L11� . (A3)

Since Ag�h� 2 Ag�e� is symmetric around q, only the terms of c
�
u2
c

�q0���q 2 q0� that are even in q 2 q0 contribute
to the integral, and we finally find

Kyo�r�
u2
c

� �q� �
Z

�22Aq�h�

c
�
u2
c

��z0�
q 2 q0

d2z0 2 2
Z
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l�0
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�2l 1 1�!�2l 1 1�

h�2l11� dp0 1 O�hL0

� , (A4)

where L0 � L 1 2 if L is odd, and L0 � L 1 1 if L is even. Thus, once c
�
u2
c

is known and its derivatives w.r.t. q0 can be
computed, e.g., by divided differences, up to the presumably odd order L, the Cauchy principal value in Kyo only adds to
the overall numerical error of the integral to order O�hL12�, where h is of the order of the (initial) mesh size. We note
that in the case of known c

�
u2
c

and correspondingly known r
�
u2
c

we can formally simplify Eq. (A4),
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but we definitely need c� for WMPT. There we have

Kyo�r�
u2
c

� �q� � lim
e&0

Z
�22Aq�e�

c
�
0 ��� �M21

u2
c

��z0����
q 2 q0

d2z0 � lim
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Z
�22Bq�e�
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�
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q 2 � �Mu2
c

��z�
d2z0, (A6)

� Ĩ1
h �q� 1 Ĩ2h �q� , (A7)
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where

Ĩ1
h �q� :�

Z
�22Bq�h�

c
�
0 ��z0�

q 2 � �Mu2
c

��z0�
d2z0,

Ĩ2
h �q� :� lim

e&0

Z
Bq�h�2Bq�e�

c
�
0 ��z0�

q 2 � �Mu2
c

��z0�
d2z0,

(A8)

and where Bq�x� :� �M21
u2
c

���Aq�x���� is the subset of �2

so that for all �z [ Bq�x�: �Mu2
c

��z� [ Aq and ��z is the
projection of �z onto configuration space. The integral
Ĩ1
h �q� � I1

h �q� does not produce any algorithmic compli-
cation. It is given as the sum over all the weighted macro-
particles that at u2

c fall outside of Aq�h�. But Ĩ2h �q� is an
integral that not only can have a fairly complicated domain
due to the nonlinearity of �Mu , but the projection h̃ of the
set Bq�h� on the q axis even for arbitrarily small h cannot
be guaranteed to be small. Therefore the truncated Taylor
expansion Eq. (A3) that leads to a good approximation of
I2
h �q� for small h cannot be applied to Ĩ2

h �q�.
Note that mathematically Eq. (A6) is still well defined

since, because of the volume preservation of �Mu , in the
limit e ! 0 with the measure of Aq�e� also the measure
of Bq�e� goes to zero. Just its numerical representation
has an error which cannot so easily be bounded.

Therefore in WMPT, the integral Ĩ2
h �q� is not well rep-

resented. In the current version of BBDeMo1D it is just ap-
proximated by Ĩ2

h �q� � 0 with a reasonably small h. The
reason that h cannot be chosen arbitrarily small is that in
order to get a good approximation of the Cauchy principle
value one needs sufficiently large and basically equal rela-
tive densities of many macroparticles on both sides but
close to the boundary of Aq�h�. Otherwise, single par-
ticles being close to the boundary and not balanced by a
particle “on the other side” will produce a strong and ba-
sically stochastic kick. It turned out during the simulation
that the approximation Kyo�r�

u2
c

� �q� � Ĩ1
h �q� destabilizes

the beam in the used parameter range (see Sec. IV). It
has to be noted that the PF method, since it does have
knowledge of a numerical approximation of c

�
u2
c

, should
in principle be more suitable to handle the Yokoya-Koiso-
Zenkevich force.

APPENDIX B: THE GSA FOR THE YOKOYA-
KOISO-ZENKEVICH FORCE

The GSA for the Yokoya-Koiso-Zenkevich force leads
to

Kyo�r� �x� �
z

p
2p s

Z e2��x02m�2�2s2�

x 2 x0
dx0. (B1)

We now compute the Cauchy principle value using meth-
ods from complex variables.

We want to compute

f�x� :�
1

p
p

Z e2s2

x 2 s
ds . (B2)
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We consider the function

G�z� :�
1

2pi

Z
�

e2s2

s 2 z
ds . (B3)

Clearly, G is holomorphic for �z fi 0. Now let z �:
x 1 iy. Then using Plemelj’s formula [26] we find

G�x 1 i06� � 6
1
2
e2x2

1
1

2pi

Z e2s2

s 2 z
ds . (B4)

We now define

F�z� :� G�z�, �z , 0 , (B5)

:� 2
1
2
e2x2

2
1

2
p

p i
f�x�, �z � 0 , (B6)

:� 2e2z2

1 G�z�, �z . 0 . (B7)

Note that F is holomorphic for �z fi 0 and continuous for
�z � 0. It follows (see, e.g., theorem 3.2.7 of [26]) that
F is entire. Moreover, note that

F�z� �
1

2pi

Z
C

e2s2

s 2 z
ds , (B8)

where C is a Landau contour described in Fig. 9.
Differentiating G for �z , 0, integrating by parts, and

using s��s 2 z� � z��s 2 z� 1 1, we find

G0�z� �
1

2pi

Z
�

e2s2

�s 2 z�2 ds

�
1

2pi

µ
2e2s2

s 2 z
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FIG. 9. The Landau contour.
024401-19



PRST-AB 5 M. VOGT, T. SEN, AND J. A. ELLISON 024401 (2002)
It follows that

F0 1 2zF �
i

p
p

, (B10)

for all z [ � since, if two entire functions are equal on an
open subset of �, they are equal on �. Now because of
Eqs. (B6) and (B2), and since e2s2

is even whereas 1�s is
odd, we find that f is a solution of the initial value problem

f 0 1 2xf � 2, f�0� � 0 . (B11)

TABLE III. Symbols used in this paper.

Symbol Comment

u Generalized machine azimuth
uc Azimuth of collision point

f�u2
c �, f�u1

c � limu%uc f�u�, limu&uc f�u�
q, x, y, r Spatial coordinate (general, horizontal,

vertical, radial)
p Conjugate momentum [�z � �q,p�]
s0 Initial rms beam width

cu�q,p� Phase space density (normalized to 1) at u

ru�q� Spatial density (normalized to 1) at u

r̃�q; 	parameters
� Test density (! GSA)
r�q; m, s� Gaussian with

m :� �q�, s2 :� ��q 2 m�2�
�R Linear lattice map
R Jacobian of linear lattice map

Q0, b0, a0, g0 Tune and Courant-Snyder functions
due to linear lattice

�K Beam-beam kick map
K�r� �q� Kick function, i.e., p ! p 1 K�r� �q�
G̃�q,q0� Green’s function of Poisson equation
G�q,q0� [CR�YO :� ≠qG�q,q0�] beam-beam kernel

K̃�q; 	parameters
� Kick function using test density (! GSA)
K Jacobian of beam-beam kick map

k�r� �q� � �K�21 linearized kick function,
i.e., K�r� �q� � k�r�q 1 O�q2�

j Linear beam-beam tune shift parameter
z � z �j� proportionality factor

in beam-beam kick
�T One turn map
T Jacobian of one turn map
�Mu Map from 0 to u

� Perron-Frobenius operator
� Projector on spatial coordinate(s)
�zij � �qi ,pj� mesh point

�hij�u� � �Mu��zij� trajectory starting at mesh point
�ij Total weight of a trajectory

x�m, q,q0� Indicator function of �m 2 q, m 1 q�
xm,n��z� Indicator function of bin �m, n�
n Number of particles per phase space

dimension
N Number of particles in initial mesh

(� n2 for one dof)
�, �2

Configuration space, phase space
A Some set (e.g., A , �2, etc.)R

Cauchy principal value
a :� b, a�:b a defined by b, b defined by a

a � b a and b identical by definition
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Note that if one differentiates f defined by Eq. (B2) and
then “bravely” interchanges the differentiation with the
limit of the Cauchy principle value, one obtains Eq. (B11)
following the procedure in Eq. (B9).

One easily verifies that

f�x� � 2e2x2
Z

0x
et

2

dt �
p

p �W �x� , (B12)

where W is the complex “error” function [17,18], solves
Eq. (B11).

Finally, replacing x by �x 2 m����s�
p

2 � yields the
expression in Eq. (39).

APPENDIX C: CONVENTIONS AND USED
SYMBOLS

Let X be a quantity of one beam, then X� is the same
quantity for the other beam. A more old-fashioned no-
tation would be using X�1� and X�2�. We want to stress
the point that the beam-beam interaction is formally sym-
metric and thus from any equation including lattice and
beam-beam effects for one beam we immediately obtain
the corresponding equation for the other beam by toggling
the asterisk on all relevant parameters and dynamical vari-
ables. Table III summarizes the definitions of most of the
symbols used in this paper.
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