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Kinetic theory of periodic holesin debunched particle beams
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A self-consistent theory of periodic hole structures in coasting beams in synchrotrons and storage rings
is presented, extending the theory on localized holes. The analysis reveals new intrinsic nonlinear modes
which owe their existence to a deficiency of particles trapped in the self-sustained potential well, showing
up as notches in the thermal range of the distribution function. It is therefore the full set of Vlasov-Poisson
equations which is invoked; linearized treatments as well their nonlinear extensions fundamentally fail to
cope with this strongly nonthermodynamic phenomenon. Qualitative agreement with the holes recently
found at the CERN proton synchrotron booster is shown.
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I. INTRODUCTION The paper is organized as follows. In Sec. Il we present
the governing equations. In Sec. Il a solution for the
Rlasov equation is derived, and the solutions for the wave

X X ; ! otential are obtained in Sec. IV. Section V is devoted
tudinal structures observed in coasting particle beams L . - .
. . . .10 the periodicity condition. Some explicit solutions are
circular accelerators [6,7] as well as in numerical experi-_. . . .
! ; .~ _given in Sec. VI, and Sec. VIl terminates the paper with
ments [7-9]. Attention was focused on a unique, in & .
.~ ‘some concluding remarks.
sense novel, feature of these structures, namely their non-
linear nonhydrodynamic character. Modes of this type
were shown to owe their existence to the trapping of par- Il. BASIC EQUATIONS
ticles in the self-sustained potential trough. As there is The governing equations valid for highly relativistic
no threshold in wave amplitude, this process is nonlineabeams § = (1 — v%/c?)~'/2 > 1] were derived in [5]
from the outset in a collision-free environment. In other[see Egs. (9) and (10) therein] to which we refer also with
words, eddies in phase space as representatives of trappe@pect to the definitions and normalizations. Formulated

particles can be arbitrarily small. Nevertheless they dan the frame of reference moving with the nominal beam
play a fundamental role in the description of the collec-velocity v, they read

tive dynamics of an unbunched particle beam. They are
due to the wave-particle resonance between particles and (0; + ud, — €3,)f =0, (1)
fluctuations mainly in the thermal range of the momentum
distribution for which linearized wave solutions [10,11]are (1 — L)e” + Re’ — we = a[RA; + (go — L)A}].
inapplicable no matter how small the excitation level. This 2)
intrinsic nonlinearity implies that a particle beam of suf-
ficiently high brightness representing a more or less colliEquation (1) is the Viasov equation for the beam distribu-
sionless one-component plasma has to be described by tHen function f(z, u,#). It is assumed that the beam can
fully nonlinear set of the Vlasov equation coupled self-be treated nonrelativistically in the frame of reference of
consistently to a Poisson-like elliptic equation. Methodsthe synchronous particle along the design orbit (comov-
and theorems developed in plasma physics [12,13] cai)g frame). Equation (1) is coupled to the electric field
therefore, be directly applied to beam physics. € via the generalized version of Poisson’s equation (2).
The goal of the present work is to extend the existinglhe derivation of Eq. (2) can be found in the appendix
theory of solitary hole structures [1-5] to periodic hole Of Ref. [5]. It assumes a step-function density profile for
structures. We also attempt to explain some features ¢ghe beam ions in the directions perpendicular to its axis
the periodic longitudinal structures recently observed at th@f propagation. The derivation takes into acco@rity —*)
CERN proton synchrotron booster [9]. effects arising from the longitudinal field, representing an
electromagnetic correction. The parametgrand L are
measures for the resistivity and inductivity of the surround-
e ing wall, respectively. The perturbation of the line density
*Electronic address: hans.schamel@uni-bayreuth.de A1 is given by

Recently, progress was made in the analysis of electr
static structures [1-5] with the aim of explaining longi-
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AL = f:f(z,u)du — 1. 3

The remaining parameters in (2) are the geometry factor
go > 0 and the two machine parameters a and w. « is
proportional to n N where 7 isthe dip factor and N isthe
total number of beam particles. Accordingto[5], a carries
the sign of the dlip factor. w is positive and proportional to
(yRo)*> where R, isthe large radius of the synchrotron. The
|atter two are typically large quantities as y was assumed
to be large.

Equation (2) has two well-known limits: the resistive
limit, R > 1, for which

6/ = a)\l,

(49)

and the purely reactive limit, R = 0, for which we get the
following expression:

(1 —L)e" — pe = algo — L)A}. (4b)

If one assumes a and u to be very large, Eq. (4b) simpli-
fiesto

_ e D), (4c)
M

This coincides with the expression given in [14]. The first
term on the right-hand side represents the capacitive space-

charge effect, and the second term represents the inductive
contribution of the imaginary impedance.

1+K

few {%’;exp{—%wmmm for £ = 0.
I, u) =

= exp{—3[B(u? — 20(2) + Au’l} for E <0,

[11. SOLUTION OF THE VLASOV EQUATION

To solve the coupled system of Egs. (1) and (2) we make
use of the “potential method” derived by Schamel [15]. It
is used in plasma physics to find steady-state solutions in
an appropriate frame of reference, namely the frame propa-
gating with the wave structure. It consists of first solv-
ing the Vlasov equation to find the distribution function;
in a second step the associate potential structure is deter-
mined. It was shown earlier [15] that this method yields
physical solutions in contrast to the so-called Bernstein-
Greene-Kruska method [16].

To solve the Vlasov equation (1) we first perform a
Gadlilei transformation to a frame moving with Au, the
phase velocity of the structure in the comoving frame.
We assume that the particle distribution of the unperturbed
systemis given by a Maxwellian in the latter frame, which
implies that in the new frame of reference (which we call
wave frame) the unperturbed beam is described by ashifted
Maxwellian:

1 1 )
mexp[ > (u + Au) } )
Note that at this stage Au is an unknown quantity, and that
its determination is part of the final solution.

Since (1) aso holds in the wave frame, we can find
a stationary solution (9, = 0) for the perturbed beam by
setting

flw) =

(6)

where ®(z) represents the electrostatic potential defined | now becomes a functional of ®. Performing a Taylor ex-

by € = —®'(z) and

E= 1" — ®) ©)

is the single particle energy. The distribution function de-
pends on two constants of the motion, namely E and the
sign of the velocity of an untrapped particle o = sgn(u).
Without loss of generality, a non-negative potentia is as-
sumed: 0 = ®(z) = V¥, where we call ¥ the amplitude
of the wave structure. Thus al particles with E < 0 are
trapped in the potential structure, and the lower part of
Eq. (6) describes trapped particles. Note that the particle
distribution (6) is continuous in momentum space and re-
ducesto (5) in the unperturbed limit, ¥ — 0, aswerequire
that K isvanishing for ¥ — 0. The parameter 8 controls
the occupation of trapped particle orbits. We call 8 the
trapping parameter; it turns out to be a decisive parameter
for the whole theory. If it is negative, the trapped range
is less densely occupied than the neighboring free regions
in momentum space, and the distribution function has a
notch.

By integrating Eq. (6) over the velocity u we can calcu-
|ate the perturbation of the line density A;; see EQ. (3). A;
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pansion in terms of ® we finally get an expression for the
perturbation of the line density [17] in the small amplitude
limit ¥ < 1:

1 Au
A =K——Z’<—>1+K(I>
1 ) r\/i( )

— —i b(B,Au) (1 + K)D?
1 Au

+ /I/< > 2‘
TRAW I

Expression (8) is vaid up to O (¥?). Z,(x) refers to the
real part of the so-called plasma dispersion function [18]
given by

©)

20 = exp(—) | ivr 2 [ e | @

for real arguments. The function b(8, Au) is defined as

2
b(B,Au) = \/%(1 - B - Auz)exp<—A7”). (10)
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We will allow b(8, Au) to be of the order of O (¥~1/2),
The parameter K isrequired for periodic solutions; K = 0
in the solitary wave limit [1-5].

IV. SOLUTION FOR THE WAVE POTENTIAL

Asin Refs. [1-5], we restrict the following analysis to
the two limiting cases: (i) the resistive limit (R > 1)

®"(z) = —aA, (11d)
and (ii) the purely reactive limit (R = 0)
®"(z) = —ar + ad, (11b)

which follow from Egs. (4a) and (4b), respectively. In
(11b) we introduced

go — L _ o
and =2 12
1 - L R (12)

a =«

a is negative as long as the beam energy Ey = myc? is
lower than the transition energy [14]. Where not stated
otherwise, only this case will be considered further.

Inserting A; from (8) into (11), we obtain an equation
of the type

d"(z) =Z + A® + B®Y? + CD? + ..., (13)

in which the constants Z, A, B, and C still depend on
the case considered; for R > 1 we have, for example,
Z=7.=—akK. ForR=0,Bisgvenby B= By =
4/3ab(B, Au), etc.
The simple form (13) alows a direct integration
I 2

% + V() =0, (14
where —V/(®) is given by the right-hand side of (13). In
(14) we used V(0) = 0 which follows from the minimum
of the potential at & = 0. With this, —V(®) becomes

~V(®) = Z® + 1AD? + B2 + LCD? + ...
(15)

Together with (14) the form of V(®) uniquely defines the
wave structure. For a periodic structure we must require
V'(0) < 0, from which follows Z > 0. In the resistive
case wethusget K > 0 (as a < 0), and define

2

4

K =K. = %% (16)

2
which vanishes for ¥ — 0 and is defined as such to allow
closest contact to linearized theory (namely to the Vlasov
solution; see Ref. [13]). In the reactive case, we have to
use Zp = —akKy > 0 and get

koW

K = Ko = —sgn(a) OT, (17)
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where the definition of K, depends not only on « but also
on the beam parameters gy and L as well.

The necessary condition V(W) = 0, which represents
the maximum of the potential, becomes

Z + 3AV + BV 4+ lcw?=0.  (18)

This relation is called the nonlinear dispersion relation
(NDR) since it determines Au in terms of the other pa-
rameters (8, V; a, u,...).

We now concentrate on conditions for which the last
termin (13), (15), and (18) isnegligible, demanding |B| >
|C|V/¥. Keeping K < 1, we then get for the NDR in the
resistive case

kg —

1, Au) 16
> Z,<ﬁ 5 b(B, AuNY.  (19)
This expression has aready been obtained in the past
in severa publications (see Ref. [13] and the references
therein).

Making use of (19), the reduced form of (15) can be
rewritten as

2
V(@) = —a[%oqxw _ )

+ %b(ﬁ,m)qﬂ(ﬁ - @)] 20)

This expression coincides with the previous expressions
for the plasma case (e.g., in [17]), except for the positive
factor —a on the right-hand side of (20). It can be re-
placed by unity if the longitudinal coordinate z is rescaled
(v/—az—z). Notetha ky = 0 in (19) and (20) rep-
resents the solitary wave limit treated previously [1-5].
On the other hand, in the space-charge dominated case
R = L = 0 (which is redlized in the experiment of [9]),
we get two expressions for the NDR and for V(®) which
are identical with Egs. (19) and (20), respectively, if k3 is
replaced by k3 = k§ — w/(ago) > 0 for a < 0 (below
transition energy) and by —k3 = —[k§ + wn/(ago)] <0
for @« > 0 (above transition energy). The potential ®(z)
given by (14) and (20) can be taken from Ref. [17].

V. PERIODICITY CONDITION

The periodic nonlinear structure we are looking for must
fit into the machine, i.e, it must satisfy the periodicity
condition

Pz + 1) = d(2). (21)

Note that the dimensionless coordinate z is defined as the
dimensiona coordinate normalized by 27 Ry, the circum-
ference of the machine. If 2L describes the dimensionless
periodicity length of the structure, which can be found in
accordance with the final quadrature of (14) using (20) (see
Refs. [15,17]), Eq. (21) implies

2Ln =1 withn=1,2,3,.... (22
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Following the notation of [15,17] we now introduce the
combined parameter

. 15k}
C64b(B, AWNT
It will be shown later that this parameter controls the
harmonic wave spectrum of the periodic solution in the

resistive case. Note that 7. is not directly related to the pe-
riodicity length L. Three regions of wave solutions can be

(23)

. 1 - K|/K
nF(arcsm #rm):
1 — K,
Ky — 1 )
nmyp | =

Ky +1
m3>=

nF(arccos

.1
nF(arcsm—

JKs

where F(u|m) denotes the elliptic integral of the first kind |

as defined in [19], b standsfor b(B, Au), and the K;'sand
m;'s are given by

Ky =1+2L - 2JL(L -1)=Ks, (263
K,=1+2L +24L(L —1)=Ks, (26b)
K; =1+ 2L, (26¢)
Ks=1-+V1+ 8L, (26d)
K>
= —= 2
mi K- K (26€)
1
my = E (1 + K3/K4), (26f)
m3 = Ks/Ks . (269)

Through the K;'s each periodicity condition in (25) de-
pends on L which itself depends on ko, ¥, and b(B, Au).
They are therefore implicit equations which have to be sat-
isfied by the parameters. In addition, the NDR (19) hasto
be satisfied. It can be rewritten as

ko

1 ,<Au>
- —Zll—=)=—=.

2 N\V2 4L
We emphasize that (27) admits standing wave solutions
(Au = 0). In that case, Z;(%) = —2, and L is given
by 4L = ki/(ki + 1). Hence, for any value of L in the
interval 0 = L = 1/4 standing (periodic or solitary) wave
solutions are possible.

k3 (27)

VI. SOME EXPLICIT SOLUTIONS

The two conditions (25) and (27) are now investigated
for some specia cases. For m = 0 and m = 1 the elliptic
integral simplifies as follows:
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|
1 — [ K| KbJY
yVTet T o 15

distinguished in which ®(z) can be expressed by Jacobian
dliptic functions [15,17],

0 L<-3
(i) 0o=L=1,
(i) 1<L.
Applying (22) to the solution of [15,17] for each region
we get the following periodicity conditions:

(24)

(25a)
J—a K“lg@, (25h)
1 Kﬁbﬁ
E \/——a 15 R (25¢)
F(ul0) = u, (289)
F(ull) = In[tan(% + gﬂ = In(secu + tanu).
(28b)

A. L. — —o (harmonic potential)

For this limit, which can be achieved by letting
b(B,Au) — 0~, we find K, — 4L, K, — 2, and hence
m; — 0. b(B,Au) = 0 in (20) yields a harmonic poten-
tial ®(z) given by

d(z) = %[1 + cos(v/—a koz)] = ‘Pcosz<@>.
(29)

The periodicity condition (25a) and the NDR (27) simplify
to

2
k2 = Q@) (30a)
—
1 Au
k2 = —z’(—), 30b

respectively. Since Z/(x) is positive in the region 0.924 <
x with a maximum of 0.285 at x = 1.50, we see that
a solution is possible if k3 < 0.285, —a > 138.64, and
Au > 1.307. For a given «a, the periodicity parameter
n (number of potential maxima) may not be too large.
Since « is proportional to the number of beam particles
N, the condition for —a can be satisfied easily. From
the definition (10) it follows that B8 has to be negative,
which implies a depression of the distribution function in
the resonant region.
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B. L — 0% (solitary potential)

This limit requires kp — 0. Using (20), the potential
structure becomes [1]

—abJ¥
15 °

With K3 — 1, K4 — 1, and m, — 1, the periodicity con-
dition (25b) is found to be
—abJT

nln[tan(%ﬂ =\ "5 (32)

which is infinite on the left-hand side and, strictly
speaking, not solvable. However, since the solitary
wave structure rapidly decays for distances larger than
A = 15[—ab(B, v4)v¥ |71, which in turn can be very
small due to |a|™! « N1, many solitary structures can
coexist in the device with no mutual interaction. Thus the
periodicity condition (32) loses relevance in rea devices
if N > 1, which is usually the case.

®(z) = ¥ sech? (31)

C. L. — 1~ (anharmonic potential)

In this limit we get from (26): K3 — 3, K, — 3, and
my — 1. The potentia is then given by

d(z) = «P[l = 3tanh2<1/63—4(—a)koz>r. (33)

Equation (33) is valid for —L =z = +L, where L is
givenby L/4 = [3(—a)ki] /*In(2 + +/3). Outside this
range ®(z) isfound by periodic continuation. Using (23),
the periodicity condition (25b) becomes

2
nn@ + ﬁ)z\/ﬂ =\/%, (34)

which hasto be satisfied in conjunction with the NDR (27),
which simplifies to

1. M) _3p

> Zr< 7 kg (35)
As in the harmonic case (Sec. VI.A), a solution can be
found provided that —« is not too small. The necessary
conditions are —a > 97.45, k§ < 0.38, and the wave ve-
locity has to satisfy Au > 1.307 such that Z’(—) is posi-
tive. For a given «, here again n must not be too large.
For given values —«, W, ko, and Au > 1.307, and using
the condition (8, Au)v¥ = k2, which results from
L =1, we find from definition (10) that 8 must be suf-
ficiently negative to meet al conditions. Thus, the distri-
bution function again has to be depressed, i.e., holelike, in
the resonant regions.

D. Other periodic solutions for the resistive case

It can be easily checked that approaching L — -+ and
L — 17 in Eq. (25¢) yields the same result as in cases
VI A and VI C, respectively. Other members of the class
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of periodic solutions can be found if L is allowed to take
values differing from those cases mentioned above. In
general, this requires a numerical evaluation of the two
constraining conditions, namely the periodicity condition
(25) and the nonlinear dispersion relation (27) to determine
the parameters ko, Au, and 8.

E. Space-charge dominated case

Until now we considered only the resistive case. To treat
the case redlized in the experiments of [9], namely that of
a purely space-charge dominated beam below transition
energy, ki in Egs. (19), (20), and (23) has to be replaced
by ki = ki — w/(ago), aswas mentioned previously.

In the harmonic limit . — —oo the existence conditions
are that of (30) with k3 replaced by k3. The conditions
therefore become

2
kg_L=@>o, (36a)
ago -
1 Au
k2—L——z< >>o. 36b

Again, Au must exceed 1.307, i.e., nonpropagating struc-
tures (with Au = 0) do not exist in this limit. From
ki — w/ago < 0.285 it follows that the machine parame-
ters have to satisfy the condition
2 3p 2

o 8meomy RovT ) ogs (37)

ago Inlg*goN
which can be satisfied easily if the total number of beam
particles is sufficiently large (N ~ O (10'?) in Ref. [9]).
See Ref. [5] for the definitions of w and «.

As mentioned earlier, the observation of a standing
periodic wave structure under space-charge dominated
conditions as in Ref. [9] can be explained by assuming
0 =L = 1/4, which is a subset of case (ii) in (24),
subject to the periodicity condition (25b) Note that in
this situation L is given by 4L = k3/(k§ + 1).

We conclude that periodic holes, as a solution of the
full nonlinear set of Vlasov-Poisson equations, can exist
under a variety of experimental conditions and hence are
ubiquitous in such systems. The observation of “phase
space voids introduced by empty rf buckets that do not
debunch” in Ref. [9] is then not surprising as it reflects a
natural event in debunched beams.

However, some caution must be given. The present
analysis was based on small holes only (¥ <« 1), which
alows analytic evaluation. In general, ¥ can be arbitrarily
large representing finite amplitude holes [12,20]. Then the
existence conditions have to be obtained numerically.

VIl. CONCLUDING REMARKS

In this paper, the theory of localized holes in debunched
beams has been generalized to periodic wave trains. Con-
ditions for the existence of stationary and self-consistent
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solutions have been derived. As was shown, these solu-
tions require a nonlinear analysis of the Vlasov-Poison
system and hence lie outside the ream of linear wave
theories. The question of stability and longevity of hole
structures as studied numerically in [9] (whether holes co-
alesce, split, or remain essentially unchanged) is a dif-
ferent issue and will be investigated in forthcoming pub-
lications. We mention only that a modified Korteweg—
de Vries equation—the so-called Schamel equation—can
be derived [21] admitting our phase space vortices as spe-
cia solutions. The complete integrability of this equation
is, however, doubtful [22—24] and hence inelastic calli-
sions such as coalescence can be expected to be involved
in the dynamical evolution.
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