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Hamiltonian formalism for solving the Vlasov-Poisson equations and its applications
to periodic focusing systems and coherent beam-beam interaction
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A Hamiltonian approach to the solution of the Vlasov-Poisson equations has been developed. Based
on a nonlinear canonical transformation, the rapidly oscillating terms in the original Hamiltonian are
transformed away, yielding a new Hamiltonian that contains slowly varying terms only. The formalism
has been applied to the dynamics of an intense beam propagating through a periodic focusing lattice,
and to the coherent beam-beam interaction. A stationary solution to the transformed Vlasov equation
has been obtained.
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I. INTRODUCTION the mixed variables. Nevertheless, such an elimination can

. . . be performed in the new Hamiltonian in the mixed vari-
The evolution of charged particle beams in accelerators . L C

X . ables. Moreover, if the distribution function is assumed
and storage rings can often be described by the Vlasoy-

Maxwell equations [1,2]. At high energies the discrete—to be an arbitrary function of the new time-independent

particle collision term [3] comprises a small correction tOHamlltonlan, .'t IS a statlonary soI_ut|on of the nonllne_ar
. e Vlasov equation in the mixed variables. The canonical
the dynamics and can be neglected. Radiation effects at

sufficiently high energies for leptons can be a significanf)erturbatIon method developed in this paper is further ap-

feature of the dynamics, and should normally be includecljaIIe<j to intense beam propagation in & periodic fo_cusmg
. . . structure (Sec. IIl) and to the coherent beam-beam interac-
in the model under consideration.

The Vlasov-Maxwell equations constitute a conslder-tIon (Secs. IV and V).‘ .A_coupled set of T‘P”".”eaf |_ntegra|
e A > . _equations for the equilibrium beam densities is derived. As
able simplification in the description of charged particle . : )
. applied to the beam-beam interaction, the present formal-
beam propagation. Nonetheless, there are only a few case i .
; L ISm has been developed for collisionless systems and is
that are tractable analytically [1,2]. Therefore, it is of ut-

most importance to develop a systematic perturbation a intended to complement and extend previous models [11]

pork op a Sy P . ARhat calculate quasiequilibrium states in the presence of
proach that is able to provide satisfactory results in amdeaam ina and quantum fluctuations
variety of cases of physical interest. ping q ’

. : To summarize, the effectiveness of the Hamiltonian for-
Particle beams are subject to external forces that are

often rapidly oscillating, such as quadrupolar focusingtr;1allsm developed in this paper is demonstrated in two par-

forces, rf fields, etc. In addition, the collective self-field cularexamples. In the firstexample, discussed in Sec. I,

> . e ; the short-scale dynamics is contained in the external focus-
excitations can be rapidly oscillating as well. A typical ex-. . . .
ing force acting on the beam, while an essential feature of

z\r/';ﬁ)llﬁi ('; zfcggéﬂ':%:;ai?:t:g;a?e;}?gcga %vg: e’thvéh;;ittrg?he coherent beam-beam interaction treated in Secs. IV and

: gy ythe V is the relatively fast variation of the collective interaction
magnetic force produced by the counterpropagating bearl:r)]etween the colliding beams. The simplicity in applying
[4—6]. The beam-beam kick each beam experiences is Iq '

. : ) . . _the Hamiltonian averaging technique is embedded in the
calized only in a small region around the interaction pomtuse of mixed canonical variables. Instead of exnandin
and is periodic with a period of one turn. : P 9

. . L ... the generating function and the new Hamiltonian in terms
In this and other important applications, one is primarily

. . . . > of the new canonical coordinates and momenta [7,8], one
interested in the longtime behavior of the beam, thus dis; : . ) .

) ; has to simply solve the Hamilton-Jacobi equations order
carding the fast processes on time scales of the order of tfbe

period of the rapid oscillations. To extract the relevant in- Y or_der._ It should pe emphasized that the r_mxed va_rlable
formation, an efficient method of averaging is developed inHamll_tonlan form_al_|sm can be used to der_lve amplitude
Sec. Il. Unlike the standard canonical perturbation tech_equatlons, describing Processes of formation of patterns
: ) ; -~ and coherent structures in a number of plasma and beam
hique [7-9], the approach used here is carried out in g stems in which collective processes are important
“mixed” phase space (old coordinates and new canonical’ P P '
momenta [10]), which is simpler and more efficient in a
computational sense. It should be pointed out that the for- 1. THE HAMILTONIAN FORMALISM
malism developed here is, strictly speaking, noncanonical We consider anv-dimensional dynamical system, de-
and, in general, does not provide complete elimination ofcribed by the canonical conjugate pair of vector variables

fast oscillating terms in the transformed Vlasov equation inq, p) with components
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= b 9y b = ) XN . 1 2 2 (‘)P
q = (491.92---.qn) p=(p.p2....pn). (D) aa(s'9 N aaaSP <a—j> 0. 12)
The Vlasov equation for the distribution function f(q, p; ) qi0t qi0F; \ Ot Jqp
can be expressed as (aQ-) 925 92S  (0P;
I - S
Z_f T+ [f.Hlgp = 0, @ At Jgp  OP;Ot  IP;OP; \ 9t Jgp
t
or
where 2
IP; Ny D
(—’) - g S (14)
(F.G)., = F 9G _ 9F G @ at gp i yqot
»Tlgp T T
dgi dpi  dpi 9q; Our god is to express the Vlasov equation (2) in terms

is the Poisson bracket, H(q, p; #) isthe Hamiltonian of the
system, and summation over repeated indices is implied.
Next we define a canonical transformation via the gener-
ating function of the second type according to

S = S(q.P;1), 4)
and assume that the Hessian matrix
~ 9%S
Hii(q,P;t) = 5
faPi) = 5o (5)

of the generating function S(q, P; r) is nondegenerate, i.e.,
det(FH;;) # 0. (©)

Thisimplies that the inverse matrix .7:[,».,-_1 exists. The new
canonical variables (Q,P) are defined by the canonical
transformation as

0S a5
= , 0; = .
aq; dP;

Di ()
We also introduce the distribution function defined in

terms of the new canonical coordinates (Q,P) and the

mixed pair of canonical variables (q, P) according to

fo(Q,P;t) = f(q(Q,P;1),p(Q,P;1);1), (8)
Fo(q,P;t) = f(q,p(q,P;1);1). )

In particular, in Eq. (8) the old canonical variables are
expressed in terms of the new ones, which isensured by the
implicit function theorem, provided the relation (6) holds.
Asfar as the function Fy(q, P; t) is concerned, we simply
replace the old momentum p by its counterpart taken from
the first of Egs. (7). Because
%:aziszg:[l:;apl:j:[_l
an aq,»an J apj Y

(10)
we can express the Poisson bracket in terms of the mixed
variables in the form

1 OF oG oF oG
[F.Glyp = ;" (2226 _ AL 3G)
aq,- ('9Pj ('9Pj aq,‘

Differentiation of Egs. (7) with respect to time ¢, keeping
the old variables (q, p) fixed, yields
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of the mixed variables (q,P). Taking into account the
identities

00, 9%S - ag; ~
= = Hy = = (15)
aq; dq;oP; 00,
afo -1 9Fo
= (16)
00, dq;
and
Ifo _ IFy _ dfo S 17)
aP; AP,  9Q; aP;P;’
we obtain

(L) — 2, (30 |, oo (20)
at gy 0t Qi \ 0t Jgp 0P\ 3t )yp

S ] (L M
at / daq; atan an dtdq;
JF aS
=2+ [FO,—} : (18)
Furthermore, using the relation
[f’H]q,p = [FO’ :]-[]q,P s (19)
where
H(q,P;t) = H(q,V,S;1), (20)

we express the Vlasov equation in terms of the mixed
variables according to

oF,
0+ [Fo. Klgp = 0. (21)
where
aS
K(q,P;1) = Fri H(q,V,S;1) (22)

is the new Hamiltonian.
For the distribution function fy(Q, P; ), depending on
the new canonical variables, we clearly obtain
afo

-t [fo, Klop =0, (23)
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where the new Hamiltonian K is a function of the new
canonica pair (Q,P), such that

aS
K(VpS,P;t) = 5 T H(q,V,S;1), (24)

and the Poisson bracket entering Eq. (23) has the same
form as Eq. (3), expressed in the new canonical variables.

1. PROPAGATION OF AN INTENSE BEAM
THROUGH A PERIODIC FOCUSING LATTICE

As afirst application of the Hamiltonian formalism, we
consider the propagation of a continuous beam through
a periodic focusing lattice in a circular ring with mean
radius R. Particle motion is accomplished in 2 degrees
of freedom in a plane transverse to the design orbit. The
model equations consist of the nonlinear VIasov-Poisson
equations [1]

af

5+ Lf Hlp = 0. (@)

Vi = ~4me =~z [ @pfapi0). (29
where
H(q,p:;0) = ﬂ(pz + pd) + L(G x> + G,z%)
e 2 z 2R T &

+ A(q: 0) (27)

is the normalized Hamiltonian, and q = (x,z). The
transverse canonical momenta p = (p,, p,) entering the
Hamiltonian (27) are dimensionless variables which repre-
sent the actual transverse momenta of the moving particle
scaled by the longitudina momentum of the synchronous
particle [12]. The case of a beam propagation in a straight
focusing channel is most appropriately described in terms
of the path length s = R chosen as an independent
variable. Then the Hamiltonian (27) should be divided by
the mean radius R and the coefficients G, . /R? redefined
accordingly [12].

In addition, R is the mean radius of the accelerator and
¢ is a normalized potential related to the actual electric
potential ¢ according to

daeg
]Ve[7

¥ = ?, (28)
where N is the total number of particlesin the beam, ¢, is
the particle charge, and g is the electric susceptibility of
vacuum. Moreover, the parameter A is defined by

_ NR}"b
B
where B, = v,/c is the relative velocity of the synchro-

nous particle, y, = (1 — B2)~/2 is the Lorentz factor,
and

(29)
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2
€h
= — 30
Cap- gomyp c2 (30)
is the classical radius of a beam particle with charge e,
and rest mass m,,. The coefficients G, ,(6) determining the
focusing strength in both transverse directions are periodic
functions of 6,

G)c,z((9 + 0) = Gx,z(6)7 (31)

with period ©.
Following the procedure outlined in the preceding sec-
tion, we transform Egs. (25)—(27) according to

[Fo, Klgp =0, (32)

4 eH@ TS0 = K@ P), (3

Ve = —47Tf d*P Fy(q,P) det(V,VpS), (34)

where € is formally a small parameter, which will be set
equal to unity at the end of the calculation. Similar to
Ref. [8], the small parameter € is proportional to the ap-
plied focusing field. Specifically, the parameter e scales as
€ ~ 0,/27 < 1, where o, isthe vacuum phase advance
[8]. Note that al contributions to the original Hamiltonian
(27) are alowed to be of the same order of magnitude,
where the small parameter e multiplies H(q,V4S;6) in
Eq. (33). Therefore, in this maximal ordering, self-field
effects are alowed to be as large as (or weaker than) the
applied focusing field. The next step isto expand the quan-
tities S, K, and ¢ in a power seriesin e according to

S = S() + 6S1 + 6252 + E3S3 + ey (35)
K = K() + EKI + EZKZ + 63j<3 + ey (36)
b=+ e + €Y+ Y3+ ... (37

We now substitute the expansions (35)—(37) into Egs. (33)
and (34) and obtain perturbation equations that can be
solved order by order.

The lowest order solution is evident and has the form

So=4q " P, Ko =0, (38)

Vepo = —4m f d’P Fy(q,P). (39)

First-order O(e).— Taking into account the already ob-
tained lowest-order solutions (38) and (39), the Hamilton-
Jacobi eguation (33) to first order in e can be expressed as

S, R 5 .
—L 4+ —(P2+ PH)+
a9 T B TR

1
R (Gx® + G.2%) + Mo = Ki(q,P).  (40)
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Imposing the condition that the first-order Hamiltonian s, — xp. G, (0) + zP.G.(6), XKa(q,P) = 0. (49)

XK, be equal to

R 1 _ B For the second-order potential ¢, we obtain the equation

Ki(@,P) = — (P} + P)) + -~ (Gx* + G.2°) ..
2 2R Vit = ~4n(G. + G [ PR P). (60

+ Ao(q), (41)

we obtain immediately or, making use of (39),

1. . :0) = [G.(0) + G.(0 . 51
S, — —E[Gx(é’)xz L 6.0)2]. (42) Pa(q;0) = [G.(6) (0)]o(q) (51)
In Egs. (49)—(51), G,..(9) denotes application of the inte-
Y1 =0. (43)  gral operation in Eq. (44) to G,.(6), i.e,
Here we introduce the notation 2 bot0
B | [0t G,.(0) = ]0 d7 Gy (1), (52)
Gy, = — do G, .(0), — 0
0 Jo, (44) because G, = 0.
. 0o+0 B Third-order O(e®).—To third order in e, the Hamilton-
G,:(0) = f d7[G, (1) — G..]. Jacobi equation (33) can be written as
o
Note that since the focusing coefficients are periodic 983 + R(pgf;x + pr;Z)Jr
functions of 6 they can be expanded in a Fourier series 0 '
et 1 ~ ~ =z =z
G..(0) = > G"exp(inQ0), (45) g (Gx? + G22%) + MGy + G = IG(q,P).
where (53
1 (© Thethird-order Hamiltonian K5 isgiven by the expression
) =& [ e 0en-nan. @ s Isgivenby Meexpres
0 _ Ky, P) = o (G2 + G22%). (54)
and O = 27/0©. Therefore, for the quantities G, and ' 2R .
G...(0) expressed in terms of the Fourier amplitudes, we ~ Equation (53) can be solved easily for the third-order gen-
obtain erating function S3. The result is
. (n) - -
_ . Y z z 1 =~ ~
G..=GY,  G..00)= —— > Gz exp(in)9) . S3 = —R(P2G, + P2G.) — — (G2x% + G27?)
’ Q% n T 2R ,
(47) — MGy + G- (55)

Second-order O(e?).—To this order, the Hamilton-

Jacobi equation (33) takes the form For the third-order electric potential ;3 we obtain simply

N ~ ~ Y3 =0. (56)
%~ PGy + 2P.G) = IG(Q.P). (49
960 Fourth-order O(e*).—To the fourth order in the expan-
It is straightforward to solve Eq. (48), yieldingtheobvious  sion parameter e, the Hamilton-Jacobi equation (33) can
result be expressed as
|
oS = ~ = -~ Y = ~ ~ 9 9
S5~ Px(GE + GiGy) = 2Po(GE + G:G) — ARGy + GZ)<PX % + P, %) — K4(q.P). (57)
’ X Z

The obvious condition to impose is that the fourth-order Hamiltonian XK, be egual to

Ki(q,P) = —xP,G.G. — zP.G.G. . (58)

Taking into account Eq. (58), it is straightforward to solve the fourth-order Hamilton-Jacobi equation (57) for S5. We
obtain

~ ~

~ o ~ .z z z d d
Sy = xP (G2 + G,G,) + 2P, (G2 + G.G.) + AR(G, + GZ)<Px % + P, %) (59)
, N p
For the fourth-order electric potential ., we obtain the Poisson equation
V2yy =[G.G. + G2 + G2 + GG, + G.G, + ARG + GV IViiho. (60)

021001-4 021001-4



PRST-AB 5 HAMILTONIAN FORMALISM FOR SOLVING THE ... 021001 (2002)

Fifth-order 0(65) —In fifth order, we are interested in the Hamiltonian K5. Omitting algebraic details, we find
tﬂo

Ks(q,P) = (G P2+GP2)+—(G G2x2+GG2 2)+/\[G(G +G) +G(G +G)z %}

(61)

In concluding this section, we collect terms up to fifth order in € in the new Hamiltonian K = Ky + eXK; +
€?XK, + ...and set e = 1. This gives

R ~ 2 z ~ Z z
X(q,P) = Z < A “ P2 + BuP, + C—u ) + Ao(q) + A[G(Gx + Gz)xa—% + G.(Gx + G,)z al/")},
=) 2 2R ox 0z
(62)
where the coefficients A ,,, B, and C,, are defined by the | For a Hamiltonian system governed by a quadratic form
expressions in the canonical variables of the type in Eq. (62), it is
= well known that the characteristic frequencies v, . can be
A, =1+ €'G,, (63)  expressed as
B, = —€3Gu(:7u, (64) 1/5 =A,C, — Bf (u=x,2). (66)

Keeping terms up to sixth order in the perturbation param-

and ;
eter e, we obtain

C.=G, + €2G2 + 26*G,G2. (65)

_ = — z2 - =
2 _ 272 4 2
The Hamiltonian (62), neglecting the contribution from the «w=Gute ﬂ + (GG, + 2G,GY)
self-field g, describes the unperturbed betatron oscilla- 6rFa 52 s 2
tions in both the horizontal and the vertical directions. €66, — (GIGW)7]. (67)
It is useful to compute the unperturbed betatron tunes  Interms of Fourier amplitudes of the focusing coefficients,
v, . in terms of averages over the focusing field strengths.  Eq. (67) can be expressed as

2¢2 & IGW?
2 _ ~(0) u
v, = Gu 02 Z n2
n) 2 ® (m)x > (n) ;(m—n) i (m) ;;(n) i (m~+n)*
|:G(0) Z | Re(Gu Gu Gu ) . Re(Gu Gu Gu ):|
o mn(m — n)? mn(m + n)?

m,n=1

o0 2 2
4€6 |G§:">| |G;>|

QG m,n=1 m2n4 (68)
. . . . |
For illustration purposes, we consider a simple FODO 2@2,2 P _ ,
lattice with equal focusing and defocusing strengths +G v = 2 ®4 G ! S sin’ @m — D,
and —G and period ®. We aso assume that the lon- 77 mm1 2m = 1) ®
gitudina dimensions ¢, of the focusing and defocusing (71)
lenses are equal; the longitudinal dimensions 8, of thecor- 1, the Jimit of infinitely thin lenses, 6; — 0, Eq. (71) re-
responding drift spaces are assumed to be equal as well.  gyces to the well-known expression
Moreover, 202 2
b € HfG
207 + 04) = O, (69) vy = T (72)
For simplicity, we consider the horizontal degree of free-  \yhere use has been made of the identity
dom only (the vertical degree of freedom can be treated in - 5
analogous manner). The Fourier amplitudes of the focus- Z B S T (73)
ing coefficients are = 2m = 1)? 8
1) iG . It is evident from Egs. (68) and (71) that the Hamilto-
Gy = 2n + ) {expl—i(2n + )Q6,] — 1}, nian averaging technique devel oped here represents a pow-
G — o (70)  erful formalism for evaluating the betatron tunes in terms
x W of averages over the focusing field strength. The analy-
wheren = 0,1,2,.... To second order in €, we obtain for sis in this section has been carried out to sixth order to
the horizontal betatron tune demonstrate the ease and flexibility of the mixed-variable
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approach. In some practical applications, a description to
lower order (e.g. fourth order) may be adequate.

IV. COHERENT BEAM-BEAM INTERACTION

As a second application of the Hamiltonian formal-
ism developed in Sec. I, we study here the evolution of
two counterpropagating beams, nonlinearly coupled by the
electromagnetic interaction between the beams at collision.
For simplicity, we consider one-dimensional motion in the
vertical (¢g) direction, described by the nonlinear Vlasov-
Poisson eguations

Ifk

50 + [fe.H ]l =0, (74)

9%V,
Gl

—an [ dpisapi0).  (79)
where
H, = % (P2 + ¢%) + M8, (0)Vi(g:0)  (76)

is the Hamiltonian. Here A, is the beam-beam coupling
parameter, defined according to [13]

_ RreN3—iBig 1 + BroBe-ro _

2RreN3*k:81tq
YkoLG—k)x Bio '

YioLG—k)x
(77)

Moreover, (k = 1,2) labels the beam, fi(q, p;0) is the
distribution function, 6 is the azimuthal angle, and v, is
the betatron frequency in the vertical direction. In addition,
R is the mean machine radius, r, is the classical electron
radius, N, » isthe total number of particlesin either beam,
Vi(g; 6) isthe normalized beam-beam potential, 3, isthe
vertical betafunction at theinteraction point, and Ly, isthe
horizontal dimension of the beam ribbon [14].

Our goal isto determine acanonical transformation such
that the new Hamiltonian is time independent. Asaconse-
guence, the stationary solution of the Vlasov equation (21)
is expressed as a function of the new Hamiltonian. Fol-
lowing the procedure outlined in the Sec. Il we transform
Egs. (74)—(76) according to

[FP, x1=0, (78)

a0

92V f 928y
=47

ag? ag ap
where € is again a formal small parameter, which will be
set equal to unity at the end of the calculation. In this case,
the small parameter e scales as the beam-beam parame-
ter [13] A with € ~ A = (2/77)1/2/\](0'](/[0'371{(0'/% +
Ugfk)l/z]-

LAY er<q, qu, )=ﬂ<k<q,P), (79)

(3 k)

(g.P),  (80)
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The next step is to expand the quantities S, XK, and
Vi in a power series in e, analogous to Egs. (35)—(37),
according to

Sy = qP + €G\ + €67 + &6 + ..., (81)
K=eXV + @x? + x4+ .., (82
Vk—Vk-i-eV +EV(2)+ V,£3)+..., (83)
where
0%V
aqk = 477[dPF(3 Yg, P). (84)

Subsgtitution of the above expansions (81)—(83) into
Egs. (79) and (80) yields perturbation equations that can
be solved successively order by order. The results to third
order in € are briefly summarized below.

First-order O(e):

KWg.py = 2k (p2 + g% + ;—7'; Vilg),  (89)

G (q,P;0) = Z_Vk(Q) > expling), (80
nz0 1

Vkl)(q; 0)=0. (87)

Second-order O(€?):

K (g.P) =0, (88)
G? Mk 1 )
¢ (q.Pi0) = =5 —PVilq) > —expling), (89)
n#0
V(g0 = =22 00(q) Y explind), (90
n#0
where
V,£2) ~ 1 (3—k)
i =47V, (q)] dP Fy (q,P). (92)

Third-order O(e?).—In third order we are interested in
the new Hamiltonian, which is of the form
)‘k Vi
4 2

(3)

(q,P) = ([ — 270 (@)], (92

where {(z) is Riemann’s zeta function [15]
{(z) = Z i . (93)

The effectiveness of the Hamiltonian formalism devel-
oped in this paper has been demonstrated in two particular
examples. In the first example, discussed in the previous

021001-6
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section, the short-scale dynamicsis contained in the exter-
na focusing force acting on the beam, while an essential
feature of the coherent beam-beam interaction treated in
this section is the relatively fast variation of the collective
interaction between the two colliding beams. The sim-
plicity in applying the Hamiltonian averaging technique is
embedded in the use of mixed canonical variables. Instead
of expanding the generating function and the new Hamil-
tonian in terms of the new canonical coordinates and mo-
menta [7,8], one has to simply solve the Hamilton-Jacobi
equations order by order. It should be pointed out that
the mixed variable Hamiltonian formalism can be used to
derive amplitude equations, describing processes of for-
mation of patterns and coherent structures in a number of
plasmaand beam systemsin which collective processes are
important.

V. THE EQUILIBRIUM DISTRIBUTION
FUNCTION
Since the new Hamiltonian ;. is time independent (by

construction), the equilibrium distribution function F(()k)
[see Eq. (78)] is a function of the new Hamiltonian

F)(q,P) = Gi(XKy), (94)

Integrating Eq. (94) over P we obtain a nonlinear integral
equation of the Haissinski type [16] for the equilibrium

beam density profile on
o) = [ ar G, (96)
where
Kilg.P) = (P> + ¢°)
+ Akqu’lq qles (g

+ 20 {2 Fi(g), 97

Flq) = f dq'dq" Z(q — q'.q' — ¢")
F g, (98)

Z(u,v) = sgn(u) sgn(v) — 2luld(v). (99)

Here, sgn(z) is the well-known signum function.

Let us further specify the function G (XK;) and assume
that it is given by the therma equilibrium distribution
[1,12,17]

(3—k)

X g0 (q"eo

X
65 = Mewp(-T2). (o
where where 2N, is a normalization constant, defined according
Kilg.P)= (P + ¢) + M Pl) N
k\4> - 5 ~_ Yk
2m - [ dgq dP exp[——j("(q’l) )] (101)
)\ka 12 M Ek
S L[V (g) — 207@]. (%) and &x is the unnormalized beam emittance. The second
term in the Hamiltonian (97) can be transformed according
| to
f dg'lq — q'les’ (¢ = q — (g3-1) + 2] dq' (' — 9es (g
e .
- 3-k)
=q —{q3-k) T Zfo dgiqieo (g1 + q), (102)
where
U N (5
@t = [ dgare (@), (109)

Expanding the beam density o5
parts, we obtain

/700 dq'lq — q'les (g = @57 — @\

where

<+>>_f dg 405 (q),
(105)

(ay )>—f dg 408 (q),

021001-7

k)(ql + ¢) occurring in the integral in Eq. (102) in a Taylor series and integrating by

.
Sk g, (104)
A =f0 dq Qék)(q),
(106)
cw 020 (q)
- n—2 N
0q q=0

Substituting Egs. (100) and (104) into Eq. (96), we obtain

021001-7
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o (q) = M;

Vi 28k

Taking into account that
A = ZE N + o),
Vi
. ) (n=2)/2
e =N 778"( 1 2(”")
28k

X H,,_Z(O) + O(Ar), (108)

where H,(z) is the Hermite polynomial [15] of order n,
we obtain

k 2me
06 (q) = Lexplhi(q)], (109
where
vig? A Bs_
hilg) = =5 = S
27T)\k83_k.7\6_k|: e B-rd }
— S D (a3 g) +
S Vit q (a3 kfI) a3,k\/F ,
(110)
and
2
Bo—1 - 2meNe o e (111)
Vi 28k

Here, ®(z) is the error function [15].
In order to determine the normalization constant(s), JN;,
we utilize the method of Laplace to take the integral of

the beam density Q(()k)(q) over g. Thefirst step consists of
finding the extremum value(s) q,(f) of thefunction(s) A (q).
These values satisfy the (two) equation(s)
Vi QI(ce) M Bs—i
+
&k &k
2w Ae3— N3
EkV3—k

These are evidently maxima since

+

Dlasig) =0. (112

n (e) _ vk Amhes  Nak az ol
&k EkV3—k JT
<0. (113)

Integrating the beam density (109) over ¢, we obtain [18]

Ek (e)
L= 27N, |—%—— expli(g)].
vl (g

Equation (114) represents two transcendental equations for
determining the normalization constants JV;.. For the beam
centroid and the beam size, i.e., the first and second mo-
ments of the beam density (109), we obtain

b 2P 2T o ql)], (115)
gV 7

(114)
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2 2
TE exp[— Yed~ M

(107)

(e)
e)2 4N 2778 e
g + o "?f))l,/ £ explin(qx )]

1 3/2 @)
+27Tj\fk\/7[|h %J expliu(qy )]
(116)

In order to proceed further, we assume that the beam-
beam coupling parameter A, issmall, and expand the equi-

librium beam density Q(()k)(q) in a perturbation seriesin A
according to

07(q) = 0% (q) + Aeoot(g) + ... (117)
where
0&(g) = —fexp( 2, (119
and
N,
ol(q) = {33 g + Tk
03 k

% [ 4®(asq) + e_a;\k/q—”Qoo @),
(119)

The main goal in what follows is to determine the normal-
ization constant(s) Ny. To do so we integrate Eq. (117)
over g. As aresult of simple algebraic manipulations, we
obtain

N, A
Tk ”@3" @+ a3, NiNoy = 1. (120)
ai Ekaras—g
Introducing the new unknowns
N;
M = T35, (121)
aj

we can write the two equations for determining M, , as

1 = M] - b]jvllj\/lz, 1= Mz - bzmlj\/lz,

(122)
where
Al \/a% + a% Ay \/a% + a%
bl = ) bz = .
eiJT  aax enJm  aay
(123)

From Eq. (122), as a result of simple algebraic manipula-
tions we obtain the quadratic equation

baM? — (by — by + DM, + 1 =0 (124)

for M, and the equation
byMy = by M + by — by (125)
021001-8
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for determining M, once M, is known. Equation (124)
has one real double root if and only if the discriminant

D = (b, — by + 1)> — 4b, (126)
is equal to zero. This gives
by = (Vby = 1)%. (127)

Since the scaled normalization constants M » should be
positive, we choose

by = by — 1)~ (128)
Thus we obtain
M, = —— = ! My = —— (129)
YV Wb -1l NG

To conclude this section we note that in the case of
D # 0 we have two solutions for either M, i.e.,

by — b +1x+D

M = :
2b,
(130)
12 by —by+1x+VD
M = .
2b,

Note also that the discriminant D is invariant (does not
change) under permutation of b; and b,. In other words,
four different physically realizable situations are possible
for a wide range of parameters

0<by<1+b;. (131)

Theinequality in Eq. (131) was obtained under the con-
dition that both solutions in Eq. (130) are positive. This
case corresponds to the so-caled “flip-flop” state [19] of
the two colliding beams, which is a bifurcated state that is
better to be avoided.

V1. CONCLUSIONS

We developed a systematic canonical perturbation ap-
proach that removes rapidly oscillating terms in Hamilto-
nians of quite general form. The essential feature of this
approach is the use of mixed canonical variables. For this
purpose the Vlasov-Poisson equations are transformed to
mixed canonical variables, and an appropriate perturbation
scheme is chosen to obtain the equilibrium phase space
density. It is worthwhile to note that the perturbation ex-
pansion outlined in the preceding section can be carried
out to arbitrary order, although higher-order calculations
become very tedious.

In conclusion, it is evident from the present analysis
that the Hamiltonian averaging technique developed here
represents a powerful formalism with applications ranging
from beam propagation through a periodic focusing lat-
tice (Sec. 1) to coherent beam-beam interaction (Secs. IV

021001-9

and V). For example, in the application to the coherent
beam-beam interaction, the rapidly oscillating terms due
to the periodic beam-beam kicks have been averaged away,
leading to a new time-independent Hamiltonian (Sec. 1V).
Furthermore, the equilibrium distribution functions have
been obtained as a general function of the new Hamilto-
nian, and a coupled set of integral equations for the beam
densities has been obtained (Sec. V). Anintriguing feature
of the analysisin Sec. V isthe derivation of acondition for
the existence of the so-called flip-flop state [19] of the two
colliding beams, which is a bifurcated state that is better
to be avoided in experimental applications.

We reiterate that the formalism developed here is,
strictly speaking, noncanonical and, in general, does not
provide complete elimination of fast oscillating terms in
the transformed Vlasov equation in the mixed variables.
Nevertheless, such an elimination can be performed in
the new Hamiltonian in the mixed variables. Moreover,
if the distribution function is assumed to be an arbitrary
function of the new time-independent Hamiltonian, it is
a stationary solution of the nonlinear Vlasov equation in
the mixed variables.

Finally, wereiterate that the mixed variable Hamiltonian
formalism developed in the present analysis can be used to
derive amplitude equations, describing processes of for-
mation of patterns and coherent structures in a number of
plasmaand beam systemsin which collective processes are
important.
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