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Analog analysis of p-mode structures: Results and implications
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The cavities of choice for high-energy synchrotrons and for medium-beta and high-beta accelerating
superconducting structures around the world are p-mode structures. A coupled-circuit analysis, allowing
for errors in cell frequencies and cell coupling constants, has been used to determine relative on-axis
electric field amplitudes between cells, operating frequencies, end-cell tuning, relative on-axis field phase
shifts, and field tilts when operated off resonance. Formulas are given for the above information as well
as specific examples showing sensitivities and machining/assembly/control tolerances. A method to
determine relative field amplitudes on the basis of the mode spectra was developed.
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I. RLC LOOP COUPLED CIRCUIT

Many of the rf cavities employed in high-energy syn-
chrotrons and in superconducting accelerators use p-mode
structures. Relative on-axis average electric field ampli-
tudes between cells of a multicell cavity can be investigated
using coupled-circuit analysis. This analysis method has
been used effectively for many years, beginning with work
by Dunn et al. [1–4] and carried on later at Los Alamos
[5,6] and at Chalk River [7]. The later studies focused
on p�2-mode cavities with their inherent stability proper-
ties. The work by Dunn et al. was rudimentary and showed
simple aspects of circuit theory. This paper provides sig-
nificant details on p-mode cavities and implications for
their operations. LOOPER [8], a program written in 1981 to
analyze coupled circuits for resonance characteristics, was
used to verify predictions from the analytic formulas given
below and is available from the Los Alamos Code Group
[9]. LOOPER was validated from multicell calculations using
SUPERFISH [10]: agreement to at least three significant fig-
ures for relative average on-axis field amplitudes and qual-
ity factors, and to at least nine for resonant frequencies.
LOOPER also provides information on phase shifts along a
structure, match to the drive(s), and beam coupling effects.

Figure 1 shows a coupled-circuit analog of a coupled-
cell cavity with first-neighbor coupling between the all-
identical loops. Resonant frequency for a cell is repre-
sented by the loop v0 �

p
1�2LC, cell quality factor by

Q � 2v0L�R, cell-to-cell coupling by k (the mutual in-
ductance), and cell average on-axis electric field amplitude
by the loop current amplitude, in.

The dispersion relationship for the coupled system
shown in Fig. 1 is f � f0�

p
1 1 k cosf, the frequency

region over which an infinite chain of cells with cell
resonant frequency f0 can oscillate for a particular mode
distribution, such as the TM010. Solutions for f of a finite
chain with N cells, and the loop current amplitudes for
end terminations of either half-cell or full cell, are given
in Table I.
1098-4402 �01�4(12)�122001(11)$15.00 ©
Within dispersion curve nomenclature, modes with 0
and p phase values exist for half-cell termination, but not
for full-cell termination. However, the last full-cell termi-
nation mode, w � pN��N 1 1�, is the only mode with p

phase shifts between each cell; hence the rationale for the
term p-mode. Similarly, the first mode is the only mode
with 0 phase shifts between all cells; hence 0-mode. All
other modes have combinations of 0, p�2, and p phase
shifts between cells. Unlike a half-cell terminated cavity,
relative cell field amplitudes are not flat for the two end
modes, q � 1 or N , of a full-cell terminated cavity.

For the most efficient conversion of input rf power to
beam power, it is desirable to equalize the average on-axis
electric field amplitudes of each cell in the cavity. Achieve-
ment of equal cell fields is known as having flat fields, i.e.,
ji1j � ji2j � ji3j � · · · � jiN j. Therefore, it is important
to understand relative cell fields and how they are impacted
by cavity variables.

Relative loop current amplitudes (representing average
on-axis relative electric field amplitudes) are obtained by
solving a set of N coupled equations using finite difference
techniques where the nth loop voltage using Kirchoff’s
Law is given by∑

R 1 j

µ
2vL 2

1
vC

∂∏
in 1 jvkL�in11 1 in21� � 0 ,

and the set of N equations has the form (A � 1�2 for
half-cell and A � 1 for full-cell termination):

AKi1 1 ki2 � 0 ,

Ki2 1 ki3 1 ki1 � 0 ,
...

Kin 1 kin11 1 kin21 � 0 , (1)
...

KiN21 1 kiN 1 kiN22 � 0 ,

AKiN 1 kiN21 � 0 ,
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FIG. 1. RLC loop-coupled analog circuit for analyzing coupled
accelerating cells.

with

K � 2

∑
1 2

µ
v0

v

∂2

2 j
v0

vQ

∏
.

For flat fields in either the 0- or p-mode with full-cell
termination, the first and last equations of Eq. (1) must
be modified (to be similar to those for half-cell termi-
nation) by having end-cell frequencies given by fend �
f0

p
�1 2 gk�2���1 2 gk� with g � 1 for the p-mode and

g � 21 for the 0-mode. However, when one of these
modes at the end of the dispersion curve is made flat,
the relative field distributions change for the rest of the
modes, as does the dispersion curve for the chain. The
p-mode frequency has an important correction factor a

that accounts for Q, N and errors in the cavity defined
by

fp �
f0p

1 2 k�1 1 a�
. (2)

In effect, the p-mode frequency correction factor a modi-
fies the coupling constant from k to k�1 1 a� in order to
account for characteristics of a real cavity, not one that
is errorless and/or lossless. The factor a can be positive
or negative, has an absolute value less than 1 (usually
less than 0.01), and is made up of two terms, a0 (term
accounting for finite Q and N) and aerr (term accounting
122001-2
TABLE I. Phase and loop amplitudes for half-cell and full-cell terminations.

End Phase Current Mode
terminations value amplitude numbering

Half cell w �
p�q 2 1�

N 2 1
in ~ cos

�n 2 1�p�q 2 1�
N 2 1

q � 1, 2, 3, . . . , N

Full cell w �
pq

N 1 1
in ~ sin

npq
N 1 1

q � 1, 2, 3, . . . , N
for cell errors); a � a0 1 aerr. The a0 correction
factor term is given by a0 � 5�N 2 1� �N 2 1.5 1 A��
8k2Q2, where A is the termination constant defined earlier.
This correction factor has been confirmed with LOOPER

calculations of the p-mode frequency with error-free
cavities to be accurate within nine significant figures
for ks from 1% to 6%, cell numbers to nine, and
loaded Qs as low as 10 000. The aerr term is deter-
mined by rearranging Eq. (2), yielding aerr � 21 1

���1 2 �f0��fp�a0� 1 dfp ��2����k, where fp �a0� is the
errorless, corrected p-mode frequency and dfp is the
frequency shift from cavity errors discussed in Sec. III B.

II. STEPWISE SOLUTIONS OF THE p -MODE
EQUATIONS

Although it is possible to obtain solutions for a chain of
coupled cells using analogs such as LOOPER, or from mesh
codes such as SUPERFISH and/or MAFIA [11], it is worth-
while to understand the performance of a coupled sys-
tem using analytic formulas that represent performance in
an accurate manner. This can be particularly important
for some characteristics of p-mode cavities. In addition,
formulas give insight into system performance and the con-
sequences of particular parameter changes. For these rea-
sons, Eq. (1) was solved stepwise from the first equation
to the last with drive eN in cell N . This drive results in the
last equation having the form AKiN 1 kiN21 � eN�jvL,
from which on-resonance (and off-resonance) character-
istics with drive can be determined. A solution for i2
in terms of i1 is obtained from the first equation, a so-
lution for i3 in terms of i1 is determined from the sec-
ond equation using the i2 solution, and so on until the
second last equation from which iN is determined. The
last equation is used to solve for eN in terms of i1. So-
lutions presented below were found to agree with LOOPER

calculations to within three significant figures for all cases
studied. Differences in cell parameters (from assembly
perturbations, errors, machining tolerances, etc.) are rep-
resented by different values for each cell: the nth cell fre-
quency, f0n � f0�1 1 Dn�, and coupling between the nth
and the n 1 1th cell, kn,n11 � k�1 1 ´n,n11�. The set of
Eq. (1) becomes the following when cell differences are
included:
122001-2
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AK1i1 1 k�1 1 ´1,2�i2 � 0 ,

K2i2 1 k�1 1 ´2,3�i3 1 k�1 1 ´1,2�i1 � 0 ,
...

Knin 1 k�1 1 ´n,n11�in11 1 k�1 1 ´n21,n�in21 � 0 , (3)
...

KN21iN21 1 k�1 1 ´N21,N �iN 1 k�1 1 ´N22,N21�iN22 � 0 ,

AKNiN 1 k�1 1 ´N21,N �iN21 � eN �jvL ,

with

Kn � 2k

∑
1 1 a 2

2Dn

k
2 j

µ
1 1 Dn 2

k
2 �1 1 a�

kQ

∂∏
,

except

Kn � 2k

∑
1
2

1 a 2
2Dn

k
2 j

µ
1 1 Dn 1

k
4 2

k
2 �1 1 a�

kQ

∂∏
,

for full-cell termination when n � 1 or N . Neglecting higher order terms gives the following complex solutions for the
nth cell current amplitude in an N cell chain using a first cell amplitude of i1 � 1 1 j0:

in�full���21�n21 � 1 1 n�n 2 1�a 2
�n 1 1�n�n 2 1� �n 2 2�

6k2Q2

3

∑
1 2 k�1 1 a� 1

2�n 2 3��n 1 2�a
15

1
k

�n 1 1�

∏

1
d1

k2Q2 2
4
k

��n 2 1�D1 1 · · · 1 3Dn23 1 2Dn22 1 Dn21�

2 �· · · 1 7´n24,n23 1 5´n23,n22 1 3´n22,n21 1 ´n21,n�

2 j
n�n 2 1�

kQ

∑
1 2

k�1 1 a�
2

1
�n 2 2� �n 1 1�a

3
1

k
2n

2
d2

n�n 2 1�

∏
. (4)

As expected, a half-cell terminated cavity has similar relative amplitudes given by

in�half���21�n21 �1 1 �n 2 1�2a 2
n�n 2 1�2�n 2 2�

6k2Q2

∑
1 2 k�1 1 a� 1

2�n 2 3� �n 1 1�a
15

∏
1

d3

k2Q2

2
4
k

∑
�n 2 1�

2
D1 1 · · · 1 3Dn23 1 2Dn22 1 Dn21

∏

2 �· · · 1 7´n24,n23 1 5´n23,n22 1 3´n22,n21 1 ´n21,n�

2 j
�n 2 1�2

kQ

∑
1 2

k
2

�1 1 a� 1
n�n 2 2�a

3
2

d4

�n 2 1�2

∏
. (5)

Expected similarities are evident as is the importance of the p-mode frequency correction factor a. End-to-end field
tilt depends on the fourth power of cell number to first order, and is linear to frequency and coupling constant errors. This
fourth power dependence on N for field flatness is a powerful argument for choosing the number of cells in a cavity to
be as small as reasonably possible. Also, because field tilt varies inversely to both the square of k and the square of Q, it
is advantageous to have these two parameters as large as possible. In addition, a larger k results in the cavity being less
sensitive to frequency errors. Note that full-cell termination has an extra k related term in both the real and the imaginary
parts of the expression. Second order corrections, d1 to d4, to the above expressions are not needed unless errors are
very large, and are included below for completeness with g � 1 for l � 1 and g � 2 for l . 1.
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d1 �
n21X
l�1

∑
2n�n 2 1� �n 1 1� �n 2 3� �n 2 2�

15
2

l$mX
m�2

2�n 2 2m� �n 1 1 2 2m� �n 1 2 2 2m� �n 1 3 2 2m�
3

∏
Dl

k

1

n21X
l�1

∑
n�n 2 1� �2n2 2 9n 1 29� �n 2 2�

30

2

l$mX
m�2

�n 2 1 2 2m� �n 2 2m� �n 1 1 2 2m� �n 1 2 2 2m�
3

∏
´l,l11 ,

d3 �
n21X
l�1

∑
g

n�n 2 1� �n 1 1� �n 2 3� �n 2 2�
15

2

l$mX
m�2

2�n 1 1 2 2m��n 1 2 2 2m�2�n 1 3 2 2m�
3

∏
Dl

k

1

n21X
l�1

∑
n�n 2 1� �2n2 2 9n 1 19� �n 2 2�

30
2

l$mX
m�2

�n 2 2m��n 1 1 2 2m�2�n 1 2 2 2m�
3

∏
´l,l11 ,

d2 �
n21X
l�1

∑
4n�n 2 1� �n 2 2�

3
2

l$mX
m�2

4�n 1 1 2 2m� �n 1 2 2 2m�
∏

Dl

k

1

n21X
l�1

∑
�n 2 1� �2n2 2 7n 1 12�

3
2

l$mX
m�2

2�n 2 2m� �n 1 1 2 2m�
∏
´l,l11 ,

d4 �
n21X
l�1

∑
g

2n�n 2 1� �n 2 2�
3

2

l$mX
m�2

4�n 1 2 2 2m�2

∏
Dl

k

1

n21X
l�1

∑
�n 2 1� �2n2 2 7n 1 9�

3
2

l$mX
m�2

2�n 1 1 2 2m�2

∏
´l,l11 .

Solutions for cell numbering beginning with the drive cell numbered “1” and the other end cell numbered “N” are
much more complicated and not as easy to display in a simple format. Solutions referenced to the drive cell can be
determined as given above and then renormalized on the basis of the drive cell being iN � 1 1 j0.

Expressions for drive eN in terms of i1 or iN are given below, eliminating smaller order terms:

eN�i1�full� � NR

Ω
1 1

2�N 1 1� �N 2 1�
3

a 2
�N 2 1�

2N
k

1 jkQ

∑
a 2

�N 1 1� �N 2 1�
3k2Q2 2

2
k

�D1 1 · · · 1 DN22 1 DN21 1 DN �

2 �´1,2 1 · · · 1 ´N23,N22 1 ´N22,N21 1 ´N21,N �
∏æ

,

eN�i1�half� � �N 2 1�R
Ω
1 1

�2N2 2 4N 1 3�
3

a 2
k
2

1 jkQ

∑
a 2

�2N2 2 4N 1 3�
6k2Q2 2

2
k

µ
D1

2
1 · · · 1 DN22 1 DN21 1

DN

2

∂

2 �´1,2 1 · · · 1 ´N23,N22 1 ´N22,N21 1 ´N21,N �
∏æ

,
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1220
eN�iN �full� � NR

Ω
1 2

4�N 2 1� �N 2 0.5�
3

a 2
�N 2 1�

2N
k

1 jkQ

∑
a 1

2�N 2 1� �N 2 0.5�
3k2Q2 2

2
k

�D1 1 · · · 1 DN22 1 DN21 1 DN �

2 �´1,2 1 · · · 1 ´N23,N22 1 ´N22,N21 1 ´N21,N �
∏æ

,

eN�iN �half� � �N 2 1�R
Ω
1 2

4�N2 2 2N 1 0.75�
3

a 2
k
2

1 jkQ

∑
a 1 2�N2 2 2N 1 0.75�

3k2Q2 2
2
k

µ
D1

2
1 · · · 1 DN22 1 DN21 1

DN

2

∂

2 �´1,2 1 · · · 1 ´N23,N22 1 ´N22,N21 1 ´N21,N �
∏æ

,

from which it can be seen that resonance as seen from the
drive cell or the other end cell is different. Differentiating
the modulus of the above complex expressions with respect
to a to find the minimum eN�i value (resonance) yields
the expressions for a0 and aerr discussed in Sec. I. The
definition for p-mode resonance of an errorless cavity with
infinite Q is obvious. For a cavity with finite Q, resonance
is defined when the expression for eN�i is minimized,
dependent on which cell is used to minimize this ratio
(yielding the a term). As expected, phases from cell-to-
cell are not identically p under these conditions.

For many applications Eq. (4) can be simplified to
in�full���21�n21 � 1 1 n�n 2 1�a 2 j�n�n 2 1��kQ�.
This simplification shows that the phase shift differ-
ence (from either the 0 or the p of a perfect lossless,
errorless system) in the average on-axis fields from
the end cell to the drive cell is given by DfN�full� 	
2�N�N 2 1��kQ� �180�p� in degrees for small values.
For example, a nine-cell cavity with k � 0.01 and a
loaded Q � 50 000 has a phase shift in the cell rf fields of
28.3± from end to end; not inconsequential and a result
not available from multicell mesh programs. Similar
results can be obtained for a half-cell terminated cavity.

III. RESULTS OF CALCULATIONS FOR THE
p -MODE

Extensive information for designing, constructing, and
operating p-mode structures is available, especially for su-
perconducting cavities [12–15]. This report provides ad-
ditional information to assist early stages of p-mode cav-
ity design and to provide an understanding of sensitivities
to various cavity parameters. In particular, the follow-
ing subsections provide information for cavity designers
and builders, for interfaces with the cavity such as those
needed by controls or rf engineers, and for operators of the
cavities. The first topic discussed is off-resonance charac-
teristics that show an interesting aspect when controlling
cavities from end cells for errorless cavities. The second
01-5
subsection, now allowing for errors in the cells, describes
effects of the errors given by Eqs. (4) and (5), and pro-
vides expressions for the related p-mode frequency shifts.
The third subsection uses the parameters discussed in sub-
section B with the results of cavity dimensions determined
from SUPERFISH to provide tolerances for the cavity builder.
All of these changes have impacts on the dispersion curves,
impacts described in the subsection D. And finally, sub-
section E shows how to use the information from these
dispersion curves to make estimates of field uniformity in
the cavity, an important factor for efficient operation of the
cavities.

A. Off-resonance field tilt

Differentiation of Eq. (4) with respect to a using
the Eq. (2) relationship of fp to a yields the following
change in field amplitude for the p-mode: Din�full��
�21�n21 	 2n�n 2 1� �1 2 k�Dfp�kfp , an expression
independent of Q that has been validated with LOOPER

simulations. This expression defines relative cell-to-cell
amplitude changes as a function of frequency shift Dfp

from resonance fp . In some cases, cavity control may
require accommodating this extra feature, in addition to
the usual considerations for overall on-resonance control
and for Lorentz force effects. For a five-cell cavity with
a required field tolerance of 61�2% and a k of 1%,
the frequency tolerance Dfp�fp is 61.25 3 1026 or
61 kHz at 800 MHz. The tilt in field changes direction, as
expected, on either side of resonance as shown in a typical
Q curve example (see Fig. 2), introducing an interesting
aspect to some control algorithms. The example is for a
1%-coupled, 500 MHz, five-cell cavity with a loaded Q
of 40 000. The peak in the Q curve as seen from the drive
cell has a slightly different frequency than that as seen
from the other end cell. An inverted quadratic function is
the best fit to the entire Q curve using s2��s2 1 Df2

p �
with s2 � �fp�2Q�2 for the fit to the resonance power
peak. These fits show that the drive cell resonance peak
122001-5
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FIG. 2. (Color) Typical Q curves showing the field tilt differ-
ence between the end cell and drive cell fields as a function of
frequency. Triangle and square points are for the end and drive
cells respectively.

is N�N 2 1� �1 2 k�fp�2kQ2 distant from the other end
cell resonance peak and has the same relative amplitude
for an errorless cavity. For the example given above, the
two resonance conditions would be 311 Hz apart.

B. Frequency and coupling errors in the cells

The above section gave field tilts for errorless cavi-
ties. With cell errors, field tilts can be much larger.
Investigation of Eqs. (4) and (5) shows that an error
(´n21,n) in cell-to-cell coupling constant or an error (Dn)
in frequency propagates throughout the entire cavity fields
and is independent of Q. To minimize field errors, a
frequency error in the nth cell requires adjacent cells to
have opposite sign errors, one-half that of the nth value,
i.e., 2Dn21 � 2Dn11 � 2Dn. This correction yields field
distributions almost as flat as if there were no errors in the
cavity, except for cell n where a fractional field error 1�2
that otherwise obtained is experienced. An exception to
this tuning rule is for the end cells of a half-cell terminated
cavity: to accommodate error D1, D1 � 2D2 � 2D3.
Similar corrections are possible to accommodate cou-
pling constant differences. Whatever coupling constant
error exists, for fields almost as flat as those with-
out errors the relationship 12´1,2 � 24´2,3 � 3´3,4 �
23´4,5 � 3´5,6 � 23´ · · · � 64´n22,n21 � 712´n21,n
must be satisfied. One can achieve some flatness using
2´n21,n � 2´n,n11 � 2´n11,n12; however, the local
intercell field errors (about 0.6 of the coupling constant
error) in the region (cells n and n 1 1) are a factor of 3
higher than that achieved with the more complex method.

Propagating through the entire cavity means, for ex-
ample, a D�k or ´ value of 0.01 yields field errors in
a typical five-cell cavity (k � 0.01, loaded Q � 60 000)
along the length of from 2% up to 8% and from 1.4% up
to 3%, respectively, depending on the location of the er-
ror. These values may not be as expected because there are
122001-6
two competing effects, with opposite signs, that cause field
changes related to cell frequency or coupling constant er-
rors. The first effect is related to the frequency shift from
the error and affects all of the cells, whereas the second
effect related to the actual error starts at the cell with the
error and affects only the cells from it to the drive. As
a consequence, there is a definite identification available
to determine which cell has an error, even though at first
glance the cavity symmetry would lead one to consider
otherwise. This identification is possible because the drive
cell breaks the symmetry. Another interesting effect is that
having the drive in the center of a nine-cell cavity results
in the cavity having properties similar to that of a five-cell
cavity. Similarly, a seven-cell cavity driven in cell three
demonstrates properties of a three-cell cavity for one part
of the cavity and a five-cell cavity for the other part.

In addition to the introduced field errors, resonant
frequency shifts determined from differentiating Eq. (2)
and normalized for a single cell error are dfp �Hz� �
fp �Hz�k´n,n21��2�1 2 k�N� and dfp �Hz� � �fp�f0� 3

DNf0 �Hz��N for coupling constant and frequency errors,
respectively. A simple sum determines the shift from
multiple cell errors. The N term in the previous equations
is N 2 1 for half-cell terminated cavities, and for this
half-cell termination case the frequency shift is 1�2 the
value if the frequency error is in an end cell.

C. End cell tuning and coupling constants

Knowing the relationship between field tilt and cell er-
rors discussed above gives tolerances for the errors. These
tolerances can then be used to determine cell dimensional
tolerances discussed in the following. First, however, SU-

PERFISH calculations are needed to determine parameters for
end-cell tuning as a function of cell beta and beam-bore
radius, the latter of which affects the cavity coupling con-
stant. To obtain flat fields, as described above, the end cells
of a full-cell terminated cavity need to be tuned to a differ-
ent frequency than that of the main body of cells; higher
in the case of the p-mode. One easy method to realize
this requirement is to make the size of the end-bore radius
larger than the beam-bore radius for at least one end-bore
diameter in length away from the end cell. See Fig. 3 for
a schematic showing the terms beam bore and end bore.

 

 

 

End 
Bore Beam 

Bore 

FIG. 3. Cavity schematic showing location for radii that de-
termine end-bore and beam-bore sizes.
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FIG. 4. (Color) Relationship between end-bore radius and
the beam-bore radius. Units are given in cm GHz to enable
design of different frequency cavities. Formulas for end-bore
radius (RE) in terms of beam-bore radius (RB) are provided for
different betas to assist with design considerations [(b � 1,
RE � 0.0676R2

B 1 0.8103RB 1 0.2073), (b � 0.8, RE �
0.041R2

B 1 0.955RB 1 0.0052), (b � 0.6, RE � 0.0143R2
B 1

1.0998RB 2 0.1968), (b � 0.5, RE � 0.001R2
B 1 1.1722RB 2

0.2979)].

Results described in the following were determined on
the basis of multicell SUPERFISH calculations for elliptical-
shaped cavities of different lengths having different
beam-bore radii, with rounded noses in the cells forming
the beam bores. Results in Fig. 4 are given in units of
cm GHz, easing design for a particular frequency. For
instance, a 3 cm beam-bore radius has a 3.25 cm end-bore
radius at 1 GHz, while a 1 cm beam bore has a 1.08 cm
end bore at 3 GHz. Formulas for end-bore radius versus
beam-bore radius are given for different beta geometries
that result in flat field distributions within a cavity for
p-mode operation.

As described above, there are many advantages for a
coupling constant k as high as possible. In the design
process for a superconducting cavity, many variables are
considered as described in Refs. [12,15]. In addition to
important considerations of maximum magnetic field along
the outer edge of the cell, maximum electric field on the
cell surfaces and the ratio of peak surface electric field to
on-axis accelerating field, circumstances exist under which
it is possible to make allowance for having the coupling
between cavities as high as possible. Figure 5 shows k as
a function of beam-bore radius for different cell betas. The
same data is displayed in another format in Fig. 6 for cases
where this is a more appropriate format to assist parameter
selection.

In order to maintain relative cell fields to within 1�2%,
for the five-cell cavity described above (1%k), coupling
constant errors need to be within 1�6% cell to cell. Fig-
ure 5 shows that tolerances at 1 GHz on beam bore vary
from about 13 3 1026 m for a 0.5 beta cell to 16 3
122001-7
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FIG. 5. (Color) Cavity coupling constant k as a function of
beam-bore radius for different beta geometries. Formulas
for k in terms of beam-bore radius (RB) are provided for
different betas to assist with design considerations [(b � 0.5,
k � 0.000 01R3

B 1 0.005 056R2
B 2 0.017 583RB 1 0.017 442),

(b � 0.6, k � 0.000 078R3
B 1 0.004 007R2

B 2 0.014 495RB 1

0.014 306), (b � 0.8, k � 0.000 188R3
B 1 0.002 196R2

B 2

0.009 046RB 1 0.009 025), (b � 1.0, k � 0.000 265R3
B 1

0.000 767R2
B 2 0.004 567RB 1 0.005 066)].

1026 m for a 1.0 beta cell, tolerances which should not be
difficult to attain. These tolerances would increase 50%
if k were increased to 3%. Similarly, tolerances for D�k
within 1�16% (to maintain fields to within 1�2%) infer that
the outer radius or the distance between adjacent cells (if
these were the only impacting variables) must be within a
6.25 3 1026 tolerance, or about 1026 m for the radius at
1 GHz.
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FIG. 6. (Color) Cavity coupling constant as a function of cavity
beta for different beam-bore radii (BR) in cm GHz.
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D. Dispersion curve characteristics with end cell
tuning

In addition to the field tilts discussed above, detuning
end cells of a full-cell terminated cavity has a significant
effect on the passband or dispersion curve. Solving for
the dispersion curve explicitly in terms of k, f0, and the
end cell frequency fend is difficult because of the nature
of determinant changes as a function of cell number. As
expected, the equations and solution for a three-cell cavity
are the typical doubly periodic format. Simple expressions
for the modes of a four-cell cavity can be determined,
as well as two modes of a five-cell system. All of the
higher N cases are much more complicated. However, an
inspection of the N cell dispersion curves, as shown in
Fig. 7 for the same coupling constant at 500 MHz, shows
that there is extreme sensitivity between the p-mode and
the next nearest mode. The dispersion curve change is
most noticeable between these two modes as the frequency
of the end cell changes. The smaller the number of cells,
the more exaggerated the curve becomes. The 0 to p

dispersion curve for this set of parameters with no end cell
tuning is shown for comparison purposes.

Figure 8 shows dispersion curves of a five-cell cavity
for end-cell detuning sets with either the p-mode flat-
tened (0 MHz) or the 0-mode flattened (0 MHz). Ex-
pected differences and the significant effect between the
last two modes (p-mode flattening) or the first two modes
(0-mode flattening) of the cavity are evident. Shown for
each set are the dispersion curves for end cell detuning
of 62 MHz that leads to nonflat fields. This changing
dispersion curve pattern can be used to estimate or in-
fer p-mode field distributions in a cavity by observing
passband mode frequencies as a function of actions taken.
The data required to make these inferences are provided
in Figs. 9 and 10. Figure 9 provides parameters normal-
ized to 500 MHz for straight-line fits that give coupling
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FIG. 7. (Color) Full-cell termination dispersion curves for dif-
ferent cell number cavities with 4% coupling at 500 MHz. End
cells are tuned for a flat-field p-mode, except the one case show-
ing the curve for all identical cells.
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FIG. 8. (Color) Full-cell termination dispersion curves for
p-mode cavity (upper three curves) and 0-mode cavity (lower
three curves). End cells are detuned 62 MHz either side of
the required end-cell frequency for achieving flat fields. The
central curve is the dispersion curve with all cells identical.

constant as a function of �f�N� 2 f�N 2 1��, the fre-
quency difference between the last mode (p-mode), and
the mode closest to it. For instance, for a five-cell cavity,
Fig. 9 yields k � �500�f0� ��0.019 075� �f�N� 2 f�N 2

1�� 1 �0.001 290 5��, where f0 is the cell frequency in
MHz best determined from the first mode frequency, f0 �
f�1�

p
1 1 k cos�p��N 1 1��. For a �f�N� 2 f�N 2 1��

difference of 2 MHz at 1000 MHz, k is 2.037%.
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FIG. 9. (Color) Parameters “m” and “b” for cell numbers
(N) from 3 to 9 used for the straight-line relationship k �
�500�f0� �m�f�N� 2 f�N 2 1�� 1 b� to determine coupling
constants on the basis of frequency separation where f�n�
is the nth mode frequency and f0 is the cell frequency in
MHz. Formulas that fit the data give [(10m � 0.007N2 1
0.0017N 1 0.00725), (100b � 20.00266N2 1 0.0441 N 2
0.02495)].
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FIG. 10. (Color) Parameters “m” and “b” for cell numbers
from 3 to 9 used for the straight-line relationship k �
�500�f0� �m�f�N 2 1� 2 f�1�� 1 b� to determine coupling
constants on the basis of frequency separation where f�n�
is the nth mode frequency and f0 is the cell frequency in
MHz. Formulas that fit the data give (100Nm � 0.0218N2 2
0.136N 1 1.376), (10 000b � 0.0058N 1 0.6913).

Similarly, Fig. 10 can be used to validate the calculated
k value, or used with the above calculation to determine
field differences from a fully flat field distribution as
described below. Figure 10 provides the parameters
normalized to 500 MHz for straight-line fits that give
coupling constant as a function of �f�N 2 1� 2 f�1��,
the frequency difference between the second last mode
and the first mode. For the same five-cell cavity, Fig. 10
yields k � �500�f0� ��0.002 482� �f�N 2 1� 2 f�1�� 1

�0.000 0836 3��. For a �f�N 2 1� 2 f�1�� difference of
14.8 MHz at 1000 MHz, k is 1.845%. Frequencies used in
the above calculations were obtained from scaling five-cell
Julich cavity results [16]. The passband frequencies from
an errorless cavity would have provided identical k values
when utilizing both methods. The ratio of these two values
can be used to estimate field flatness, as long as results
are within 10% of each other. In this case, fields should
be flat to within 10.4% (2.037�1.845) with the center cell
field being high, in agreement with the measured 7.2%
high value for the central cell [16]. This agreement is
reasonable because frequency differences were not only
in the end cells, as an inspection of the relative field data
infers.

E. Using dispersion curve characteristics for field
pattern changes

The above subsection showed how to infer field flatness
from relative measures of k. This process can be taken
122001-9
one step further to determine field flatness under changing
conditions in a cavity. One of the difficulties in construct-
ing and tuning a superconducting cavity is the fact that
the on-axis field pattern is well known at room tempera-
ture, but is only assumed to remain the same at cryostat
temperature. The following method suggests an indirect
means for inferring field pattern change at cold tempera-
ture; based on the room temperature measurements, the
mode spectra at cold temperature and a basic assumption.
This method assumes that end cells behave in one manner
because of connections to end-bore tubes and mechanical
systems, while the middle cells behave in another manner
because of their similarities to each other. This assump-
tion can be checked in practice without having to go to
very cold temperature. On this basis, the change in field
pattern along the length of the cavity can be estimated by
measuring the cavity mode spectra. The following gives an
example of the method using Figs. 11–14. In the follow-
ing, five-cell cavities and 500 MHz were used to demon-
strate the suitability of the method.

From mode frequency measurements, an important
dimensionless dispersion curve ratio is determined,
� f�N 2 1� 2 f�1���� f�N� 2 f�N 2 1��, using the fre-
quency values associated with the measured on-axis field
patterns. In the following this ratio is subscripted “meas.”
Similarly, the mode spectrum at the new operation point
is used to determine a new ratio, subscripted as “temp.”
From these, the ratio R1 of ��f�N 2 1� 2 f�1����f�N� 2

f�N 2 1���temp divided by ��f�N 2 1� 2 f�1���
�f�N� 2 f�N 2 1���meas is calculated, a dimensionless
and frequency independent function. This ratio, R1,
was determined using LOOPER for many different system
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FIG. 11. (Color) Relative value of cavity midcell field to end-
cell field as a function of cell number for different end-cell de-
tuning of a 500 MHz cavity. Scaling for other frequency cavities
is realized by multiplying the detuning scale, i.e., 60.4 MHz
is used for 2 GHz cavities.
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FIG. 12. (Color) Ratio R1�R2 as a function of coupling constant
for different end-cell detuning of a 500 MHz cavity. Scaling for
other frequency cavities is realized by multiplying the detuning
scale, i.e., 60.4 MHz is used for 2 GHz cavities.

parameters �N , k, Q, fend� with end cells detuned differ-
ently from the middle cells, relative to that required for a
perfectly tuned p-mode cavity. The results were found to
be independent of Q.

E�mid� in the following is the relative midcell field of
an N cell cavity as compared to the end-cell field. With
identical detuning of end cells (different from that of the
middle cells), the field pattern has a symmetric shape
about the middle of the cavity. R2 is defined as the ra-
tio of 1�E�mid� for an end-cell detuned cavity relative to
1�E�mid� for a perfectly tuned p-mode cavity. Generally

RF = 0.1139N + 0.7611

RF = -0.0728N + 1.1035
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FIG. 13. (Color) Relative value of cavity midcell field to end-
cell field as a function of cell number for different end-cell de-
tuning of a 500 MHz cavity. Scaling for other frequency cavities
is realized by multiplying the detuning scale, i.e., 68 MHz is
used for 2 GHz cavities.
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it has been found that R1 is almost identical to R2 unless
the variations are very large (.10%). Therefore, a mea-
surement of R1 gives a good measure of the change to
the cavity in R2, as long as the assumption that end cells
change differently from the middle cells is valid. Figure 11
shows expected field changes in E�mid� versus cell number
N for a case with a k of 4%. Similar curves showing linear
behavior are found for different coupling constant values.
This figure shows expected field changes varying from 1%
to 3.5% when end cells are detuned up to 60.1 MHz rela-
tive to no change in midcells for a 500 MHz cavity. Ev-
erything is linear; a change of only 60.05 MHz results in
1�2 the values shown. Figure 12 shows that the ratios R1
and R2 are almost equal over the range of interest. For
1% coupling, there is only a 62% difference between the
two ratios. Hence a 5% measured R1 ratio indicates a field
pattern change of up to 4.9%. Another report, to be pub-
lished soon, shows how to use actual mode spectra from
an N cell p-mode cavity to determine which cells have er-
rors, and the value of this error to be corrected, for either
coupling or frequency errors.

Figures 13 and 14 show results similar to those for
Figs. 11 and 12; however, for frequency detuning a fac-
tor of 20 larger (62 MHz). Although relative fields re-
main linear over the region shown in Fig. 13, the ratio
R1�R2 varies much more. For instance, if R1 � 0.9
for a five-cell cavity with 2% coupling, then using Fig. 13
[initially assume R2 � R1 with E�mid� of 1.11] this in-
dicates an almost 20.58 MHz end-cell detune. Figure 14
shows this 20.58 MHz detune to have a R1�R2 ratio of
about 0.965, leading to a corrected value for R2 of 0.93
(0.9�0.965). Since R2 reflects changes in 1�E, the E field
has actually increased by 8%.

R1/ R2 = 153.32k2 - 17.616k + 1.5831

R1/R2 = -20.895k2 + 3.1543k + 0.8268
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FIG. 14. (Color) Ratio R1�R2 as a function of coupling constant
for different end-cell detuning of a 500 MHz cavity. Scaling for
other frequency cavities is realized by multiplying the detuning
scale, i.e., 68 MHz is used for 2 GHz cavities.
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IV. CONCLUSIONS

A number of interesting trends have been determined
for p-mode coupled cavities using coupled-circuit theory
and solutions for various parametric variations. The analy-
sis has shown advantages for coupling constants as high
as possible (k $ 2%) within constraints of other parame-
ters and conditions. The cell number in a cavity should
be small (N # 5) to minimize error-related effects. A
nine-cell cavity has two times the sensitivity as a five-cell
cavity to errors and up to eight times for other operational
issues. A method for inferring field flatness when a cav-
ity is operated in an environment different from that when
fields were measured has been developed. Experimental
verification is needed before this method is fully accepted.
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