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Extending the method of Warnock and Ellison for the simulation of the Vlasov-Fokker-Planck equation
for bunched beams [in Proceedings of the 2nd ICFA Advanced Accelerator Workshop on the Physics
of High Brightness Beams, Los Angeles, CA, 1999 (World Scientific, Singapore, 2000)], we analyze
arbitrary radio-frequency potentials and high-Q impedances and study instabilities in stretched bunches.
Results for the microwave instability driven by a broadband impedance and instability driven by high-Q
rf modes in stretched bunches are compared with measurements of the vacuum ultraviolet ring at the
National Synchrotron Light Source. A method for the calculation of response functions is developed,
and simulated response functions are compared to experimental results.
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I. INTRODUCTION

There has been considerable interest in recent years in
the saturation and relaxation of longitudinal instabilities
in storage rings. Instabilities driven by both broadband
impedances [1–4] and high-Q impedances [5] have been
simulated and compared with instabilities in existing stor-
age rings. These studies have shed considerable light on
the limiting of these instabilities and highlighted the limits
of linearized treatments of coherent modes and frequencies
in bunched beams.

Bunched beams in which synchrotron frequency
spread is introduced for Landau damping and lifetime
improvement [6,7] have been simulated much less than
unstretched bunches, although application of linearized
methods to fully stretched bunches have had some success
in describing coherent frequencies and stability bounda-
ries [8–12]. But the limiting behavior of instabilities in
stretched bunches beyond the linear approximation is less
understood and deserves further study.

In this paper, we discuss computational methods and
a new computer code capable of integrating the Vlasov-
Fokker-Planck (VFP) equation for non-Gaussian bunches
and their application to the study of instabilities of
stretched bunches. The methods are based on the work
of Warnock and Ellison (W&E) [1] extended to ac-
commodate nonharmonic radio-frequency potentials and
high-Q impedances as well as a broadband impedance.
Section II of this paper describes the computer code. A
method for the calculation of beam response functions is
developed (Sec. III) and demonstrated. Using the results
of simulations, three-dimensional plots of the particle
distribution in phase space, animated sequences of plots,
and plots of bunch lengths, beam spectra, and phase and
energy spread may also be generated.

Section IV describes certain instabilities observed in
the National Synchrotron Light Source (NSLS) vacuum
ultraviolet (VUV) ring. Section V discusses the results of
simulation of saturation of certain instabilities as well as
calculations of beam response functions for stretched
1098-4402 �01�4(11)�114401(15)$15.00
bunches. These results are applied phenomenologically to
instabilities observed in the NSLS VUV ring (Sec. IV) to
help in understanding the ring and its collective phenom-
ena. Specifically, we discuss (i) the microwave instability
driven by a simple broadband impedance; (ii) calculations
of the longitudinal beam-response function (BRF) and
comparison with VUV-ring data; and (iii) simulations of
instabilities driven by high-Q and broadband impedances.

II. THE COMPUTER CODE

The computer code was written to numerically integrate
the VFP equation in the time domain and calculate observ-
able quantities from the solutions. Section II A gives the
notation and definitions used in this paper. Section II B
describes briefly the VFP equation and W&E’s [1] method
of integrating it. Then Sec. II C describes the calculation
of the initial Haïssinski solution [13], which is used as
an initial condition in the full calculation. The approach
differs slightly from that of W&E to overcome the lack
of convergence of the recursive-substitution method when
applied to stretched bunches of sufficiently high current.
Section II D describes how high-Q rf modes are integrated
into the code.

A. Notation, the equations of motion, and the Vlasov
equation

This section describes the definitions and notation used
in this paper.

The phase coordinate f is related to the azimuthal angle
in the ring u through

u � v0t 1 f , (2.1)

where v0 is the revolution frequency. So f is comoving
with the bunch, and greater f means earlier in time. The
single-particle Hamiltonian is

Hrf � Hrf�f,p� � p2�2 1 Urf�f� , (2.2)
© 2001 The American Physical Society 114401-1
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where p is the momentum variable conjugate to f, and
Hamilton’s equations are

df�dt � p , (2.3a)

dp�dt � 2dUrf�f��df . (2.3b)

Urf is the rf potential in which the particles oscillate,

Urf�f� �
av0

E0

ev0

2p

Z f

df Vrf�f� , (2.4)

where a is the momentum compaction, E0 is the syn-
chronous particle energy, e is the electronic charge, and
Vrf is the rf voltage in the cavities. The Hamiltonian Hr �
Hr�f,p; t� associated with a voltage V � Vr�f; t� is

Hr�f,p; t� � Ur�f; t�

�
av0

E0

ev0

2p

Z f

df Vr�f; t� . (2.5)

Vr is the voltage induced by a line density r due to the
short-range wake potential W ,

Vr�f; t� � IavT0

Z p

2p
df0W�f 2 f0�r�f0; t� , (2.6)

where Iav is the average current, I�f; t� � 2pIavr�f; t�
is the instantaneous current, and r is normalized so thatR
df r � 1. The time dependence of the functions of

Eqs. (2.5) and (2.6) represents the much slower turn-by-
turn evolution of the functions.

The VFP equation describes how distributions C of par-
ticles in phase space evolve in time.

≠C�≠t 1 �C,Hrf 1 Hr� � RFPC , (2.7)

where the braces represent Poisson brackets,

RFP � ≠p�2bp 1 D≠p� , (2.8)

b and D are the damping and diffusion rates, and r is
related to the phase-space distribution C through

r�f; t� �
Z

dp C�f,p; t� . (2.9)

Let the operator P be the operator that takes C to r, i.e.,
r � PC. The Haïssinski distribution CHa is that part of
C that is stationary,

�CHa,Hrf� 1 �CHa,HrHa� � RFPCHa , (2.10)

and rHa � PCHa. Let H0 � Hrf 1 HrHa. The remain-
der, dC � C 2 CHa, satisfies the equation

≠tdC 1 �CHa,Hdr� 1 �dC,H0� 1

�dC,Hdr� � RFPdC ,
(2.11)
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where dr � PdC. This equation is nonlinear in the
fourth term and is linearized by dropping this term. The
second term is expanded to

�CHa,Hdr� � 2�≠pCHa�Wdr , (2.12)

where the wake potential W is acting on the line den-
sity dr according to Eq. (2.6). Let :H: be the operator
that maps a function C to �C,H�. So now the linearized
Eq. (2.11) is

≠tdC 2 �≠pCHa�WPdC 1 :H:dC � RFPdC .
(2.13)

The linearized Vlasov equation is Eq. (2.13) with the
Fokker-Planck (FP) terms dropped. The potential-well-
distortion term is �dC,HrHa�, which is part of the third
term.

Let the time dependence of dC be harmonic with fre-
quency V. A homogeneous equation in the line density
dr is derived from Eq. (2.13) by inverting the sum of the
operators of the first, third, and fourth terms and applying
the inverted operators and P to the equation on the left.
This yields

dr � GWdr , (2.14)

where G � G�V� is the frequency-domain beam transfer
function (BTF), using Shaposhnikova’s notation [14],

G�V� � P�iV 1 :H: 2 RFP�21�≠pCHa� . (2.15)

One should not regard the linearized VFP equation as
somehow being reduced to Eq. (2.14). Coherent frequen-
cies determined by Eq. (2.14) are also coherent frequencies
determined by Eq. (2.13) but the converse is not necessar-
ily true. We know on physical grounds that there exists
a response function G mapping voltages to line densities
as in

dr � GV , (2.16)

where V is the total field seen by the bunch, and we know
that the VFP equation is capable of determining G due
to the completeness of the VFP equation. So the ques-
tion of how to calculate G of Eq. (2.16) from the VFP
equation is a meaningful one even if Eq. (2.14) is not
complete. This is to be expected since functions V �f; t�
that excite the bunch do not excite all degrees of freedom
since only certain functions dC map to the special class
of functions �≠pCHa�V �f; t� under the action of iV 1

:H: 2 RFP. Furthermore, not all degrees of freedom of
the bunch are distinguishable in line density projections.
Both :H0: and RFP are unbounded operators and questions
of the existence of the inverse of �iV 1 :H0: 2 RFP�21 in
Eq. (2.15), its domain and range, and how to calculate it in
any given basis are not resolved at this time. A closed-form
solution to Eq. (2.15) may not even exist. But note that
some of these concerns also apply to the Vlasov equation
without the potential-well-distortion term and to Krinsky
114401-2



PRST-AB 4 LONGITUDINAL SIMULATIONS AND MEASUREMENTS … 114401 (2001)
and Wang’s (K&W) successful calculation of G in that re-
stricted context [15].

The total voltage V is considered to be a superposition
of a voltage Vext externally applied to the ring and Wdr,
i.e.,

V � Wdr 1 Vext . (2.17)

In this case, Eq. (2.16) becomes inhomogeneous,

dr � G�Wdr 1 Vext� . (2.18)

An equation in V is readily derived from Eqs. (2.17) and
(2.16),

V � WGV 1 Vext . (2.19)

The derivation of the BTF given by Krinsky and Wang [15]
and Shaposhnikova [14] drop both the FP and the potential-
well-distortion terms. Note that G�V� in this case is un-
bounded when V is real: Normalizable line densities are
not all mapped to normalizable line densities. For this rea-
son, the operator GW is not absolutely continuous for real
V since G is unbounded. Consequently, Fredholm theory
cannot be applied directly to Eq. (2.18). But it is an open
question whether an operator related to GW by a similar-
ity transformation is absolutely continuous. K&W’s result
[15] is expressed in a basis of azimuthal harmonics. They
introduce the matrix elements Fmn � 2Gmn�k, where k

is a constant.
It is useful to define the frequency-domain longitudinal

beam response function T � T �V�, which relates Vext to
the line density it induces in the presence of finite current
and ring impedance, i.e.,

dr � TVext . (2.20)

By solving Eq. (2.18) formally for T , we find

T � �1 2 GW�21G . (2.21)

(Do not confuse T with K&W’s T � GZ, where Z is the
Fourier transform of the wake potential W .)

B. Solution of the Vlasov-Fokker-Planck equation

In W&E’s method [1], the two components of the Ham-
iltonian H, the rf Hamiltonian Hrf, and the r perturba-
tion Hr , generate the maps Mrf�Dt� and Mr�Dt� carrying
points of phase space through a given time step Dt accord-
ing to the equations of motion. Using the terms of tensor
analysis, these maps are the flows associated with the vec-
tor fields :Hrf: and :Hr :, respectively, evaluated at the time
step Dt. Each map is symplectic and hence volume pre-
serving. These maps in turn define Perron-Frobenius (PF)
operators Mrf and Mr that step a function C convec-
tively according to the inverse of the corresponding map:

Mrf�C� �x� � C���M21
rf �x���� , (2.22a)

Mr�C��x� � C���M21
r �x���� . (2.22b)
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The Dt dependence is suppressed. Interpolation is used
since the mapped grid points do not coincide with the
original grid points. W&E’s method for time stepping
Eq. (2.7) is to apply the three operators Mrf, Mr , and the
Fokker-Planck terms on the right-hand side of Eq. (2.7) in
sequence for each time step. All this is done on a grid of
points in the phase space in which C is defined. Their
paper describes this process more fully.

W&E assume that the rf potential is quadratic, i.e., that
the (small charge) bunch is Gaussian in shape. In this case,
the map Mrf�Dt� is simply a rotation of the phase space.
This map is generalized to arbitrary rf potentials by calcu-
lating M21

rf �Dt� at every grid point by integrating Hamil-
ton’s equations for the rf Hamiltonian through time 2Dt.
Hamiltonians with non-Gaussian momentum dependence
may also be accommodated. Although this generalization
requires more calculation, the map is ordinarily computed
only once and saved on the same grid on which C is de-
fined. Overall, the code is not excessively slowed by the
calculation of the map. This generalization to arbitrary
rf potentials is the first way in which this code extends
W&E’s methods.

The division of the exact PF operator Eq. (2.7) into the
two PF operators Mrf and Mr is not unique. In contrast
to W&E, one can write the Hamiltonian not as the sum
of Hrf and Hr but rather as the sum of H0 and Hdr. This
change is suggested by writing the nonlinear VFP equation
(2.11)

≠C�≠t 1 �C,H0 1 Hdr� � RFPC . (2.23)

Corresponding to the Hamiltonians H0 and Hdr are the
PF operators M0 and Mdr derived as described above.
But now the Haïssinski distribution in the phase space is
stationary with respect to M0, and Mdr is regarded as a
perturbation. This is the second way in which the code
departs from the methods of W&E. Note that our di-
vision of the Hamiltonians is not clearly superior since,
in both cases, dr is not small when working with large-
amplitude instabilities. Only when the perturbation dr

is small is Mdr small. In the linear growth stage, when
calculating linear beam response functions, this decompo-
sition has a clear computational advantage. The asymme-
try in the equilibrium distribution induced by a broadband
impedance suggests that the use of M0 may result in per-
turbations with less gross asymmetry so that Mdr has to
do less work mapping the phase space onto itself.

C. Haïssinski solution

The calculation of the Haïssinski solution [13] for
stretched bunches is discussed in some detail here because
of difficulty with convergence. In the usual method of
recursive substitution, a sequence of line densities r0n�f�
is generated according to
114401-3
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r0n11�f� �
e2�Urf�f�1Hr0n �f���s2R`

2` df0 e2�Hrf�f0�1Hr0n �f0���s2 , (2.24)

where s is a constant defined in Ref. [15]. When this
sequence converges, it converges to the Haïssinski line
density rHa. Unfortunately, it fails to converge at single-
bunch currents of interest when applied to stretched VUV
ring bunches. To get around this problem, the weighted
average

r0n11�f� � w
e2�Urf�f�1Hr0n �f���s2R`

2` df0 e2�Hrf�f0�1Hr0n �f0���s2

1 �1 2 w�r0n�f� (2.25)

was used. Unfortunately, for high current, the weight w
must be small and the convergence is very slow. Because
the convergence is so slow at high current, the typical cal-
culation cannot proceed to machine precision. This is not
a hardship when calculating instabilities since the error
serves to seed an instability in a simulation if the bunch
is unstable, or simply to generate an initial transient in a
stable bunch. However, when calculating a response func-
tion in a stable bunch, the transient caused by this error
is mixed with the transient associated with the initial im-
pulse used in the calculation (Sec. III) introducing an er-
ror in the response-function calculation. To overcome this
problem, another calculation without the applied impulse
is performed and used to subtract the unwanted transient
from the calculations including the applied impulses.

In our approach, the calculated Haïssinski distribution
does not include the distortion to the rf potential well
caused by beam loading of high-Q modes. Only the com-
ponents of the ring wake potential having short range are
included in the calculation of HrHa. Any distortion of
114401-4
the potential well caused by higher-order modes or other
high-Q resonances in the ring impedance are assumed
small and are absorbed (approximately) into the externally
prescribed rf potential.

D. High-Q rf modes

The rf-cavity modes receive periodic kicks from the suc-
cession of bunch passages through the cavities. In this pa-
per, the evolution of the rf-mode excitations are described
by discreet-time equations relating mode voltages on suc-
cessive turns to the kicks they receive during a bunch pas-
sage. Most workers, however, describe the evolution of
mode excitations using continuous-time differential equa-
tions; the discreet-time approach, while more natural [16],
is less well known. While the discreet-time approach is far
from new [5,17], the specific form of the difference equa-
tion used and its derivation are given here for clarity.

The beam current at azimuthal angle in the ring u �
v0t 1 f � 2pl is given by

I�t� � 2pIavr�f; t� , (2.26)

where Iav is the average beam current and l is an inte-
ger. The normalization of r is chosen so that

R
rd f � 1.

Since r�f; t� is a slowly changing function of t, the con-
volution integral,

V �t� �
Z t

2`
dt0W�t 2 t0�I�t0� , (2.27)

is divided into a t0 integral over the range �l0 2 1�T0 #

t0 # l0T0 and a sum over 2` , l0 # l 2 1 plus a re-
mainder corresponding to the current passage of the bunch
through the cavity �l0 � l�. Setting the integration variable
to f0 � 2v0t0,
V �f, lT0� � 2pIav

l21X
l0�2`

Z 2p

p

df0

2v0
W

∑
�l 2 l0�T0 2

f 2 f0

v0

∏
r�f0, l0T0�

1 2pIav

Z f

p

df0

2v0
W

µ
2

f 2 f0

v0

∂
r�f0, lT0� , (2.28)
V is divided into these two terms so that a particular ap-
proximation may be applied later. In Eq. (2.28), the fast
time dependence of V seen by the bunch as it crosses the
kicker is parametrized by f, and the slow time dependence
of V is parametrized by t � lT0 [see the discussion leading
to Eq. (3.3)].

The wake potential for a resonator is [18]

W�t� �
k

cosq
e2i�Vt1q � 1 c.c., (2.29)

where V � v̄ 1 iG,

v̄ �
q

v2
r 2 G2 , (2.30)
vr is the resonant frequency of the rf mode, the loss factor
k is the product of the damping rate G � vr�2Q and the
rf-mode impedance R, Q is the Q of the mode,

tanq � G�v̄ , (2.31)

and “c.c.” represents the complex conjugate of the preced-
ing expression. When this wake potential is inserted into
Eq. (2.28), the f integrals have kernel eiV�f2f0��v0. Since
the bunches are short and centered on zero, the kernel can
be approximated by eih�f2f0�, where h is the harmonic
number of the revolution frequency near which the rf mode
resides, as long as the magnitude of V 2 hv0 times the
bunch length (in time) is small. Changing variable from l0

to l00 � l 2 l0, Eq. (2.28) becomes
114401-4
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V �f, lT0� 	
kT0Iav

cosq
e2iq

X̀
l00�1

e2iVl00T0

Z p

2p
df0 eih�f2f0�r���f0, �l 2 l00�T0���

1
kT0Iav

cosq
e2iq

Z p

f
df0 eih�f2f0�r�f0,lT0� 1 c.c. (2.32)
The first integral is 2peihfrh����l 2 l00�T0���, where
rh����l 2 l00�T0��� is the hth Fourier coefficient of r�f; t�
with respect to the variable f. The Fourier transform Fm

with respect to f of a function f�f� is defined as

Fm�r�f; t�� � drm�t� �
1

2p

Z 2p

0
df r�f; t�e2imf.

(2.33)

The second term of Eq. (2.32) is the voltage in the bunch
induced by the same bunch passage. Since the rf mode
has high-Q, the intensity of V is dominated by the accu-
mulation of kicks the rf mode receives from many turns.
For this reason, the bunch’s immediate influence on V may
be neglected or modified. This justifies the last approxi-
mation, which is to replace the f limit of integration in
the second integral of Eq. (2.32) by 2p . After defining
z � eiVT0 , Eq. (2.32) becomes

V �f, lT0� 	 2p
kT0Iav

cosq
e2iqeihf

3
X̀
l00�0

z2l00rh����l 2 l00�T0��� 1 c.c. (2.34)

Let V̂l be the first complex-valued term on the right-hand
side of Eq. (2.34) but without the phase-dependent factor
eihf. We see immediately that V̂l evolves discreetly ac-
cording to the recurrence relation

V̂l � z21V̂l21 1 k0rh�lT0� , (2.35)

where

k0 � 2p
kT0Iav

cosq
e2iq . (2.36)

Equation (2.35) is used in the computer code to calculate
the evolution of rf-mode amplitudes. The voltage that
actually kicks the bunch is

V �f; t� � eihfV̂l 1 c.c. (2.37)

Note that, if the mode has Q ¿ 1, tanq ø 1.
As was mentioned in Sec. II B, the code calculates

field perturbations from dr rather than from r. The
total voltage seen by the bunch is the sum of the terms
V �f; t� for the rf modes and the term for the broadband
impedance—each constructed from the perturbation dr.
This sum is used to construct the PF operator termed
Mdr above. Note that, in constructing Mdr in this way,
static beam-induced perturbations of the rf potential due
to higher-order-mode (HOM) impedances are, in effect,
absorbed by Urf. No HOM impedances were included,
however, in calculations described in this paper.

The discreet-time equation (2.35) is appropriate for de-
scribing the evolution of V since, physically, the rf mode
receives a kick of short duration from the bunch moment
rh (or drh) every turn. Continuous-time equations are not
superior to Eq. (2.35).

The time step Dt of the integration of the VFP equation
in calculations described in this paper was greater than T0.
So drh inserted into Eq. (2.35) in place of rh is held con-
stant during the iterations of Eq. (2.35) corresponding to
the time step. The precise use of the discreet-time equation
(2.35) requires that the time step Dt of a simulation be a
multiple of the revolution period. Although this require-
ment was not enforced, with the time step used, errors in
the effective impedances of the modes were only 2%.

E. Performance

Simulations were done using grids with between 502 and
1002 grid points. W&E used second-order interpolators in
the function-interpolation implementation of the PF oper-
ators. Here, either third- or fifth-order interpolators were
found to better preserve normalization. It was also found
necessary to calculate the symplectic map M0�2Dt� for
the time step to high precision and accuracy.

The grids used have many fewer points than those of
W&E. In spite of this, the normalization of the distribution
function C was retained to a degree comparable to that
reported by W&E. Loss of normalization was usually due
to nonnegligible value of the distribution function at the
edge of the grid. This is the reason to have large spans of
phase and energy as they can prevent significant particle
densities from reaching the edge.

The computer code was written in MATHEMATICA permit-
ting relatively quick program development. A significant
penalty in computing time is paid for this, however, as
MATHEMATICA code is interpreted. But, in MATHEMATICA, the
elementary operation is often a list operation, which we
found in simple numerical benchmarks to be only a factor
of 3 slower than native code on a PC.

III. BEAM RESPONSE FUNCTIONS

A bunch’s response to an external excitation, whether
it is the response to a modulation of an rf system, an im-
pulse, or the response to an rf frequency applied through
a broadband device, contains detailed information about
the bunch and its environment. While the evolution of a
bunch through the VFP equation is nonlinear, the approxi-
mately linear response to a sufficiently small excitation is
114401-5
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contained in the BRF T of Eqs. (2.20) and (2.21) and re-
flects both the wake potential of the ring and the BTF G
[Eq. (2.15)] characterizing the bunch in the absence of
an external potential [14,15]. The matrix elements Tmn,
defined in the azimuthal-harmonic space on which the ma-
trix elements Gmn are defined, are often regarded as func-
tions of frequency V. They relate the Fourier transform
r̃m�V� of the line density to voltages Vext�t� applied at
a frequency V 1 nv0. The BRF in the frequency do-
main, like the BTF, is readily and frequently measured;
so it is useful to compute BRFs from time-domain simu-
lations to compare with measured frequency-domain re-
sponses. Time-domain simulations can, in principle, be
used to simulate a bunch stimulated by a continuous-wave
rf voltage so as to simulate frequency-domain measure-
ments. But each simulation determines a response func-
tion at only one frequency and must be long enough to
accurately estimate the steady-state response. For these
reasons, this approach is prohibitive. So there is reason to
extrapolate the use of impulse responses for the determi-
nation of frequency-domain responses from linear network
theory to the time-domain simulation of bunches. We note,
however, that the impulse response of a bunch is compli-
cated by the fact that a bunch is represented by a function of
both time and phase. This section discusses how Tmn�V�
can be calculated from suitable impulse responses.

The frequency-domain response functions are measured
by exciting the bunch with a voltage that has a steady si-
nusoidal time dependence at a frequency v � V 1 nv0,
i.e., Vext�t� ~ e2i�V1nv0�t , where jVj ø v0. Since f is
a comoving coordinate such that u � v0t 1 f � 2pl (l
is an integer) where the pickup and kicker are located, this
time dependence is written

Vext�f; t � lT0� � V0e
2i�Vt2nf�, (3.1)

where V0 is the peak voltage and t � lT0 picks up the
slow, and f the fast, time dependence of Vext�t�. This
approximate form is justified by expanding

e2i�V1nv0�t � e2i�V1nv0� �2pl2f��v0

� e2iVlT0eiVf�v0einf. (3.2)

We are concerned only with the effect of Vext on the bunch,
i.e., where f � v0st (st is the bunch length in time).
Therefore, while jVj ø v0, jVstj ø 1 holds and the
middle exponential can be approximated by unity. Using
the same reasoning and the same condition, the discreet
lT0 in the first exponential can be replaced by the continu-
ous variable t,

e2i�V1nv0�t 	 e2iVteinf. (3.3)

Let us now discuss how the VFP equation determines
the evolution of transients and impulse responses in stable
bunches. Suppose a voltage Vext�f; t� with the property
that Vext goes to zero at t � 2` is applied to a bunch
using a kicker. The initial/boundary condition imposed on
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the bunch is that at t � 2`, C is the stationary Haïssinski
distribution [13] CHa. The bunch then evolves according
to the linearized VFP equation (2.13) giving a perturbed
distribution

dC�f,p; t� � BVFP�Vext�f; t�� , (3.4)

where BVFP is the linear operator mapping functions
Vext�f; t� to phase space densities dC�f,p; t� via the
VFP equation. Note that it is essential that the bunch be
stable; otherwise there is exponential growth of dC in a
manner that is sensitive to how dC approaches zero as
t ! 2`.

The operator P [defined following Eq. (2.9)] is applied
to give us the line density as a function of time

dr�f; t� � PBVFP�Vext�f; t�� . (3.5)

The operator PBVFP is a representation of the BRF T
of Eq. (2.20). We can write down an integral transform
for this representation knowing that the linearized VFP
equation is time independent due to the time-independent
single-particle Hamiltonian dynamics on the f-p phase
space. It is

dr�f; t� �
Z 2p

0
df0

Z `

2`
dt0 T �f, f0; t 2 t0�Vext�f0; t� ,

(3.6)

having the kernel T �f, f0; t 2 t0�. Other representations
of T will be identified in this section; to simplify notation,
the kernels of these representations will all be symbolized
by “T ,” but will be distinguished by their arguments, e.g.,
Tmn�V�. When Eq. (3.6) is Fourier transformed with re-
spect to f through Fm defined in Eq. (2.33), we have the
transform

drm�t� �
Z `

2`
dt0

X̀
n�2`

Tmn�t 2 t0�Vext,n�t0� (3.7)

with kernel Tmn�t�. When Eq. (3.6) is Fourier transformed
with respect to t, we have

dr�f;V� �
Z 2p

0
df0 T �f, f0; V�Vext�f0; V� , (3.8)

and when Fourier transformed with respect to both f and
t,

drm�V� �
X̀

n�2`

Tmn�V�Vext,n�V� . (3.9)

Now we look at special forms of the function Vext
that are both convenient for time-domain simulations and
pertinent to the calculation of Tmn�V�. Let the form of
Vext be

Vext�f; t� � f�f�d�t� , (3.10)

where f is an arbitrary phase dependence and d�t� is the
Dirac delta function. For t , 0, the solution dC � dr �
0 by the boundary condition at t � 2` and the assumption
of stability. This form of Vext is a single-turn impulse
114401-6
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applied to the bunch so as to impart an energy kick to the
Haïssinski distribution, having its f dependence given by
f�f�. [It is not the delta function Vext�t� ~ d�t� imparting
a kick to one azimuthal point of a turn of the bunch.] Thus,
at time zero, the bunch begins its phase-space evolution
with an energy deviation determined by f�f�. This is
convenient for a time-domain calculation since there is a
well-defined initial condition at the starting time.

While g�t� � d�t� is convenient to simulate, f�f� �
einf is pertinent to the calculation of Tmn�V� through the
f dependence of Eq. (3.3). To see this, insert Vext�f; t� �
einfd�t� into Eq. (3.6). With this forcing function, the
result of a simulation produces the particular line den-
sity solution denoted dr�einfd�t�� �f; t�, which is the re-
sponse of the bunch to the delta-function excitation having
the phase dependence einf also present in Eq. (3.3). By
Fourier transforming with respect to f, we get, through
Eq. (3.7), the response function

Tmn�t� � Fm�dr�einfd�t�� �f; t�� . (3.11)

Finally, by Fourier transforming with respect to t we get
the frequency-domain response function

Tmn�V� � FVFm�dr�einfd�t�� �f; t�� , (3.12)

where FV is the Fourier transform with respect to time
whose action on a function g�t� is

FV�g�t�� �
1

2p

Z `

2`
dt eiVtg�t� . (3.13)

This is not quite the end of the story when the computer
code integrating the VFP equation requires real forcing
functions. In this case the function f�f� � einf must be
broken up into cosnf 1 i sinnf with each term a forcing
term in a separate integration. By linearity, the results of
the integrations can be superimposed to give

Tmn�t� � Fm�dr�cosnfd�t�� �f; t�
1 idr�sinnfd�t���f; t�� , (3.14)

and their Fourier transforms

Tmn�V� � FV�Tmn�t�� . (3.15)

Equation (3.15) is the expression used to calculate beam
response functions Tmn�V� from a time-domain code. Two
calculations are performed starting with stable bunches
with Haïssinski distributions. The Haïssinski distribution
of one calculation is given an initial momentum kick with
cosnf phase dependence, and the Haïssinski distribution
of the other a sinnf phase dependence. The two line-
density functions of time resulting from the simulations are
each Fourier transformed with respect to f at harmonic m
and combined according to Eq. (3.14). The result is then
Fourier transformed with respect to time to obtain Tmn�V�
in Eq. (3.15).

Figure 1 shows an example of a beam response func-
tion calculated using the method described in this section.
The impedance of the ring includes the main-cavity and
114401-7
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FIG. 1. Simulated beam response functions T9 55, T18 55, T36 55,
T55 55, and T135 55 (top to bottom) for a fully stretched 500 mA
bunch in the National Synchrotron Light Source (NSLS) vacuum
ultraviolet (VUV) ring. Realistically detuned main-cavity and
harmonic-cavity impedances are included in the simulation. The
vertical scale has an arbitrary scale factor. Machine parameters
are given in Table I.

TABLE I. Values of VUV ring and main-cavity and harmonic-
cavity parameters (separated by a forward slash), symbols, and
values.

Parameter Symbol Value

Synchronous energy E0 800 MeV
Energy loss per turn U0 20.4 keV
Momentum compaction a 0.0245
Revolution frequency v0 2p 3 5.8763 MHz
Radiation damping rate b 0.143 ms21

Fractional energy spread se 5 3 1024

rf harmonic numbers h 9�36
rf peak voltages V9�V36 80�19.7 kV
rf phases c9�c36 74.2±�290±

rf cavity impedances R9�R36 435�100 kV

Loaded quality factors Q9�Q36 6800�3360
Broadband impedance jZn�nj 1.84V

harmonic-cavity accelerating-mode impedances with real-
istic detuning for beam-loading compensation.

IV. MEASUREMENTS OF STRETCHED BUNCHES
IN THE NSLS VUV RING

The code described in this paper was developed to aid
in the understanding of certain instabilities observed in the
VUV ring. Two aspects of the collective behavior in the
VUV ring have been partially illuminated by the code.
The first is that, at higher current with stretched or over-
stretched bunches, the bunch becomes mildly unstable with
the appearance of synchrotron sidebands with broad spec-
tral bandwidth. At a given current, a partly stretched bunch
may have these bands, and more stretching (increased
harmonic-cavity power) increases the widths of the bands
and the intensity of the instability. Overstretched bunches,
i.e., bunches in a potential well with two minima, have
lower threshold for this instability than stretched or un-
derstretched bunches. Furthermore, this instability is most
114401-7
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FIG. 2. Measured synchrotron sidebands of stretched single-
bunch VUV beams at two beam currents about the 135th revo-
lution harmonic. Machine parameters are given in Table I.

sensitive to single-bunch current and not total current.
Figure 2 shows spectra of single-bunch beams in the VUV
ring at 200 and 265 mA current, which is about the maxi-
mum that can be injected in a single bunch. Figure 3 shows
how the sidebands vary over a wide range of harmonic-
cavity power showing the transition between the short-
bunch and the long-bunch regimes. With multibunch
beams, the same instability is present but higher current
may be injected. At these higher currents, the spectral
bands widen to fill in the spectrum to give a fluctuating
spectral density without obvious structure. With suffi-
ciently high current, the beam dumps.

While the bunches are unstable, fluctuations of the rf in
the harmonic cavity are rather strong, especially at high
current. Although the impedance in that cavity is not
higher than the main-cavity impedance, the fluctuations are
more intense in the harmonic because of the fluctuation of
beam loading arising from the fluctuation of the bunch’s
Fourier coefficient rh�t�, and due to the particular configu-
ration of servo loops for that cavity [7]. These loops are
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FIG. 3. (Color) Synchrotron sidebands of a single-bunch
205 mA beam about a high harmonic for several values of the
harmonic-cavity voltage; the top trace is near zero, and the sec-
ond to the bottom is near the optimum for stretching. The short-
bunch trace at the top shows quadrupole-mode lines at 22 kHz
offset, and the long-bunch traces show broadened lines that fill
the 10–15 kHz range and its harmonics.
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not conventional phase- and level-regulation loops but are
instead loops that level the rf power incident to the cavity
and level the cavity field by controlling the phase of the
amplifier power relative to the beam. In this arrangement,
beam loading is essential to the operation of the loops. It is
used because conventional loops cannot control the cavity
adequately in the presence of stretched bunches [19].

There is also time structure exhibited by these spectra
consisting of oscillations of the intensity of the sidebands
with period approximately equal to the radiation damp-
ing time (7 ms). In Fig. 4 are data showing the intensity
as a function of time of the synchrotron sideband cen-
tered at about 12 kHz offset. The appearance of these
spectral bands and their time structure seems to be due to
the onset of relaxation of a quadrupolelike mode or a mi-
crowave instability and the fact that the threshold is smaller
for stretched and overstretched bunches. So, while the
average-current threshold for the microwave instability in-
creases as the bunch is stretched due to its peak-current
sensitivity, the average-current threshold for relaxation os-
cillation actually decreases as the bunch is stretched. The
two thresholds are approximately equal for a stretched
bunch.

The second feature of VUV beams that the code has
helped us understand is the origin of two bumps in the
stretched-bunch longitudinal beam response function on
both sidebands of harmonics of the bunch repetition fre-
quency (bunch harmonics) in a symmetric fill. The BRF
Tmn agrees closely with the beam transfer function Gmn

when measured about nonbunch harmonics of a multi-
stretched-bunch beam (all traces of Fig. 5 except the top
one), even at substantial currents. But a BRF measured
about a bunch harmonic, such as the top trace of Fig. 5,
has features distinctly and consistently different from the
others —peaks typically at 6 and 12 kHz. Noise sidebands,
which are sidebands modulated by the BRFs, also have
these same peaks. The peaks are not particularly sensitive
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FIG. 4. The intensity as a function of time of the synchrotron
sideband of the second to the lowest trace of Fig. 3 centered at
about 12 kHz offset taken with a spectrum analyzer at 3 kHz
resolution bandwidth. The discontinuity near the center of the
horizontal axis is an artifact from the instrument. Machine pa-
rameters are given in Table I.
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FIG. 5. (Color) Measured beam response functions of a 200 mA
nine-bunch fully stretched beam about nine successive revolution
harmonics in the NSLS VUV ring. The top trace is about
the 54th revolution harmonic (sixth bunch harmonic) and lower
traces are successive revolution lines. Machine parameters are
given in Table I.

to gains and time constants in the servo loops of the rf
system although the 6 kHz peak changes with main-cavity
tuning in a manner similar to the lower-frequency Robin-
son mode in the single-bunch single-cavity case [20].

These facts suggest that the HOM impedances have
little impact on the nonbunch-harmonic BRFs of stretched
bunches, which are the only impedances contributing to
these response functions, and that the 6 and 12 kHz fea-
tures of bunch-harmonic BRFs have their origin in the
high-Q accelerating-mode impedances of the two cavities.
But it remained for computer simulations to show that os-
cillations associated with the 6 and 12 kHz features were
dipolelike and quadrupolelike modes, respectively, and that
each has considerable mode coupling. Furthermore, the
code reproduced the short-bunch to long-bunch transition
of the quadrupole mode instability, relaxation oscillations
in the long-bunch regime, and, with mixed success, the
prediction of spectra of unstable stretched bunches.

V. SIMULATION OF STRETCHED BUNCHES

Unstretched single-bunch beams in the VUV ring often
show evidence of quadrupole instability, of which Fig. 3
is an example. As the bunch is stretched, the quadrupole
mode decreases in frequency, as expected, and later
merges with or becomes the broadened peaks tentatively
associated with relaxation oscillations of a quadrupole
mode or microwave instability excited by the broadband
impedance. This was discussed in Sec. IV. It is of interest
to see in detail in simulations the character of the instabil-
ity associated with the broadened peaks and distinguish
high-Q driven effects from broadband impedance driven
effects and how the two effects combine. This section
discusses simulations of stretched bunches with and with-
out high-Q and broadband impedances and calculations
of beam response functions. The results together form a
rough picture of how impedances give rise to different
features observed in the NSLS VUV ring (Sec. IV).
114401-9
Simulations of this section assume a radiation damping
time of 3.5 ms, half the actual value listed in Table I. This
reduced value is used to reduce the disparity in the time
scales of the problem.

The rf potential for the optimum flat-bottomed potential
well adjusts the main-cavity and higher-harmonic-cavity
voltages and phases for zero net energy loss and zero first
and second derivatives at f � 0 [21]. In the VUV ring,
these conditions have the main-cavity voltage and phase
at V9 � 80 kV and c9 � 74.2± and the harmonic-cavity
voltage and phase at 19.3 kV and 294±. The harmonic-
cavity servo loops are configured to maintain the cavity
phase at c36 � 290±, and the potential used in the simu-
lations was chosen to be consistent with this fact. The
harmonic-cavity voltage was chosen to be V36 � 19.7 kV.
Some asymmetry in the computed Haïssinski distributions
can be seen using these numbers. These and other machine
parameters are listed in Table I. Detuning of the rf-cavity
accelerating modes for beam-loading compensation was
set to be proportional to the average current approximating
what is actually used in machine operation. In the case of
the main cavity, the proportionality is 50 kHz�A; in the
case of the harmonic cavity, it is 250 kHz�A.

A. Microwave instability

The bunched-beam microwave instability [22,23] is be-
lieved to be present in the VUV ring in short bunches at
fairly low current (10–30 mA) in unstretched bunches and
causes bunch lengthening at these currents and above. At a
few hundred milliamps of single-bunch current, the bunch
is 2 to 3 times larger than the small-current bunch length.
The VUV ring can hold sufficient current that stretched
bunches are microwave unstable as gauged by the Boussard
criterion [22] and an estimate of the broadband impedance.
A calculation of the threshold for the microwave instabil-
ity in a stretched bunch by simulation gave a value given
by the Boussard criterion [[15], Eq. (5.30)] to a precision
of 15%.

Simulations of microwave instability were done using
VUV parameters (Table I). The broadband impedance is
that of a Q � 1.118 resonator with jZn�nj � 1.84V and
with a resonant frequency (2.0 GHz). Figure 6 is a plot of
the distribution in phase space of an unstable bunch. Phase
is left to right (leading edge of the bunch is to the right)
while energy is from front to back.

Figure 7 shows simulated synchrotron sidebands at the
135th revolution harmonic for bunches at 300, 350, and
400 mA beam current. At the highest current (top trace)
there is a relatively uniform and intense spectral density in-
dicative of rather disordered motion. The correlation with
the features of Fig. 2 is not perfect, but the intense quasi-
uniform spectral density seen in the simulation is also
present in spectra taken from other intense and/or over-
stretched beams in the VUV ring and is considered success
of the simulation.
114401-9
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FIG. 6. (Color) Plot of a simulated 350 mA microwave-unstable
fully stretched bunch in the NSLS VUV ring. The impedance
is that of a Q � 1.118 resonator with jZn�nj � 1.84V and
resonant frequency 2.0 GHz. Phase increases from left to right
with the leading edge of the bunch to the right. Energy increases
from front to back. Machine parameters are given in Table I.

The bunch at 300 mA in the lower-current trace of
Fig. 7 is microwave unstable but without bursting mode. It
has sharply peaked synchrotron sidebands at a high offset
(32 kHz); the oscillation is nearly periodic (spectral den-
sity near these peaks is due to the transient associated with
the start of the simulation). The line density shows a fast
wave [24] with the 32 kHz frequency moving across the
bunch. When looking at the distribution in phase space,
one sees that waves of modulation move across the low-
energy side of the bunch (e.g., Fig. 6) with the flow of the
rf Hamiltonian towards the leading edge. Waves on this
side are antidamped, i.e., they grow as they move with the
flow. In contrast, the modulation on the high-energy side
of the bunch damps. This imbalance in the damping rates
permits the fast wave to dominate the modulation of the
line density.

The frequency offset v of the sideband is understood
simply as 2p times the velocity of this wave divided by
the wavelength of the wave. The velocity of the wave
is estimated as the velocity df�dt � p of particles in
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FIG. 7. Spectrum of simulated microwave-unstable bunches in
the NSLS VUV ring at three beam currents. The ring impedance
is that of a Q � 1.118 resonator with jZn�nj � 1.84V and
resonant frequency 2.0 GHz. Successive traces are displaced
vertically 50 dB. Machine parameters are given in Table I.
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FIG. 8. Plot of the energy spread against time for a simulated
microwave-unstable bunch in the NSLS VUV ring correspond-
ing to the 400 mA trace of Fig. 7. The impedance is of a
Q � 1.118 resonator with jZn�nj � 1.84V and resonant fre-
quency 2.0 GHz. Machine parameters are given in Table I.

phase space, where p is evaluated at the edge of the bunch,
i.e., Hrf�0,p� � p2�2 � s2, where s � av0se and se

is the intrinsic fractional energy spread of the ring. The
wavelength of the wave is the wavelength of the broadband
impedance 2pc�v̄ divided by the average radius of the
ring R � c�v0, where v̄ is from Eq. (2.30) and c is the
speed of light. So the frequency of the sideband is

v �
p

2 asev̄ . (5.1)

Using VUV numbers from Table I and v̄ � 2p 3

1.8 GHz, this comes to v � 2p 3 31 kHz, which is
very close to the frequency seen in the simulation of
Fig. 7. These lines have not been seen in spectra from
the VUV ring, however. The microwave instability that
is responsible for bunch lengthening in the VUV ring has
frequency that is unlikely to be as low as was used in
the calculations contained in this paper. It is more likely
that the actual frequency v is higher and observable only
near higher revolution harmonics due to the low current at
which the nonbursting mode occurs in the VUV ring.

At higher current, relaxation oscillations are present in
simulations (Fig. 8). The intensity of the microbunching
is greatest at the start of the simulation where the en-
ergy spread is artificially low (the natural machine energy
spread). In later cycles, the instability revives before the
energy spread fully damps to the natural energy spread re-
sulting in less intense bursts.

B. Simulations of longitudinal beam response functions

About nonbunch harmonics, the longitudinal beam
transfer function Gmn [14,15], i.e., the beam response
to an applied voltage in the absence of impedances, has
the characteristic lobed structure whose lobes correspond
to the terms of the series decomposition of Gmn into a
sum over the synchrotron harmonics [25]. In Fig. 9 is
a measurement, which is of the beam transfer function
114401-10
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FIG. 9. Beam transfer function G55 55 of a fully stretched
single-bunch beam in the VUV ring. The data points are the
beam response function T55 55 measured at 13 mA approxi-
mating G55 55; the middle trace is calculated using a method
derived from Krinsky and Wang’s [15] expression for their
beam transfer function Fmn � 2Gmn�k (see the text); the lower
trace is calculated using the method described in Sec. III. The
vertical scale has an arbitrary scale factor and the horizontal
scale of the first and third traces (Dvs) was adjusted 20% to fit
the second trace. Machine parameters are given in Table I.

of a fully stretched VUV beam at low current, and two
calculations of the beam transfer function G55 55 showing
this structure. The first calculated response uses a method
derived from Krinsky and Wang’s [15] expression for the
beam transfer function Fmn � 2Gmn�k. In this method
[26], Fmn is the Fourier transform

Fmn�V� �
1
in

Z I

0
dt eiVthmn�t� , (5.2)

where

hmn�t� � 2k
Z `

0
dJ�gmn, CHa� , (5.3)

�J, u� is the action-angle canonical-coordinate pair with the
constraint u � 2vs�J�t in Eq. (5.3), vs � vs�J� is the
synchrotron frequency, Ts � 2p�vs, CHa is the Haïssin-
ski distribution, k � eav

3
0�4p2E0,

gmn�J, u� �
Z 2p

0
ei�mf�J,u0�2nf�J,u1u0��du0 (5.4)

	 2pJ0���rRmn�u���� , (5.5)

f � f�J, u� is the f coordinate as a function of the
action-angle variables, J0 is the Bessel function of the first
kind, Rmn�u� �

p
m2 1 n2 2 2mn cosu, and, as above,

the t dependence of Rmn�u� is in u � 2vs�J�t. But
the derivations of Eq. (5.2) and K&W’s expression from
which Eq. (5.2) is derived neglect the potential-well dis-
tortion term and the FP terms as well as the nonlinear term
of the VFP equation (2.11). For this reason, in this con-
text, Eq. (5.2) is expected to be accurate only at lower cur-
rents, which is where Fig. 9 applies. It does, however,
include all orders of synchrotron harmonics. The second
114401-11
calculated response of Fig. 9 uses the method described in
Sec. III, i.e., the impulse-response simulation. These three
response functions show good agreement.

The beam’s response about harmonics of the bunch repe-
tition frequency (top trace of Fig. 5), a response function
that is distinctly different from the beam transfer function
of Fig. 9 and the response near revolution harmonics that
are not harmonics of the bunch repetition frequency (all
traces of Fig. 5 except the top), suggests that the main-
cavity and harmonic-cavity fundamental rf modes are re-
sponsible for these peaks. These ideas were confirmed in
a response-function calculation where the ring impedance
includes the main-cavity and harmonic-cavity rf-mode im-
pedances. Figures 10–12 are plots of simulated beam re-
sponses for 300, 500, and 800 mA beams with traces at
different revolution harmonics. The results show the peaks
clearly at 5 and 12 kHz, approximately where they exist in
the top trace of the measured response Fig. 5 [compare
with the fourth �T55 55� traces of Figs. 10–12].

The nature of the coherent motion associated with the 5
and 12 kHz peaks was established by computing the time
dependence of the first- and second-order moments of the
bunch and comparing their intensities. The results are that
there is much greater oscillation of the phase spread and
energy spread at the 12 kHz frequency than phase and en-
ergy, respectively, implying that the 12 kHz peak is largely
a quadrupole-mode oscillation. Oscillation of both dipole
and quadrupole modes is present, however, so there is con-
siderable mode coupling. The 5 kHz feature is largely a
dipole (center-of-mass) oscillation although, again, there is
mode coupling. This is consistent with the calculations of
Wang [10] and Bosch, Kleman, and Bisognano [11] show-
ing that dipole-quadrupole mode coupling is significant in
stretched bunches. So, the short-bunch quadrupole mode
seems to retain its identity through the stretched-bunch
regime as viewed through the beam response-function cal-
culation —consistent with Fig. 3.
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FIG. 10. Simulated beam response functions T9 55, T18 55,
T36 55, T55 55, and T135 55 (top to bottom) for a fully stretched
300 mA bunch in the VUV ring. Realistically detuned main-
cavity and harmonic-cavity impedances are included in the
simulation. The vertical scale has an arbitrary scale factor.
Machine parameters are given in Table I.
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FIG. 11. Simulated beam response functions T9 55, T18 55,
T36 55, T55 55, and T135 55 (top to bottom) for a fully stretched
500 mA bunch in the VUV ring. Realistically detuned main-
cavity and harmonic-cavity impedances are included in the
simulation. The vertical scale has an arbitrary scale factor.
Machine parameters are given in Table I.

There is a trend in the damping rates of the two modes
evident in the three figures. As the current increases, the
quadrupolelike mode becomes better damped while the
dipolelike mode becomes more poorly damped. Simula-
tions also predict that the dipolelike mode becomes un-
stable (Sec. V C) at about 200 mA. In contrast, Fig. 5,
which was taken from the VUV ring at 200 mA, shows
that the dipole mode is rather well damped. Further-
more, rigid-bunch calculations predict that the beam has an
equilibrium-phase (reactive-Robinson-like) instability be-
tween 50 and 150 mA. That this instability is not present
in normal operation is perhaps due to the servo loop used
in the harmonic-cavity rf system [7,19] that is effectively
beam feedback [6]. That loop may have sufficient band-
width to provide adequate damping of the mode.

Although the agreement with measurements is not exact,
these results resolved the long-standing question regarding
the origin of the 5 and 12 kHz peaks in beam response
functions and noise sidebands, i.e., that the fundamental
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FIG. 12. Simulated beam response functions T9 55, T18 55,
T36 55, T55 55, and T135 55 (top to bottom) for a fully stretched
800 mA bunch in the VUV ring. Realistically detuned main-
cavity and harmonic-cavity impedances are included in the
simulation. The vertical scale has an arbitrary scale factor.
Machine parameters are given in Table I.
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FIG. 13. Simulations of the response function T55 55 of a
500 mA fully stretched bunch in a ring with VUV fundamental
rf modes in the two cavities and no broadband impedance.
The traces differ in their initial impulse p0 in the momentum
variable p � df�dt applied with the cosine-f and sine-f
dependence as part of the impulse-based calculation of response
functions (Sec. III). These impulses are, from top to bottom,
p0 � 10, 30, 100, and 300 s21. Machine parameters are given
in Table I.

rf modes of the two cavities are responsible for the two
peaks, that the first is due to a dipolelike mode, the second
is due to a quadrupolelike mode, gave some information
about the degree of mode coupling involved, and that the
broadened spectral bands of Fig. 2 are due to quadrupole
instability with relaxation.

A last subject is briefly discussed in this section. When
a bunch is externally excited by a continuous or transient
force, resonances in the bunch’s response may exhibit
saturation even at low intensity of excitation. Saturation
necessarily results in excitation-intensity-dependent beam
response functions. Such effects are occasionally seen in
the VUV ring. The method of Sec. III permits the calcu-
lation of beam response functions with varying intensity
of the driving term. The initial kicks in energy are applied
to the Haïssinski function so as to shift this function in
the momentum variable p � df�dt by the f-dependent
amounts p0 cosnf and p0 sinnf for the cosine and sine
calculations, respectively (Sec. III). Figure 13 shows
the p0 dependence of simulated response functions of a
500 mA beam in the VUV ring with fundamental rf modes
and no broadband impedance. Although the code does
not simulate the continuous excitation of the bunch used
in frequency-domain-based measurements, it is useful for
estimating the onset of intensity-dependent effects.

C. Instabilities driven by high-Q modes

In the next two simulations, only the fundamental rf
modes of the main and harmonic cavities are present and
the tunes of the main and harmonic cavities are realistically
set for beam-loading compensation. At currents between
about 50 and 200 mA, the simulations predict instability.
These thresholds are sensitive to the exact tuning of the
two cavities.
114401-12
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FIG. 14. Energy spread of a 200 mA fully stretched unstable
bunch as a function of time. The ring impedance consists of
main-cavity and harmonic-cavity fundamental rf modes realisti-
cally detuned for beam-loading compensation. Machine param-
eters are given in Table I.

FIG. 15. (Color) Phase-space distribution of a 200 mA fully
stretched unstable bunch that does not have a relaxation cycle.
The ring impedance consists of main-cavity and harmonic-
cavity fundamental rf modes realistically detuned for beam-
loading compensation. Machine parameters are given in Table I.

At 200 mA, the beam shows a weak quadrupolelike
mode and relaxation oscillations. In Fig. 14 is plotted the
energy spread of this bunch as a function of time show-
ing the relaxation oscillations over several milliseconds; in
Fig. 15 is presented a three-dimensional plot of the bunch
at a point of the cycle at which the oscillation appears most
intense; and in Fig. 16 is the spectrum of the bunch.

At 150 mA, the intensity of the instability of the simu-
lated bunch is much greater. Figure 17 shows a plot of the
phase-space distribution after the oscillation becomes peri-
odic (no relaxation) showing a striking twofold symmetry
in phase space. It is curious that relaxation oscillations are
absent at this current even though the instability is much
more intense.

To summarize, Figs. 10–12 and 17 illustrate that
stretched bunches in the VUV ring show tendency to
oscillate in a quadrupolelike mode at 10 or 12 kHz —con-
sistent with observations of the ring— and that this mode
is driven by the high-Q impedances of the rf cavities. But
the spectra of this instability, while having 10–15 kHz
114401-13
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FIG. 16. Simulated spectrum about the 135th revolution har-
monic of a 200 mA fully stretched weakly unstable bunch. The
ring impedance consists of main-cavity and harmonic-cavity fun-
damental rf modes. Their tunes are realistically adjusted for
beam-loading compensation. Machine parameters are given in
Table I.

FIG. 17. (Color) Simulated phase-space distribution of a
150 mA fully stretched unstable bunch after the oscillations
have steadied. The ring impedance consists of main-cavity
and harmonic-cavity fundamental rf modes. Their tunes are
realistically adjusted for beam-loading compensation. There is
no relaxation cycle. Machine parameters are given in Table I.

sidebands, is still not clearly the origin of the instabilities
of Figs. 2 and 3. We next look at simulations of spectra
of combined broadband and high-Q impedances.

D. Combination of broadband impedance and high-Q
modes

We know from the previous two sections that high-Q
modes drive instabilities in stretched bunches having spec-
tra with multiple synchrotron harmonics that are typically
broadened when there is relaxation. Also, broadband im-
pedances drive instabilities that, when intense, have spectra
with diffuse spectral density, when there is relaxation.
In the absence of relaxation, both have spectra with sharp
lines. The fundamental rf modes of the main and harmonic
cavities can drive a quadrupolelike instability whose fre-
quency, when stable or unstable, is in the same 10–15 kHz
range of the observed spectral bands of unstable stretched
bunches in the VUV ring while also having diffuse
spectral density. But the spectral bands with the diffuse
114401-13
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background seen in Fig. 2 is not well reproduced in
either of these types of simulations. We now look at
simulations of instabilities at higher current in which there
is a combination of microbunching driven by a broadband
impedance (Sec. V A) and an unstable quadrupolelike
mode driven by high-Q impedances (Sec. V B).

In Fig. 18 are the energy spreads of three bunches as a
function of time, one evolving in the high-Q impedance
alone, a second evolving in the broadband impedance, and
a third evolving in both. The first case is stable while the
second is microwave unstable with bunch lengthening and
without bursting-mode behavior. The third case driven by
both broadband and high-Q impedances is unstable with
relaxation. So, together the impedances push the bunch
into the bursting-mode regime with an appearance very
similar to that seen in a short-bunch simulation of Ref. [4].

Simulations with different broadband impedances were
done to see how this changes the bunch spectra. In Fig. 19
are the beam spectra at 300 mA beam current for four
different values of jZn�nj. The top trace is the spectrum
of the bursting-mode trace of Fig. 18 �jZn�nj � 1.84V�.
The others have progressively higher impedance. The lines
that are distinct in the top trace get progressively less
distinct and increase slightly in frequency offset with in-
creasing impedance. Also, the top trace has the lines that
have nonzero widths that increase visibly in proportion to
the synchrotron harmonic as in the high-Q-only case of
Fig. 16. Lines on the other traces are not sufficiently dis-
tinct to see this because of the increasing intensity of the
diffuse background.

While none of the traces of Fig. 19 resemble Figs. 2 or
3 closely, Fig. 19 does show the distributed spectrum and
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FIG. 18. (Color) Simulated energy spread of three 300 mA fully
stretched bunches that differ in the ring impedances in which
they propagate. From bottom to top the ring impedances are
main-cavity and harmonic-cavity fundamental rf modes only
(blue trace), broadband impedance consisting of a Q � 1.118
resonator with jZn�nj � 1.84V and resonant frequency 2.0 GHz
only (red trace), and broadband impedance and high-Q rf modes
combined (green trace). The tunes of the rf modes are re-
alistically adjusted for beam-loading compensation. Machine
parameters are given in Table I.
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FIG. 19. Simulated spectra of 300 mA fully stretched unstable
bunches propagating in a ring impedance consisting of main-
cavity and harmonic-cavity fundamental rf modes and broadband
impedances consisting of a Q � 1.118 resonator with varying
jZn�nj and resonant frequency 2.0 GHz. From top to bottom the
traces have jZn�nj of 1.84, 2.32, 2.48, and 2.8V. The frequency
is offset from the 135th revolution harmonic. The tunes of the rf
modes are realistically adjusted for beam-loading compensation.
Successive traces are displaced 50 dB. Machine parameters are
given in Table I.

relaxation oscillations that are seen in intensely unstable
VUV bunches.

VI. CONCLUSION

Computational methods and a code were developed for
the integration of the VFP equation, which follows closely,
and extends, the work of W&E [1], that tracks the particle
distribution function in phase space under the influence
of broadband and high-Q impedances. A method for the
calculation of beam response functions that includes the
beam-induced voltages acting back on the bunch was also
described and demonstrated in simulations.

The behavior of certain single-bunch instabilities present
in stretched bunches in the VUV ring was then described.
These instabilities often have distributed spectral density
that has continuity between a quadrupole instability present
in short bunches and a spectral band present in stretched
bunches. Characteristics of measured BRFs of multibunch
modes were described. The multibunch mode that does
not interact with the rf system has a BRF that looks like
the bare BTF, i.e., as though there was no ring impedance
interacting with the bunches. In contrast, BRFs of those
modes interacting with the rf system have distinctive fea-
tures whose origins were more clearly understood with the
help of simulations reported here.

Simulations of stretched bunches unstable in a ring
impedance containing high-Q or broadband impedances
or both were presented. These simulations give some
information on what observable consequences different
types of impedances generate in a beam. In particular,
the code was used to calculate saturation of microwave
instability driven by a broadband impedance. Similar
114401-14
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calculations for instabilities driven by high-Q impedances
of the fundamental rf modes of the main and harmonic
cavities were performed. Then instabilities driven by both
high-Q and broadband impedances were simulated to
look at how beam spectra varied with beam current and
broadband impedance. These simulations established that
unstable quadrupolelike modes are present in stretched
bunches under the influence of the high-Q impedances
of the cavities, that relaxation is often present with these
instabilities, and that there is considerable mode mixing.
Calculations of BRFs also showed that a dipolelike mode
and the quadrupolelike mode both contribute peaks in the
BRFs (5 and 12 kHz), accounting for these previously
unexplained features.

Although this study falls short of a quantitative under-
standing of the instabilities seen in the VUV ring and the
impedances that drive them, significant progress was made.
Calculations of spectra and response functions using more
realistic broadband impedances are needed. Such inves-
tigations may lead to a more detailed and precise under-
standing of these long bunches and their instabilities. The
physics of saturation of instabilities driven by combined
high-Q and broadband impedances is a subject worthy of
further investigation.
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