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Analysis of a model for resonant extraction of intense beams
by normal forms and frequency map
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A simple 1D model is proposed to explore the resonant extraction of intense beams from a synchrotron
as performed in the SIS synchrotron in GSI (Darmstadt). The model Hamiltonian consists of a constant
focusing, a thin sextupole, and a smooth space charge field. Hyperbolic normal forms are used to estimate
the extraction times and the emittance of the extracted beam; the quality of the reconstruction is tested
in absence of space charge. The effect of space charge on the dynamical behavior of the beam near the
1�3 betatron resonance is numerically investigated using the frequency map analysis and qualitatively
explained with perturbation theory. A polynomial approximation to the one turn map is obtained by re-
placing the exact space charge force with a sequence of polynomial kicks, and the resonant normal forms
reproduce quite accurately the nonlinear tunes and the fixed points position. At low order an analyti-
cal estimate of the area of the stable region is proposed to recover the self-consistency of the model.
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I. INTRODUCTION

In the study of rare nuclear reactions by means of beam-
target collision experiments, the intensity of the delivered
beam is often limited by some overheating constraints (the
target may melt). One needs then to dilute the extraction
on a time interval depending on external requirements. The
tool traditionally used for this purpose is resonant (or slow)
extraction. By means of nonlinear magnetic elements (usu-
ally sextupoles or octupoles) one excites an unstable reso-
nance that divides the transverse phase space (usually the
horizontal one) into a stable and an unstable region. Par-
ticles are then gradually destabilized by shrinking the di-
mensions of the stable area (which can be done by either
quadrupole ramping or betatron core acceleration) or by
making them diffuse outside by means of a an rf noise ap-
plied perpendicularly to the beam.

In the study of rare reactions, however, the beam inten-
sities needed at the target could be so high that the current
circulating in the beam is sufficient to produce significant
space charge effects. A 500 mA beam of U721, as planned
at the SIS synchrotron in GSI (Darmstadt), causes, for ex-
ample, a relative linear tune shift of 5 3 1023. In this case
the space charge effects on the resonant extraction should
be considered because a slow spill is required not to melt
the target.

The purpose of this paper is to illustrate a method, based
on the normal forms perturbative technique, to give semi-
analytical estimates for the extraction times and emittances
of the extracted beam. These two parameters are of basic
importance to understand the influence of ripples, present
in the power supplies, on the temporal density profile of
the extracted beam and on the focal spot. The advantage
1098-4402 �01�4(11)�114201(11)$15.00
of semianalytical estimates with respect to tracking proce-
dures lies in an easier parametric control of the extraction
mechanism. These estimates, given for a fixed machine
tune, can be used also in the case of quadrupole ramping
and betatron core acceleration, provided that they are per-
formed slowly enough to be considered adiabatic processes
(spills longer than 10 ms for machine circumferences of
some hundreds of meters).

The method is based on the computation of the fixed hy-
perbolic points of the accelerator one turn map and on the
calculation, in their neighborhood, of the hyperbolic nor-
mal form. After a nonlinear transformation to normal co-
ordinates, the map becomes hyperbolic with a divergence
factor which depends on the invariant, so that the compu-
tation of the extraction time and extracted emittance be-
comes very easy. When no resonance islands are present,
the validity domain of these perturbative estimates can be
indefinitely extended along the stable and unstable mani-
folds, otherwise the island elliptic fixed point determines
a border.

The proposed technique is first applied to the study of
a case without space charge. The estimate obtained for
the extraction time is comparable, at the lowest order, with
the result of a previously proposed method for extraction
through the 1�3 resonance [1], while at higher orders it al-
lows one to take into account the strong nonlinear deforma-
tion of the unstable orbits, which considerably affects the
extraction time behavior. Moreover, being free of ad hoc
assumption on the dynamics, it allows an automatic ex-
tension to resonances different from 1�3 and to nonlinear
fields different from the pure sextupolar one.

In the presence of space charge the stable area changes
and the hyperbolic fixed points move. A careful modeling
© 2001 The American Physical Society 114201-1
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of the nonlinear influence of space charge on transversal
resonances is then needed to locate the new fixed points
and to extend the proposed technique to the study of an
intense beam.

The outline of the paper is as follows. In Sec. II we
specify the Hamiltonian describing a flat intense beam in
a linear lattice with a thin extraction sextupole. In Sec. III
we introduce the hyperbolic normal forms to analyze the
dynamics of the one turn map and to compute the extrac-
tion times, when the linear tune is close to 1�3 and the
space charge is negligible. In Sec. IV we investigate the
dynamical effects of the space charge by analyzing the
changes induced in the tune and the dynamic aperture. A
semianalytic estimate of the tune and of the stable area,
provided by the resonant elliptic normal forms, allows one
to impose an approximate self-consistency condition and
to define an effective sextupolar strength.

II. PRESENTATION OF THE MODEL

The proposed model refers to the horizontal motion of a
particle belonging to a round beam and moving in a linear
lattice with a thin extraction sextupole and subject to the
space charge force

F � 2
j

2a
V 0

µ
x
a

∂
, (1)

where j is the perveance of the beam, a its radial exten-
sion, and V �x� is the electric potential for a unit charge per
unit length and unit beam radius. We choose the potential

V �x� � 2 log�1 1 x2� (2)

corresponding to an electric field which behaves linearly
at the origin and vanishes similar to 1�x as x ! ` The
force acting on a macroparticle has the same asymptotic
behavior as for a KV distribution but mimics a smooth
distribution of charge at the core edge and reads

F �
j

a2

x

1 1
x2

a2

. (3)

The corresponding Hamiltonian in the physical coordinates
is

Hph �
p2

ph
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x2
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2
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jph
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∂
,

(4)

where k0 is the machine quadrupolar gradient, K2 is the
integrated sextupolar gradient, and dL�s� is the periodic d

function of period L, the length of the ring.
For j � 0, the betatronic frequency for particles with

vanishingly small oscillation amplitude is v0 �
p

k0 L.
When j fi 0 the quadratic term of V changes the fre-
quency as v2 � v

2
0 2 jL2�a2 and the tune shift is

DQsc � �v0 2 v��2p � jL2a22�4pv0.
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A. Scalings

Scaling the longitudinal and transverse coordinates ac-
cording to s � sph�L and x � xph, p � pphL, we write
the scaled Hamiltonian H � L2Hph as a function of the
depressed linear frequency v,

H �
p2

2
1 v2 x2

2
2

K2L
6

x3d�s�

1
jL2

2

∑
V

µ
x
a

∂
1

x2

a2

∏
, (5)

where dL�Ls� � L21d�s� and d�s� has period 1. We
notice that the scaled emittance is e � Leph and that
Hamilton’s equations still hold in the scaled variables.
Moving then to the linearly normalized coordinates x̂ �
x
p

v, p̂ � p�
p

v, the Hamiltonian reads

H � v
x̂2 1 p̂2

2
2
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6
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2
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∏
, (6)

where â � a
p

v is the normalized radius, and

K̂2 �
LK2

v3�2 , ĵ �
jL2

â2 �
jL2

a2
v

(7)

are the scaled sextupolar gradient and the scaled perveance.
The Courant-Snyder–like coordinates x̂, p̂ have the di-
mension of a length similar to x, p, whereas K̂2 is the in-
verse of a length.

A dimensionless description is obtained after scaling
Eq. (5) or (6) with respect to the core radius x�a, p�a, or
x̂�a, p̂�a and H�a2; the emittance becomes e�a2. Using
the normalized coordinates we have

H
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,

and the Hamiltonian depends on the dimensionless
parameters v, K̂2a, and ĵ

B. Dynamic aperture

For a real lattice in the extraction regime the bare linear
tune is given by Q0 � m 1

1
3 1

h

2p , where m is the inte-
ger part and h ø 1. Letting n � 3m 1 1 we have v0 �
2p

n
3 1 h. The dynamic aperture in the absence of space

charge depends only on h,

x̂dyn �
2

K̂2
D�v0�, xdyn �

2v0

K2L
D�v0� . (8)

D�v0� � 3jhj is the dynamic aperture of the Hénon map.
If we change v0 into v

0
0 �

2p

3 1 h by choosing a
ring of length L0 � L�n and k0

0 � k0�nv
0
0�v0�2 � k0, the
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dynamic aperture xdyn, in physical coordinates is un-
changed since v

0
0 � v0�n implies v0�L � v

0
0�L0.

The presence of space charge changes v0 into v, but
the tune depression does not vary since v�v0 � v0�v

0
0,

whereas the tune shift changes by 1�n being proportional
to the ring length. To have the same dynamic aperture,
which depends on h 1 ĵ�2 � h 1 jL2�2a2v, the per-
veance for the short ring must be changed into j0 � nj.
Finally, the normalized parameters for long and short rings
are related by

K̂ 0
2 �

K2L0

v03�2 �
p

n K̂2, ĵ0 �
njL02

v0a2 � ĵ .

C. A realistic example

We quote the parameters of the SIS synchrotron at GSI
for an extraction of 500 mA of U721 at 1000 MeV per
nucleon; the longitudinal and transverse length units are
meters and millimeters. The ring length is L � 217 m,
the bare tune is Q0 � 4.3 ��b� � 8 m�, and the sextupole
gradient is K2 � 3 m22. The initial horizontal emittance
is 200 mm mrad, the core radius is a � 25 mm, and the
tune shift is DQsc � 5 3 1023 (1000 times less for ther-
apeutic applications) implying j � 0.02. The normal-
ized parameters are K̂2 � 4.6 m21, ĵ � 6 3 1022, and
â � 130 mm. In the models chosen for our simulations
the values of the parameters K̂2 and ĵ are comparable with
SIS. This Hamiltonian is not self-consistent since the beam
radius is a free parameter. A self-consistent radius â de-
pends on v0, K̂2, ĵ as shown in the previous section.

III. HYPERBOLIC INTERPOLATING
HAMILTONIAN

In this section we show how to obtain semianalytical es-
timates of the extraction time and the emittance of the ex-
tracted beam in the case of a pure sextupole. The proposed
method relies on the computation of the hyperbolic normal
form. After calculating the one turn (Poincaré) map M, we
chose one of the hyperbolic periodic points �x̂f , p̂f� of pe-
riod 3. This is a fixed point for the third iterate of the map
M±3, �x̂f , p̂f� and the orbits are close to hyperbolas in its
neighborhood. After translating the origin to �x̂f , p̂f�, we
look for an approximate symplectic change of coordinates
X�x̂, p̂�, P�x̂, p̂�, such that in the new coordinates the mo-
tion generated by M±3 is exactly hyperbolic. This transfor-
mation is defined in a neighborhood of the unstable fixed
point and can be extended along the stable and unstable
manifolds [2]. The interpolating Hamiltonian H in the
new coordinates H � H0 1 H1XP 1 H2�XP�2 1 · · · is
a power series in XP, and the invariant curves are equilat-
eral hyperbolae. Letting s � ≠H �≠�XP� the evolution
is given by

X�t� � X0es�X0P0�t�3,

P�t� � P0e2s�X0P0�t�3,
(9)
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where ���X�3t�, P�3t���� interpolates the iterates of order of
M±3 defined for t integer. The exponential divergence rate
from the origin, s, depends on the invariant XP, as the tune
of a closed orbit depends on the emittance. If the initial
point is near to the hyperbolic fixed point, the orbit spends
a rather long time nearby, until X�t� becomes of order 1,
but the subsequent divergence is fast. Denoting by Xes
the abscissa of the point where the image of the septum
in the normal coordinates plane intersects the orbit with
initial conditions �X0, P0�, the extraction time tes � 3T
reads X�tes� � X�3T � � Xes.

The value of T is given by

T �
1

s�X0P0�
log

Xes

X0
. (10)

We consider two cases corresponding to different con-
ditions for the extraction process: (i) the particles are
extracted near the unstable manifold issued from the hy-
perbolic point, and (ii) the particles escape through the
stochastic layer surrounding a resonance island and are
extracted. The first case is illustrated by the top frame
of Fig. 1, the second by the top frame of Fig. 2. In the
bottom frames of Figs. 1 and 2 we compare the extraction
times computed from the hyperbolic normal forms of dif-
ferent orders with the results obtained from tracking. The
extraction time computed from the lowest order normal
form decreases monotonically with the distance from the
hyperbolic point. The numerical simulation, on the con-
trary, shows that a minimum extraction time is achieved at
some distance.

This behavior is explained by higher order normal forms
as a folding effect of the trajectories, which two times
crosses the segment where the initial conditions are cho-
sen; see the bottom frame of Fig. 3. This effect is more
visible in the normal coordinates space, where the trajecto-
ries are equilateral hyperbolas and the initial condition line
has folded; see the top frame of Fig. 3. As a consequence,
when we move along this line of initial points every tra-
jectory is crossed two times. The intersection points A, B
of a trajectory have different extraction times: if the point
A is met first when we move along the line of initial con-
ditions, the extraction time of B is the same as A plus the
time needed to go from B to A along the trajectory join-
ing them. In case (ii) the initial conditions set crosses the
stable manifold, where the escape time diverges; see bot-
tom frame of Fig. 2.

Beyond the stable manifold (vertical axis in the top
frame of Fig. 3) the particle follows another family of
hyperbolas. In the bottom frame of Fig. 3 we have plot-
ted, in the x, p plane, the images of the stable and unsta-
ble manifolds, which cross at the first homoclinic point
at a very small angle. This point is a singularity for
the Taylor expansion of the normal form transformation
and defines the applicability limit of the normal form
dynamics.
114201-3
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FIG. 1. (Color) (Top) Phase plot in linearly normalized coordi-
nates �x̂, p̂� for a sextupole K̂2 � 1 m21 and linear frequency
v0 � 4.33 3 2p. (Bottom) Numerical (red line) and analytical
(blue, first order; green, tenth order) estimates of the extraction
time for a distribution of particles on a line versus the distance
from the hyperbolic fixed point. The extracted points initially
belong to the red segment in the phase space plot. The dy-
namic aperture is x̂dyn � 90 mm. The corresponding value in
the physical coordinates is xdyn � 17 mm, and for the value
K̂2 � 4.6 m21 of SIS becomes xdyn � 4 mm.

Another straightforward calculation in normal coordi-
nates is the extracted emittance e. We consider the invari-
ant curve to which belongs the initial point �X0, P0� such
that Xes � X�3T � � X0eTs�X0P0�. The areas pek of the
domains Dk delimited by the horizontal axis P � 0, the
curve XP � X0P0, and the vertical lines X � X�3k 2 3�,
X � X�3k� for k � 1, . . . , T (see Fig. 4) are all equal and
are given by
114201-4
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FIG. 2. (Color) (Top) Phase plot in linearly normalized coordi-
nates �x̂, p̂� for a sextupole K̂2 � 1 m21 and linear frequency
v0 � 4.32 3 2p. (Bottom) Numerical (red line) and analyti-
cal tenth-order (green) estimates of the extraction time for a
distribution of particles on a line versus the distance from the
hyperbolic fixed point. The extracted points initially belong to
the red segment in the phase space plot. The dynamic aperture
is x̂dyn � 570 mm. The corresponding value in physical coor-
dinates is xdyn � 110 mm, and for the value K̂2 � 4.6 m21 of
SIS becomes xdyn � 24 mm, just as the core radius a at the be-
ginning of the extraction.

pek �
Z X�3k�

X�3k23�
P�X�dX

� X0P0 log

√
X�3k�

X�3k 2 3�

!
� X0P0s�X0P0� . (11)

The domains D1, D2, . . . , DT are extracted at time
3T , 3T 2 3, . . . , 3, respectively.
114201-4
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FIG. 3. (Color) (Bottom) Magnification of the top of Fig. 2 with
the segment (blue) on which the initial conditions are chosen,
the unstable (red) and stable (green) manifolds. (Top) Image in
normal coordinates �X, P� of a neighborhood of the hyperbolic
point, the initial conditions segment (blue curve), and the stable
(P axis) and unstable (X axis) manifolds.

If the curve bounding the domains Dk is not an
invariant curve, the extracted areas pek are no longer
constant and typically the emittance ek extracted at time
t � 3�T 2 k 1 1� is an increasing function of k; see
Fig. 6. Therefore the emittance e is a decreasing function
of t. To this end we consider a rectangular region par-
titioned into rectangular domains D1, D2, . . . , DT where
the hyperbola to which �X0, P0� belongs is replaced by
the straight line P � P0 (see Fig. 5). We can easily show
that e1 , e2 , · · · , eT , as observed in a numerical
simulation (where the domain is rectangular in the initial
coordinates) whose results are shown in Fig. 6. Indeed DT

is split by the hyperbola passing through ���X�3T 2 3�, P0���
114201-5
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FIG. 4. (Color) Calculation in the normal coordinates frame of
the emittance of the extracted beam. The points in the lightest
domain D3 are extracted after three iterations of the map M, and
its area is the emittance extracted in that period. The points in
the domains D2, D1 are extracted after six and nine iterations,
respectively.

into two domains: UT (upper) and LT (lower). The same
hyperbola and the straight lines X � X�3T 2 6�, X �
X�3T 2 3�, P � 0 define a domain which is the union
DT21 and a nonempty domain AT21 (see Fig. 5) where
M±3�DT21 < AT21� � LT . As a consequence,

peT � area�DT � � area�LT � 1 area�UT �

� area�DT21� 1 area�AT21� 1 area�UT �

� peT21 1 m , (12)

where m � area�AT21� 1 area�UT � is strictly positive
since the domains are nonempty. The above estimates can
be used in two distinct ways.

(i) Static case.—The effect on the extracted emittance
of the ripples present in the power supplies can be an-
alyzed. In the presence of ripples the boundary of the
stable region moves inward and outward periodically. The
particles swept in one period are immediately destabi-
lized. The amplitude of this layer depends on the ampli-
tude stable region. Computing e�XP� and T �XP� on its

X(3T9) X(3T6) X(3T3) X(3T)=Xes

DT2
DT1 DT

P

X

Text=6
Text=3

Text=9

LT

AT1

UT

FIG. 5. (Color) Sketch, in the normal coordinates frame, of the
extracted emittance for a rectangular set of initial conditions
and T � 3.
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FIG. 6. (Color) Area and emittance of the extracted beam Ax �
pex versus extraction time during the extraction of the red stripe
of particles on the top frame.

outer edges allows one to plot the shape of the emittance
of the extracted beam versus time, as shown in Fig. 6.
The fluctuations of the dimension of the focal spot (which
depends on the transverse dimension of the extracted
beam) increase with the amplitude De of the emittance
decrease.

(ii) Dynamic case.—When the parameters of the
extraction (such as the machine tune) are changing in
time slowly enough compared to the average extraction
time one can consider the extraction process instan-
taneous and, after computing the initial coordinates
���X0�t�, P0�t���� of the destabilized particles according to
the particular extraction scheme, use (11) to evaluate
pe�t� � X0�t�P0�t�s���X0�t�P0�t����.

The analysis of extraction times and emittances using
the hyperbolic normal forms has not yet been discussed in
the presence of space charge. This is possible provided
that we determine the hyperbolic fixed point of period 3
and construct a polynomial expansion of the third iterate
of the map around one of them.
114201-6
IV. EXTENSION TO THE CASE OF AN INTENSE
BEAM

A. Frequency analysis

To generalize the technique described in Sec. III one
must take into account the shift in the position of the fixed
points due to space charge. In this section we first illus-
trate the nonlinear effects of space charge on the trans-
verse dynamics of the model by studying the nonlinear tune
behavior.

The numerical tracking of the orbits has been carried out
by transfer maps. To obtain the one turn map of the sys-
tem one must break the action of space charge, continu-
ous over the ring, into a certain number of kicks. The
order of possible resonances artificially introduced by the
discretization grows with the number N of space charge
kicks. The one turn map approximated with N kicks
reads

M � R

µ
v

N

∂
� Ksc � · · · � R

µ
v

N

∂
� Ksc| {z } � Ksex ,

(13)

where R�a� is the rotation matrix of angle a and

Ksc �

µ x̂
p̂ 2

ĵâ
N 	 1

2V 0� x̂
â � 1

x̂
â 


∂
,

Ksex �

µ x̂
p̂ 1

K̂2

2 x̂2

∂
. (14)

Fourier analyzing the iterates of this map for dif-
ferent initial conditions of increasing emittance, we
have computed the nonlinear tune as a function of the
emittance.

Being continuously distributed around the ring, the
space charge cannot excite any resonance in a flat beam.
The nonlinear tune increases steadily with the distance
from the origin, reaching the bare tune v0�2p as jxj ! `.
The dependence of the nonlinear frequency Vsc on the
orbit emittance e for a generic charge distribution can
be analytically described very accurately by canonical
perturbation theory (see [3] for the computation for a
Gaussian charge distribution). For the chosen charge
distribution, letting ; �

1
2 �x̂2 1 p̂2� be the action, we get

Vsc � v 1
ĵ

2

"
1 2

2p
1 1 2;�â2 �1 1

p
1 1 2;�â2 �

#
,

(15)

which is plotted in Fig. 7.
When a thin sextupole is present, as in the case of slow

extraction, and the linear tune approaches a resonant value,
the perturbative calculations can be performed by using the
resonant normal forms.
114201-6
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0.32

0.325

x^ / a

Q

FIG. 7. (Color) Nonlinear tune (Q � V�2p) analytically com-
puted (blue line), by canonical nonresonant perturbation theory,
as a function of x̂�a with p̂ � 0 (2; � x̂2) for ĵ � 0.05 and
linear frequency v � 0.32 3 2p. The result is compared with
the tune obtained by fast-Fourier transform (FFT) from tracking
(red line).

1. Pure sextupole

In the case of a pure sextupole, v and the bare machine
frequency v0 coincide. When v . 2p�3 the nonlinear
frequency Vsex decreases monotonically until it reaches
the resonant value. On the contrary, when v , 2p�3,
Vsex increases up to 2p�3. In both cases, near the reso-
nance the sextupole pushes Vsex toward 2p�3, as can be
seen with nonresonant normal form analysis [4], that gives
as a first-order estimate of the nonlinear frequency

Vsex � v 2
1
16

µ
K̂2

2

∂2∑
3 cot

µ
v

2

∂
1 cot

µ
3v

2

∂∏
e .

(16)

If v is close to 2p�3 the coefficient of the emittance e �
x̂2 1 p̂2 is negative for v . 2p�3 and positive for v ,

2p�3. As a consequence, when e increases Vsex reaches
the value 2p�3, according to Eq. (16), if v is above or
below 2p�3. When v�2p is close to 0.32 three islands
appear.

2. Sextupole 1 space charge

When v is close to 2p�3 the dependence of the dynamic
aperture on the space charge intensity ĵ is easily described.
The frequency V in this case may be approximated by
the linear frequency plus the sum of the space charge fre-
quency shift Vsc 2 v given by Eq. (13) and the sextupole
frequency shift Vsex 2 v given by Eq. (14). If v ,

2p�3 the sextupole and space charge frequency shifts are
both positive and the frequency V � v 1 �Vsex 2 v� 1

�Vsc 2 v� increases with e; the resonance is crossed for
114201-7
ˆ

x̂/a

x/a

FIG. 8. (Color) Nonlinear tune Q � V�2p for a pure sextu-
pole (red line) and a sextupole 1 space charge (blue line).
(Top) v0 � 0.32 3 2p, aK̂ 0

2 � 0.3, ĵ � 0.05. (Bottom) v0 �
0.34 3 2p, aK̂ 0

2 � 0.14, ĵ � 0.05. The horizontal coordinate
is the linearly normalized coordinate divided by the core radius
a. To compare these values with a lattice such as SIS we must
add the integer part to the linear tune so that v � 4.32 3 2p
(n � 13); for a � 25 mm we have K̂2 � K̂ 0

2�
p

n � 3.3 m21.

0.32 0.35
0

8

  Q

 A
 x 

/ a
2

FIG. 9. (Color) Plot of the area of the stable region Ax � pex
normalized to a2, as a function of the linear tune Q � v�2p
for aK̂ 0

2 � 0.3 and different values of the space charge intensity.
Black line, ĵ � 0; blue line, ĵ � 0.05; red line, ĵ � 0.1.
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a value of the emittance which decreases with ĵ (see top
frame of Fig. 8). If v . 2p�3 the sextupole frequency
shift becomes negative and the frequency V may reach
a maximum before decreasing; the resonance is crossed
for a value of the emittance which increases with ĵ (see
bottom frame of Fig. 8). Both the increase of the dynamic
aperture with ĵ before 2p�3 and its decrease below this
value can be seen in Fig. 9, where the emittance of the
stable area is plotted as a function of the bare linear tune
Q0 � v0��2p� for increasing beam currents.

B. Elliptic interpolating Hamiltonian

To evaluate semianalytically the new position of the hy-
perbolic fixed points we evaluate the elliptic normal forms
starting from a polynomial expansion of the one turn map
M at the origin. In the normal coordinates the orbits of
M can be interpolated by the orbits of a Hamiltonian H
invariant under continuous rotations (nonresonant normal
form) or under discrete rotations of 2p�3 (resonant normal
form). This Hamiltonian captures the relevant dynamical
features of the map.

To calculate the normal form of the proposed Hamilto-
nian one must, first, replace the space charge force by a
polynomial approximation. A polynomial of degree 3 or 5
gives a good approximation up to one-half the core radius
or core radius itself; see Fig. 10. Next, calculate a poly-
nomial map by composing N times a rotation of v�N ,
with space charge kicks and one sextupolar kick at the
end [see Eqs. (13) and (14)]. Finally, compute, by using
a computer program such as ARES [5] or BIRKHOFF [6], the
elliptic normal form and its interpolating Hamiltonian (the
polynomial map is truncated at degree 2n 2 1 in order to
compute their order n normal form).

In Figs. 11 and 12 we show that the phase portraits ob-
tained with the space charge force F given by Eq. (3) and
with a polynomial approximation of degree 5 are very simi-
lar up to the hyperbolic fixed points. Moreover, the top
frame of Fig. 13 shows that the nonlinear tunes (com-
puted by Fourier analyzing the orbit obtained from track-
ing) corresponding to F and its approximation of degree
5 are very close up to the dynamic aperture (end point
of the red line).1 As a consequence, polynomial expan-
sions of the space charge force beyond fifth order are not
needed.

1The approximating polynomial has a slightly bigger dynamic
aperture than the original map for the condition of Fig. 13, as
one can see in the bottom phase space portrait of Fig. 12. Hence
the nonlinear tunes, defined for every stable orbit, extend a bit
further. Such information is, however, uninteresting because,
wishing to locate the hyperbolic fixed points, we ask the ap-
proximating map to reproduce the system dynamics just up to
that point.
114201-8
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  f

x
FIG. 10. (Color) Polynomial approximation of the space charge
force F�x� � za21f�x�a�, where f�x� � x��1 1 x2�. Func-
tion f�x� (violet line), approximation of order 5 f5�x� � x 2
2
3 x3 1

1
6 x5 (red line), approximation of order 9 f9�x� � x 2

0.9268x3 1 0.6313x5 2 0.2430x7 1 0.0378x9 (blue line) ob-
tained by minimizing the L2 norm in 	0, 1.5
.

The order n of the normal form (H is a polynomial
of degree 2n) is chosen by demanding that the frequency
(V is a polynomial of degree 2n 2 2) reaches a given
accuracy. To obtain the nonlinear frequency V we write
the interpolating Hamiltonian H as a function of the ac-
tion and angle variables ;, u, where x̂ �

p
2; cosu, p̂ �

2
p

2; sinu, and evaluate

1
V�;�

�
1

2p

Z 2p

0

∑
≠H �;, u�

≠;

∏21

du , (17)

where ; � ;�u, E� is implicitly defined by H �;, u� �
E � H �u0, ;0�. In the bottom graph of Fig. 13 the non-
linear tune calculated via (17) is compared with the re-
sults of a Fourier analysis of the orbit of the polynomial
map. At second order (highest power of ; is 2) the inter-
polating Hamiltonian has a simple analytical expression,
which allows one to compute its critical points and an
approximation to the area of stable orbits. This estimate
allows one to recover an approximate self-consistency of
the model. Again we approximate the space charge F de-
fined by Eq. (3) with a polynomial of degree 5 given by
Fapp � j

a � x
a 1 a

x3

a3 1 b
x5

a5 �. The coefficients that mini-
mize the distance (in the L2 norm) from the exact F for
x [ 	0, 1.5a
 are a � 22�3 and b � 1�6. In the appen-
dix the procedure to compute a polynomial approximation
of the one turn map, in the presence of a space charge force
continuously acting along the ring, is outlined. The corre-
sponding interpolating Hamiltonian reads

H � h; 2
K̂2

16
h

sin�3h�2�
�2;�3�2 cos

µ
3u 1

3h

2

∂
1 ;2

3

∑
3K̂2

2

128
h

µ
1 1 cot2

3h

2
2

2
3h

cot
3h

2

∂

2
3K̂2

2

64
cot

v

2
2

3
8

â

∏
, (18)
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x̂/a

x̂/a

x̂/a

p̂
/a

p̂
/a

p̂
/a

FIG. 11. (Color) (Top) Pure sextupole with v0 � 0.34 3 2p
and aK̂ 0

2 � 0.14. (Center) Exact sextupole 1 space charge with
v0 � 0.34 3 2p, aK̂ 0

2 � 0.14, and ĵ � 0.05. (Bottom) Exact
sextupole 1 space charge where the space charge force F�x�
is replaced with a polynomial approximation of degree 5. The
phase plots are in the coordinates x̂, p̂ normalized to the core
radius a. The dynamic aperture is comparable to the normalized
core radius x̂dyn � â � 1.4a. To compare these values with a
lattice such as SIS, we must add the integer part to the tune
v � 4.34 3 2p, and for a � 25 mm we have K̂2 � K̂ 0

2�
p

n �
1.5 m21. Purple vertical lines x̂ � 6â � 61.4a.

where h is the distance of the linear frequency from
the resonance: v � V�0� � 2p�m 1

1
3 � 1 h and â �

aĵ�â2 � 2�2ĵ�3â2� is the coefficient of the third-order
contribution of the space charge kick in Courant-Snyder
coordinates. We remark that H for â � 0 and K̂2 � 2
is the interpolating Hamiltonian of the Hénon map.
114201-9
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FIG. 12. (Color (Top) Pure sextupole with v0 � 0.32 3 2p
and aK̂ 0

2 � 0.3. (Center) Exact sextupole 1 space charge with
v0 � 0.32 3 2p, aK̂ 0

2 � 0.3, and ĵ � 0.05. (Bottom) Exact
sextupole 1 space charge where the space charge force F�x�
is replaced with a polynomial approximation of degree 5. The
phase plots are in the coordinates x̂, p̂ normalized to the core ra-
dius a. The dynamic aperture is comparable to the normalized
core radius x̂dyn � â � 1.4a. To compare these values with
a lattice such as SIS, we must add the integer part to the tune
v � 4.32 3 2p, and for a � 25 mm we have K̂2 � K̂ 0

2�
p

n �
3.3 m21. Purple vertical lines x̂ � 6â � 61.4a.

This Hamiltonian allows one to compute a correction
in the position of the fixed points which depends on the
coefficient â of the first nonlinear correction of the space
charge force. [At the previous perturbative order, that is,
taking into account terms just up to j3�2, the nonlinear
contributions of space charge do not enter the Hamiltonian
114201-9
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and the stable area reads Ax � 16 sin2�3h�2� 1
p

3
�2�K̂2�2. For h ! 0, the dynamic aperture, given by the half height of

the equilateral triangle of area Ax is x̂dyn � 6jhj�K̂2. The ratio Ax�a2 depends on the dimensionless parameter aK̂2.] If
v is sufficiently near to 2p�3t so that no stable chain of three islands is present, we can approximate the stable region
as a triangle and compute its area,

Ax�h, K̂2, ĵ, â� � 3
p

3 h

µ
2

K̂2

∂2

3

	 3
p

h

sin� 3h

2
� 2

r
2128 ĵ

â2 � 2
K̂2

�2 2 24h 1 16 cot� 3h

2 � 1
9h

sin2� 3h

2
� 2 24h cot� 3h

2 �2 1 48 cot� 2p13h

6 � 
2

	216 ĵ

â2 � 2
K̂2

�2 2 3h 2 3h cot� 3h

2 �2 1 2 cot� 3h

2 � 1 6 cot� 2p13h

6 �
2
.

(19)
In Fig. 14 the emittance of the stable area numerically
computed is compared with its analytical estimate.

The condition Ax�h, K̂2, ĵ, â� � pâ2 allows one to im-
pose that the radius of the charge distribution is equal to
the radius of the stable area in phase space and determines
â � â�h, K̂2, ĵ�.

x̂/a

x̂/a

FIG. 13. (Color) (Top) Comparison of the nonlinear tune Q �
V�2p (computed with a FFT) for the map M (red line) with
ĵ � 0.05, aK̂ 0

2 � 0.3, v0 � 0.32 3 2p, and the map M with
a space charge force approximated by a polynomial of order 5
(blue line). (Bottom) Comparison of nonlinear tune (computed
with a FFT) for the map M (blue line) with the tune obtained
from resonant normal form approximations of order 3 (red line)
and 4 (green line). The horizontal coordinate is the linearly
normalized coordinate x̂ divided by the core radius a.
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After computing the new fixed point position one can
use the technique illustrated in Sec. III in order to com-
pute the extraction times. An accurate calculation re-
quires a polynomial expansion of the complete one turn
map (sextupole 1 space charge) at the fixed point. For
low values of ĵ, however, it is sufficient to take into
account just the linear effect of space charge, and one
can directly apply the results of Sec. III provided that the
shifted linear frequency v � v0 2 2pDQsc is used. For
higher space charge the change of the stable area may
be taken into account by introducing an equivalent sex-
tupole with gradient K̂2,eq. This is determined by im-
posing that the stable area for such a sextupole without
space charge is the same as for the sextupole with gra-
dient K̂2 with space charge. Using (19) this condition
reads

Ax�h, K̂2eq, 0, â� � Ax�h, K̂2, ĵ, â� . (20)

0.32 0.33 0.34 0.35
Qo

0

1

2

3

4

5

6

7

8

E
m

itt
an

ce
 [m

m
 m

ra
d]

Q o

A
x

/ a
 2

FIG. 14. (Color) Numerical values (black line) and analytical
estimates, obtained from the Hamiltonian H at order ;3�2 (red
line) and order ;2 (green line), of the area Ax � pex of the stable
region, normalized to a2, for a pure sextupole with aK̂2 � 0.33.
The area is plotted as a function of the linear tune Q0 � v0�2p.
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V. CONCLUSIONS

A method based on hyperbolic normal forms is pro-
posed to obtain semianalytical estimates of the extraction
time and of the extracted emittance in a resonant (slow)
extraction process. A good agreement with tracking is
found. The dynamical and geometrical features of the ex-
traction process emerge very neatly in the normal coordi-
nates plane.

The space charge changes the tune and the location of
the unstable periodic points. The resonant normal forms
allow one to describe the changes of the tune and of the
area of the stable region, once a polynomial approximation
to the space charge force is introduced. Moreover, an
approximate self-consistency can be imposed by equating
the stable area to the area of the core cross section. The
results are qualitatively correct at the lowest order, very
close to tracking when the order is increased.

A simple description of the extraction process, valid for
moderate space charge intensities, consists of using a thin
sextupole Hamiltonian with an effective strength such that
the stable area is the same as for the model with space
charge.

APPENDIX: COMPUTATION OF THE
POLYNOMIAL ONE TURN MAP FOR A

SEXTUPOLE AND SPACE CHARGE

We define Msc1sex the one turn map on the normalized
lattice (of unit length) with respect to the linearly normal-
ized coordinates �x̂, p̂�. This is the result of the space
charge map and the final sextupoles kick.

Mtot � Msc � Msex , (A1)

where the space charge map is the limit of n space charge
kicks Msc� 1

n � acting on arcs of length 1�n according to
Msc � limn!`M±n

sc � 1
n �.
114201-11
The one turn map in the linearly normalized coordinates
�x̂, p̂� reads

Msc1sex�z� � Msc �

∑
z 2 i

K̂2

8
�z 1 z��2

∏
, (A2)

where z � x̂ 2 ip̂. The space charge map on an arc of
length 1�n is given by

Msc

µ
1
n

∂
� eid

∑
z 2 i

â

8n
�z 1 z��3

∏
, (A3)

where d � v�n, and the nonlinear space charge coeffi-
cient is defined as previously by â � aĵ�â2 � 2

2
3 ĵ�â2.

To evaluate Msc we conjugate Msc� 1
n � to its nonresonant

normal form according to

Msc

µ
1
n

∂
� F � U � F21,

U � z exp

µ
id 2 i

3
8

â

n
zz�

∂
,

where up to order 3 we have F � z 1 F30z3 1

F21z2z� 1 F12zz�2 1 F03z�3. Imposing the area
preserving condition, the coefficients are determined
according to

F30 � 2
ia
8n

eid

e3id 2 eid
,

F12 � 0 ,

F21 � 2
3ia
8n

eid

e2id 2 eid
,

F03 � 2
ia
8n

eid

e23id 2 eid
,

The iterate of order n is determined by M±n
sc � 1

n � � F �
U±n � F21, and expanding up to order 3 we find
M±n
sc

µ
1
n

∂
� eindz 2 i

â

8n
eid

∑
ei3nd 2 eind

ei3d 2 eid
z3 1 3nei�n21�dz2z� 1

e2ind 2 eind

e2id 2 eid
3zz�2 1

e2i3nd 2 eind

e2i3d 2 eid
z�3 1 · · ·

∏
.

(A4)

Taking the n ! ` limit and composing with the sextupole kick, the final one turn map reads

Mtot � eiv

∑
z 2 i

K̂2

8
�z 1 z��2 2 i

â

8
1
v

µ
z3

cotv 2 i
1 3vz2z� 1

3zz�2

cotv 1 i
1

z�3

cot 2v 1 i

∂
1 · · ·

∏
. (A5)
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