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We studied the electrostatic field due to a charged-particle beam with uniform particle density propa-
gating inside an rf-shielding cage (rf cage) constructed from evenly spaced conducting wires. The beam
and the rf cage are surrounded by a ceramic beam pipe positioned inside a conducting pipe concentric
with the beam and the rf cage. The space-charge impedances in the long wavelength regime are in-
vestigated by considering the electrostatic fields due to the longitudinal and transverse perturbations on
the density of the charged-particle beam. Shielding effects due to the rf cage are discussed and simple
formulas are derived for estimating the space-charge impedances. Numerical examples are given for illus-
tration. Comparisons between analytical estimates and the results produced by the field-solver computer

program MAFIA show good agreement.
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I. INTRODUCTION

An rf-shielding cage, or an rf cage, used in an accelera
tor or storage ring is a cagelike structure made of perfectly
conducting wires or rods parallel to the direction of the cir-
culating charged particle beam [1]. The conducting wires
of the cage are arranged to surround the beam to create
an electromagnetically shielded environment for the beam.
This type or similar types of devices together with ce-
ramic beam pipes have been implemented [1] and planned
[2—4] or are being planned [5] in some high-intensity
rapid-cycling proton synchrotrons. One of the main rea-
sons for choosing the rf cage instead of a solid conducting
beam pipe is to avoid excess eddy current that may be
induced on the beam pipe by the fast-changing magnetic
field. In high-current accelerators, the interaction between
the charged particle beam and the surrounding environ-
ment, characterized by the “coupling impedance’ [6,7],
plays an important role in the stability of the circulating
beam. To avoid any collective instability, it is important
to reduce the coupling impedance when the beam inten-
sity isincreased. Another reason for selecting the rf cage
emerges when the impedance consideration becomes criti-
cal. It is easier to vary the cross section of an rf cage in
order to reduce the coupling impedance than to change the
cross section of a solid pipe. In the long wavelength re-
gion, an appropriately designed rf cage can provide el ectro-
magnetic shielding similar to that of a solid beam pipe.

Although an rf cage was built and installed in an exist-
ing proton synchrotron over a decade ago [1], serious stud-
ies of the electromagnetic field of a charged particle beam
propagating in an rf cage were not attempted until recently
[8—13]. The need to understand the electromagnetic fields
in an rf-cage environment is prompted by several high-
intensity rapid-cycling synchrotrons proposed recently, as
mentioned above. The purpose of this work is to inves
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tigate the space-charge impedance of an rf cage mounted
inside a ceramic and a conducting beam pipe. Theanalysis
of the full electromagnetic field due to a beam traveling in-
side an rf cage is complicated by the details of the geome-
try of the cage and boundary conditions. However, in the
long wavelength regime, electrostatic fields can be used.
The studies presented in this paper will exploit such an ap-
proximation. We will solve the Poisson equation to obtain
the electrostatic fields due to a perturbed beam traversing
an rf cage. Then, we will derive smple formulas for com-
puting both the longitudinal and transverse coupling im-
pedances in the long wavelength regime. These formulas
can be used as a guide in designing rf cages. Numeri-
cal examples will be given to illustrate the effect of rf
shielding and the effect due to the ceramic pipe. Compari-
sons between analytical estimates and the results produced
by the field-solver computer program mariA [14] will be
provided.

Since the mathematical calculation involved in deriving
the impedances is complicated and very lengthy, we will
include the derivation of the perturbed field in the appen-
dices and summarize theresultsin Sec. I1l. Asthealgebra
is greatly simplified without the ceramic pipe, hence the
details of deriving the perturbed field for a smpler case
of no ceramic pipe will be presented in Appendix A to
illustrate the procedures. The derivation of the perturbed
field including the effects of a ceramic beam pipe will be
outlined in Appendix B. Readers who are interested only
in applying the final results for the impedances can skip
Sec. 1.

[I. THEORETICAL MODEL

The cross section of the system considered hereis shown
inFig. 1. A beam having acircular cross section of radius
rp and a uniform charge distribution is propagating inside
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FIG. 1. Cross-sectiona view of a beam inside an rf cage and
the ceramic beam pipe and the external conducting beam pipe.
ry, e, and r, are the radii of the conducting beam pipe, the rf
cage, and the beam, respectively. r, and r; are the external and
the internal radii of the ceramic beam pipe, respectively. A is
the angle subtended by two adjacent wires, and p,, is the radius
of a wire.

an rf cage composed of N conducting wires parallel to the
beam. The beam and the rf cage are surrounded by a ce-
ramic beam pipe which is enclosed inside a conducting
beam pipe with radius r,. The externa and the internal
radii of the ceramic beam pipe are r, and r;, respectively.
We assume the ceramic has a uniform and isotropic per-
mittivity e. For simplicity, we shall limit our discussion to
the geometry in which wires are evenly distributed over a
circle; the conducting and the ceramic pipes as well as the
rf cage are positioned concentric with the beam. The ra-
dius of the rf cage, measured from the center of the cageto
the centers of wires, is r.. The pipe and wires are electri-
cally grounded and all wires have the same circular cross
section of radius p,,. The studies in the following will be
focused on the regime of p,, < r. and N > 1.

A cylindrical coordinate system (r, 6, z) is chosen such
that the z axis coincides with the central axis of the beam.
We call this coordinate system the “beam coordinate sys-
tem” or the “global coordinate system.” In order to make
it convenient to describe the electric field near an individ-
ual wire, we also use another cylindrical coordinate system

WIRE

o

FIG. 2. The loca and the globa coordinates adopted in this
study. The origins of the local and the global coordinates are
located at the center of the beam and the center of awire, respec-
tively. The positive directions of ¢ and 6 go counterclockwise
and clockwise, respectively.

(p, 4, z) in which the z axis coincides with the central
axis of awire, as shown in Fig. 2. This “local coordinate
system” will also be referred to as the “wire coordinate
system” in the following.

[1l. PERTURBED FIELDS

The analysis proceeds by first obtaining the electrostatic
potential due to a perturbation in a beam propagating in-
side the rf cage described in the previous section. The lon-
gitudinal and transverse perturbations of the beam charge
density will be considered separately in the following.

A. Field due to a longitudinal perturbation

Here, we will concentrate on the electrostatic potential
due to a longitudinal charge-density perturbation in the
beam that variesin the z direction according to e’*?, where
k is the wave number of the perturbation. The Poisson
eguation we want to solve is

ERIO)

1 a< acI>> 1 9%2®
PR — r — _l’___ -
or 972

r oor r2 962

forr, >r >rp,
forr=ry,

0,
= {—(O'/Eo)eikz, (1)

where ® isthe electric potential, o isthe volume charge density associated with the perturbation, and €, isthe permittiv-
ity of free space. We areinterested in the solution of Eq. (1) in the region where kr, < 1. For mathematical convenience,
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the space inside the conducting pipe is divided into hy(x) = 1,(x)/ K, (x), @)
four zones: zone l inr = ry, zone ll inr, =r =1y,
zonelll inr;=r=vr,, adzonelVinr, =r=r. and where I,(x) and K,(x) are the nth order modified
We assume ® = 0 a r = r,. The boundary conditionsat  Bessel functions of the first kind and the second kind, re-
ri A€ €,0®11/dr = €0®r11/dr, 0®11/dz = dP1/9z,  spectively. The solutions of ®;;, @y, and vy are not
and 9®y1/060 = a®y11/96, where the subscripts of ®  directly required for calculating the space-charge impe-
indicate the zones considered. Simllarly, the bound- dance, except for field matching at zone boundaries in
ary conditions a r, are €d®/dr = €,0P1v/dr,  determining the solution of ®; needed to obtain the im-
dP1/0z = d®ry/az, and 9®1y1/90 = 9P1v/90. pedance. We therefore concentrate on the explicit solu-
The closed-form solution of Eq. (1) appears to be in-  tionsintheregionof r = r. inthefollowing. Asdiscussed
accessible. However, in the regime of kp, < kr. <  in Appendix B, if the coupling anong the multipole fields
kr; < 1, itispossibleto find asolution expanded in pow-  due to the induced charges on wires is neglected, the solu-
ers of h,(kp,), where tion for @ in the lowest order of &, (kp,,) is

O ~ b||[K0(kr) - SOIO(kr):leikZ + N Z Z CIIn[Kn+pN(krc) - (_1)nSpNIn+pN(krc)]IpN(kr)eipNaeikza (3)

p=—®n=—x

forr. = r =r,, and

g 1 .
O = — Iop(kr)by| So + —— |te’
{eokz olkr) ”[SO m(m)“e
+ N Z Z CIIn[Kn+pN(er) - (_1)nSpNIn+pN(krc)]IpN(kr)€ipN0eikz’ (4)

p=—®n=—x

for r = r,, where

by = <::;; )h(krb), (5)

eMIi(kr;) + [e — €, — €, \ihy(kr;)1K][(kr;)

ST )KLk — Loy — Ai(e — eo)hi(kr)Mi(kr) " ©)

O Ykr(,K,/(kr(,)[I,'(kr(,) — }f,(kr,)K,'(kr(,)] , @)
Yhro i (kro) [1[(kro) — hy(kro) K} (kry)] — hy(kr,)

Y =1-(e]e), ®

Ciin = —byha(kpw) [Kn(kre) — Solu(kre)l/Gyn s 9

N—-1 © N—1
Gln = 1+ (=1)"halkpy) D e " Kolkd,) — halkpw) . S,-[I,,ﬂ-(krc)]z[l + (=" Y e"fﬂ, (10
n=l j=— p=1
the primeindicates the derivative with respect to the argument, A = 277 /N isthe angular separation between two adjacent
wires, d,, is the distance between the centers of the Oth and the wth wires, and wires are numbered by their angular
locations relative to an arbitrarily chosen Oth wire in counterclockwise direction.

When € — €,, wehave Y — 0, §; — 1/h;(kr;), and the electric potential approaches the limit of no ceramic pipe
(found in Appendix A and in earlier work [10]). Further, for e = €, and r, — o, onefinds h;(kr,) — o and the electric
potential approaches that of no external conducting pipe (studied previously [9]).

Intheregime of kr, < 1, the axial component of the electric field E, varies little over the beam cross section. Hence,
for the purpose of investigating the longitudinal impedance, we shall concentrate on E, at the center of the beam. Thus,
taking the gradient of the electric potential in Eq. (4) and evaluating E, a r = 0 yields

. - n i | o 1 ;
Elieo = —iN 3. CulKa(kre) = (1" Solbrolle® = i = k[ 50 + sl
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For a small wire diameter, we can further take the approximation by retaining only the n = 0 term in the summation,
i.e., by considering the monopole contribution from the induced charges on each wire only, to obtain

ikNb|ho(kpy) 0 ik { o [ 1 “ i
Elr—o = —— ——[Ko(kre) — Solo(krc)Pe™ — - + e 12
2lr=0 Gio [Ko(kr.) — Solo(kre)] e i ok kby| So Irs) e (12)
Using the addition theorem of Bessel function [15], Eq. (10) becomes

N—-1
Gio = 1 + ho<kpw){(zv — Dko(krdlokr) — 2 S Ky(kro)l, (kre)
q=1

o] N—1
2y [(N DKk (kr) — S mekrc)zw(krc)}}
p=1 g=1

- Nh()(kpw) Z SpN[IpN(krc)]z' (13)
p=—c0

For N > 1 and kr. < 1, one can apply the small argument expansions of Bessel functions in Egs. (6) and (13) to show
that

So ~ — In(kr,) + YIn(%), (14)
_ —2H,
Si1 = N(kr.)?’ (15)
Sulipthr)P = 2 (19)
for p > 0,
- H T
SovilIpy1krd P~ == = —, (17)
p;m pN+1LpN+1\KF ) N
and
G||() =~ 1 — ho(kpw) {(N — 1)In(krc) +InN + N Z SpN[IpN(krc)]z}
P
1 reli €o ri c
= g V) e+ (2 o) + 2 Hyw | 8
where
Y =1-(e/e,), (19)
H — ﬂ(g)zl{('f — &) — M[Li(kri) /K (kri)] (e + 60)}
o\ ) e + €) — ALk /Ki(kr)] (€ — €,)
N (r\2 (€0 + () — (e — eP(L) + (€2 — e)[(“2) — ()]
~— = ' - : -t 20
! <’i> {(e + €)= (€, — () + (2 — N)[(;2) - (f—j)l]} (20
T = _71 Z (Hpn+1 + Hon-1) 5 (21)
p=1
and
fo =t~ o (22

is the “wire filling factor” defined as the ratio between the angle subtended by a wire in the beam coordinate system 6,,
and A. Substituting Egs. (14) and (18) into Eq. (12), we can derive

gl ik [ 1 (_) () = YInGOI0n(m f) + Sy Hon]
dr=0= 52 NIInGE) = YInGH] + In(fy) + X0 Hpy

ek, (23)

r'p
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Note that, when 1 < I and (r;/r;)* < |e, — €|/(e, + €), the following approximations are valid:

I O B

I \e, + €/ \r;

$ = {5 ()]

rese gl - () - ()] @

These approximations can be helpful in the numerical computation of E, given in Eq. (23).

and

B. Field due to a transverse perturbation

The model of the perturbation studied here is a shell with surface charge density varying according to ¢ cos. (We
assume the beam or the global coordinate system is oriented in such a way that the maximal perturbed charge density is
a the angle of # = 0.) The appropriate Poisson eguation is
Li( @) 190 3P od

d ar r2 962 972 €
where d is the maximal displacement of the beam.

Here again, we will concentrate on the explicit solutions in the region of » =< r.. In Appendix B, we derived the
following solution of Eq. (27):

® = 2b,[K\(kr) — SiI;(kr)] cosfe*

8(r — rp)e™* cosh , (27)

r or

+ 2N Z Z IpN+l(kr)PIIn[Kn+pN+l(krc) - (_l)llspN+lIn+pN+1(krc)]eipNa Coseeikz’ (28)

p=—onpn=—x

forr, =r =r. and

P =~ ZbL[ I, (kr) cosfe’*

M‘Sl}

+ 2N Z Z IpN+1(kr)PIIn[Kn+pN+l(krc) - (_l)nSpN+11n+pN+l(krc)]eipNg Coseeikz’ (29)

p=—®on=—o

for r = r,, where

b= (20 k). (@0)
60
hi(x) and S; were defined in Egs. (2) and (6), respectively,
P, = _bihn(kpw)[Kn-H(krc) - S11n+l(krc)]GIyll’ (31)

N—-1 0 N—1
Gin=1+ (—1>"hn(kpw)[z e IR (kdy) — D S,,-[I,,»+n(krc>]2[1 + (=" e"“’“)“AH, (32)
p=1 j==o p=1
and d; ,, is the distance between the centers of the mth and jth wires.

Taking the limit of € — €, in Egs. (28) and (29) yields the electric potential for the case of no ceramic pipe (obtained
in Appendix A as well asin Ref. [10]). If the limit of r, — o is aso considered, we find the electric potential in the
case of no ceramic and conducting pipes [9].

For studying the transverse impedance, we will focus on the transverse electric field E, at the beam center. By taking
the gradient of the electric potential given in Eq. (29) and retaining the monopole (n = 0) term only, we have

1 . .
o ~ —bu{— _ sl}”‘z  NKPuolKy (k) — 1T (k) e, (39)
hy(krp)
where

Piio = —b i holkpw) [Ki(kre) — SiTi(kro)IG TS, (34)
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and

]

Gio=1+ ho(kpw){N > > sun-nKilkronkr) = Y Kilkr)Litkr) = N Y S|pN+1|[1|pNH|(krc)]2}.
l:,wp=7oo |=— p=—®
(35)

Substituting Egs. (15) and (17) into Eqg. (35), and using the small argument expansions of Bessel functions, one can show
that

N e}
Glo=~1+ ho<kpw)l5 + In(kre) = INN = N ) S|pN+1|[1|pN+1|<krc)]2]
p:—w
T

N H,
+ )l = + ) — + — + — .
1 hg(kpw)|: > In(kr,) — InN AN N} (36)

U

From this result and Eq. (34), we have
—2(b. /kro)[1 + (Hi/N)]

Pro~ N o = 2in(rf) + 2T 37
where H; is given in Eq. (20). Substituting Egs. (30), (15), and (37) into Eq. (33) yields
adri\[ 1 1 2[In(er f,) — T](N + Hy) ke
Eyli= = — YY) — (38)
2€, rh r? Nr2[N + H; = 2In(w f,) + 2T]

V. SPACE-CHARGE IMPEDANCE

We now study the space-charge impedance in the long wavelength regime, i.e., the regime of kp,, < kr; < 1. The
discussion here will concentrate on the field at the center of the beam (r = 0) givenin Egs. (23) and (38). It isimportant
to recall that in arriving at these results we have retained only the most significant terms (the n = 0 or the monopole
terms) in the summations, and we have neglected the couplings among the multipole fields since they are negligibly small
in the parameter range of our interest.

From the fields at the center of the beam given in Egs. (23) and (38), we can infer that, for a circular accelerator or a
storage ring, the longitudinal space-charge impedance Z; and the transverse space-charge impedance Z, are given by

iz P\ 200 — (= SInC0n(f,) + S, Hyn]
21~ {1+ o) NOINE) = (1 = S)In(2)] + In(f) + Zj‘:_lH,,N}’ =)
and
_(iRZy\[1 1 2fin(wf,) = TI(N + Hy)
Zl - (BZ,),Z){;,% I”Lz. NVLZ[N + H1 - 2|n(7wa) + 2T] } ’ (40)

where n is the harmonic number of the longitudina perturbation around the ring, Zy = 377 Q, B is the ratio of the
speed of the beam particles to the speed of light, y = (1 — B2)~!/2, R is the effective machine radius, f,, was defined
in Eq. (22); H; and T are given in Egs. (20) and (21), respectively. These impedances can be put into more convenient

forms as
inZ, Te _ It
21~ 555 {[1 + 2|n<rb>}(1 My) + [1 + 2|n<rb>}Mn}, (41)
and
iRZ, [(1 1Y _ 1o
2= g [(n% r3>(1 M)+ (rg rt2>Ml}, (42)
where
- [In() — (1 = 2)InGHIn(7fyy) + 3, Hpw ]
My = INGHANIINGE) — (1 = 2)InGH] + In(ar fy,) + 30 Hpn} 9
and
M. —2(N + H)[In(7 f) — T] (44)

" N[ — (re/r)?]IN + Hy — 2In(zf,,) + 2T]°
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Effective shielding by the rf cage is then achieved by requiring M) << 1 or M, < 1, or, equivalently,

I'e

N|n<§> > —In(f,) + In[l - (;>2N}, (45)

c

for effective shielding of the longitudinal impedance, and

N[l - (ﬁﬂ > —2In(rf,y) + 2T —

rt

4['”(7wa) - T]2
N + H; = 2In(w f,) + 2T’

(46)

for effective shielding of the transverse impedance. It is worthwhile to reiterate that, when 1 < [ and (r;/r,)* < |e, —
€l/(e, + €), the approximations in Egs. (24)—(26) can be used throughout Egs. (39)—(46) for numerical estimates.
Equations (39)—(42) are valid in the limit of N > 1 and kr, = wr;/v < 1. In these limits, we expect the effect of
the dielectric to be unimportant since the frequency will not be large enough to encounter resonant effects within the
dielectric layer. We therefore obtain the results in the absence of the dielectric by setting € = ¢, or by setting r; = r,,.

In either case, we have

—In(mfy) + IN[1 = (re/r)*N]

M= NI Jre) = In(afu) + 1001 = (re /72T

and

—2In(mfu) + [(re/r)* + (ri/r)* 1IN — (/1) ]

(47)

M,

T NI = (re/r)?] = 2In(af) + [re/r)? + (re/rPTINL = (re/r)?V]

(48)

These results are consistent with those in earlier studies [10,13]. The condition for effective shielding of longitudinal
impedance is the same as shown in Eq. (45), and the condition for effective shielding of transverse impedance is simpli-

fied to

- (2 oo

V. NUMERICAL EXAMPLES

As can be seen from Egs. (41)—(44), there are severa
parametersinvolved in theimpedances. We thereforefocus
on the numerical results for the quantities M and M .
Examples are presented in Figs. 3—6, where the values of
M) and M ; computed using Egs. (43) and (44) are plotted
as functions of the number of wires for various values
of re/ri, ri/ro, ro/rsy fw, ad €/€,. As can be seen
from these examples, the values of M) and M, decrease
when the shielding is improved by increasing the number
of wires, while the variation of the dielectric constant does
not seem to make a significant effect. The only appreciable
differences between the cases of € = ¢, and € = 10¢,
appear when N < 30. This is partly because the ceramic
pipeis placed outside the rf cage. We also observe that the
values of M| and M, decrease with increasing wire size
or f,, when the shielding effect of the cage increases. Our
results also show that the variation of the wirefilling factor
f.» can make appreciable difference only when the number
of wiresislessthan 75. When the external conducting pipe
is close to the ceramic pipe and f,, = 0.1, the dielectric
pipe appears to have opposite effects on M| and M, as
shown in Figs. 5 and 6.

104201-7
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In the practical parameter range, N > 1,
[1 = (e/€,)]In(r,/r;)) < N, and r, is dways larger than

0.25 7\ T T T T 1T T TT ‘ T T ‘ T T TT UL ‘ T T 1T ‘ 1T \7

r glg, =1 _—__ glg, =10 ]

020 ~(a)) 7

F \ r./r=08, r/r,=0.9, r,/r,=09 A

r \ ]

015 — \| (@ f,=0.05 (d) f,=0.2 -

F )\ ) f,=0.1  (e) f,=0.25 ]

My 010 - (© f,=015 () f,=03

L (C) \ i

RN ]

0.05 - @ ]

r (e)\¥

00 ® =

_0.05 :\ L1 Ll ‘ L1 Ll ‘ Ll Ll ‘ Ll Ll \:
0 50 100 150 200

NUMBER OF WIRES, N

FIG. 3. M) as a function of the total number of wires N
for (8 f., = 0.05, (b) f,, = 0.1, (¢) £, = 0.15, (d) f,, = 0.2,
(e f» = 0.25, and (f) f,, = 0.3. Here, M; was calculated us-
ing Eq. (43) for r./r; = 0.8, r;/r, = 0.9,and r,/r; = 0.9.
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y © " ]
o 01 — ]
r(d) ] 0.05 - 7
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i r/r=08, r/r,=09, r/r=09 ] - r./r=08  r/r,=09, r/r=01 1
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FIG.4. M, as a function of the total number of wires N
for (a) Sw = 0.05, (b) Sw = 0.1, (C) Sfw = 0.15, (d) fw =202,
© f,», = 0.25, and (f) f,, = 0.3. Here, M, was calculated us-
ing Eq. (44) for r./r; = 0.8, r;/r, = 0.9,and r,/r; = 0.9.

re, it is easy to obtain the following approximations from
Egs. (43) and (44):

_ NMy In(mfy)
Ry = 1 — M) - In(r./r;)’ 0
and
Rr NM | . _2|n(7TfW) (51)

T =ML 1= (re/r)?

Thus the quantities R; and Ry mainly depend on f,, and
r./r; but not much on other parameters. It is therefore

004 7\ T T ‘ TT 1T T TT ‘ T T ‘ T T TT T T ‘ T T TT ‘ TTT \7

- (@ elg, =1 ——— glg, =10

0.03 = r./r=08, r/r,=09, r,/r,=01 |

L (b) (a) fw= 0.05 (d) fw= 0.2 ]

0.02 - () f,=01  (e) f,=0.25 7

M, " © (© f,=015 (f) f,=0.3

0.01 () ]

L (e) ]

oo [

_0.01 7\ L1 L1l ‘ L1 Ll ‘ Ll Ll ‘ Ll Ll \7
0 50 100 150 200

NUMBER OF WIRES, N

FIG.5. M) as a function of the total number of wires N
for (a) Sw = 0.05, (b) Sw = 0.1, (C) Sfw = 0.15, (d) fw =202,
(e f» = 0.25, and (f) f,, = 0.3. Here, M;; was calculated us-
ing Eq. (43) for r./r; = 0.8, r;/r, = 0.9,and r,/r; = 0.1.
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NUMBER OF WIRES, N

FIG. 6. M, as a function of the tota number of wires N
for (@) f,, = 0.05, (b) f,, = 0.1, (¢) f,, = 0.15, (d) f,, = 0.2,
(e f» = 0.25, and (f) f,, = 0.3. Here, M, was calculated us-
ing Eq. (44) for r./r; = 0.8, r;/r, = 0.9,and r,/r; = 0.1.

useful to present the numerical values of R, and Ry as
functionsof f,, and r./r, sothat M and M, can beeasily
calculated for a given number of wires. Such examples are
shown in Figs. 7 and 8, where the values of R; and Ry
were computed using M) and M ; obtained from Egs. (43)
and (44) for N = 60. We can see from the results in
Figs. 7 and 8 that the values of R; and R increase with the
value of ratio r./r, as one can expect from Egs. (50) and
(51). For € = €, and N = 30, we found that the values
of R, and Ry are practicaly independent of the number
of wires.

10 T TT ‘ L ‘ L ‘ L ‘ L ‘ L ‘ UL L

T ——&glg, =1 ——_ g/g, =10 1

8~ /(@

| (@ f,=0.05 (d) f,=0.2 / i

6 () f,=0.1 (e f,=025 B

(© f,=015 (@ f,=03 | |

R, 4 - _

2 - —

0 — —

L N =60, r/r,=0.9, r,/r.=0.9 i

_2 Ll ‘ L1 ‘ Ll ‘ Ll ‘ I | ‘ L1 ‘ Ll ‘ Ll
01 02 03 04 05 06 0.7 08 0.9

r./r,

FIG. 7. R, asafunctionof r./r, for (a) f,, = 0.05, (b) f,, =
0.1, (C) fw = 0.15, (d) fw =02, (e) fw =0.25, and (f) fw =
0.3. Here, R; was calculated using the definition in Eq. (50) for
N =60, r;/r, =09, and r,/r; = 0.9.
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7 L I I I IR B R R g isequa to In(r,/r,) for a smooth circular pipe of ra-
i elg, =1 ——— €/g, =10 ] dius r, with perfectly conducting walls. The space-charge
o - , @ impedance for the uniform beam, given by Eq. (39), can
- @h=005 (df,=02 1 be rewritten in terms of g; of the hollow beam as 7 =
&8 ®f=01 () 1,=025 § in(gr + 1/2)Zo/(B7?); see Ref. [11] for detail.
6 (© f,=015 () f,=03 ~ ® ] Similarly, the transverse space-charge impedance

Ry I

L N =60, r./ry=0.9, r,/r,=0.9

3 N T N W N R N S
01 02 03 04 05 06 07 08 09
r./r,

FIG. 8. Ry asafunctionof r./r, for (@) f,, = 0.05, (b) f\, =
0.1, (C) fw = 0.15, (d) fw =02, (e) fw = 0.25, and (f) fw =
0.3. Here, Ry was calculated using the definition in Eq. (51) for
N =60, r;/r, =09, and r,/r, = 0.9.

VI. COMPARISON WITH MAFIA COMPUTATIONS

In the long wavelength regime, kr, < 1, calculations of
the space-charge coupling impedances for homogeneous
chambers with an arbitrary cross section can be greatly
simplified by reducing the problem to a 2D electrostatic
problem. It was demonstrated in [11] that the value at
r = rp, of the potentia ¢, which satisfies V2¢y = —8(r —
ry)/ 15, gives us directly the so-called space-charge g fac-
tor for a hollow thin beam of radius rp,, g, = ¥ (rp). The
longitudinal space-charge impedance of a hollow beam is
related to g; as Zj = ingrZo/(Bvy?). As defined here,

of a homogeneous chamber can be written as Z, =
igrRZy/(B2y2ri), where g7 is the transverse g factor. It
is the same for hollow and uniform beams, and equal to
1 — (rp/r,)? in a smooth circular pipe of radius b with
perfectly conducting walls. The factor gy can be found by
solving the following boundary problem in the chamber
cross section: V2¢p = —cos98(r — rp)/rp, With trivial
boundary conditions. Then, for an axisymmetric case,
gr is simply equal to the maximal value ¢(rp) of the
potential in the beam region [11].

From these considerations and Egs. (41) and (42), one
can relate the g factors and the screening coefficients M,
and M.

g1 = (1 — My In=s + MyInt, (52)
rp rp
and

2 2
er = (1 - %)(1 - M)+ (1 - %)Ml. (53)

c t
One should emphasize that the space-charge g factors de-
pend on the beam size r;,, while the coefficients M| and
M, do not.

For some particular cases the boundary problems
presented above have simple analytical solutions. In a
general case, one can solve them numerically for an
arbitrary geometry of the cross section by means of one

0.00 AT S N ]

+
iz_>X ™ B |

0. 000 0.281

0.563 0.844 1.13

FIG. 9. (Color) Fifty equipotential lines for a hollow beam in the circular chamber with N = 40 wires. Only one 36° sector with
four wires (blue squares) is shown. The axes show longitudinal (x) and vertical (y) coordinates of the chamber cross section in our
MAFIA model in meters. The value of the normalized potentia is indicated by the color scale at the bottom.
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0. 000 0.281

0.562 0.843 1.12

FIG. 10. (Color) The same as in Fig. 9, but with the ceramic layer (green).

of numerous 2D electrostatic codes. We use the 2D static
solver in the marA code package [14] to calculate the
g factors for a circular vacuum chamber with screening
wires, with or without an inner ceramic chamber between
the screening wire cage and the outer metal chamber
wall. In the longitudina case, for a circular chamber it
is enough to solve the problem only in an angular sector
containing one wire with periodic boundary conditions.
For a large number N of wires, it is more convenient,
from the numerical viewpoint, to work with awider sector
containing a few wires, as shown in Fig. 9 for N = 40,
fw =0.1, and r./r; = 0.6. The sector here is 36° and
contains four wires. We solve for the electric potentia
¢ produced by a normalized electric charge uniformly

— fw=0,1,analytical
4_ . fw=0'2, analytical ........................
o N=40, lw=0,1‘ numerical
o N=40, |W=D.2‘ numerical
3| v N=90, Iw=0.1, numerical : ]
a N=90,1 =0.2, numerical
R | |
2r : ; 1
b R =T
REEE L S 1
0 L 1 L 1

¢t
FIG. 11. Comparison of analytical and numerical results for
the longitudinal factor R;.
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distributed in (a sector of) a thin hollow beam of radius
rp (rp/r; = 0.2 in Figs. 9 and 10). The value of the
potential in the beam region gives us the longitudinal
factor g;. Figure 9 shows 50 equipotential lines, with
the maximum in the beam region, and zero on the wall
and the wires. One can see that 40 wires screen the beam
field rather effectively. Adding a ceramic layer behind the
wires (Fig. 10) helps a little, but changes are very small
in this case.

Onecannotein Figs. 9 and 10 that the wires have square
cross sections, while the analytical study above was car-
ried out for the circular wires. Our numerical approach
is sensitive enough that the results depend on the wire
shape, even for thin wires. Without going into much de-
tail (we hope to discuss this topic elsewhere), we just
mention that in our MAFIA computations the wires with
an equivalent square cross section were used. A square
wire with side s = 2[2E(1/2) — K(1/2)]r,, = 1.6%r,,,
where E(x), K (x) are the complete dlliptic integrals, gives
the same screening as a thin wire of radius r,,. This state-
ment was checked numerically using very dense meshesin

TABLE I. Numerical results for f,, = 0.1.

re/r N €/ € gr M R;
0.4 40 1 0.7214 0.0308 1.270
04 20 1 0.7056 0.0136 1.239
0.4 * 0.6931 0
0.6 40 1 1.1255 0.0526 2.221
0.6 40 10 1.1246 0.0509 2.146
0.6 20 1 1.1115 0.0252 2.324
0.6 * 1.0986 0

104201-10



PRST-AB 4

SPACE-CHARGE IMPEDANCE OF RF-SHIELDING ...

104201 (2001 )

0. 000 0.224

0. 447 0.671 0. 895

FIG. 12. (Color) Fifty equipotential lines for a hollow beam with a cosf charge distribution in the circular chamber with N = 40
wires. Only one-quarter of the chamber cross section is shown. The dimensions are in meters. The value of the normalized potential

is indicated by the color scale at the bottom.

a couple of cases, and results for the coefficients M) and
M, agree within a few percent.

The comparison of analytical and mAriA results for
the longitudinal factor R; with €/ep = 1 is presented
in Fig. 11. The agreement is excellent for f,, = 0.1,
and good for the thicker wires, with f,, = 0.2. The
numerical results also confirm the conclusion of the
previous section that R; is independent of the number
of wires when N > 1. One should note that in al the
numerical cases the space-charge impedance (proportional

— f =0.1, analytical :
5k -~ f =02, analytical . :
=40, fw=0,1, numerical :
A+ . .
HT L :
ol i -7
| o W - ]
0

0.2 0.3 0.4 0.5 0.6 0.7

FIG. 13. Comparison of analytical and numerical results for
the transverse factor Ry.
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to g1) is very close to that of a continuous metal screen
placed at r = r., and depends essentially only on r./r;
as evidenced by Table |l for f,, = 0.1 and r,/r; = 0.2.
The continuous screen cases correspond to f,, = 1 and
are marked by * in the table. Introducing a dielectric layer
as shown in Fig. 10 has very little effect for this layout
(compare the fifth and fourth lines in Table 1).

For the transverse space-charge impedance computa-
tions, we work with one-quarter of the chamber cross
section, imposing a symmetric boundary condition at the
azimuth = 0, and an antisymmetric boundary condition
at & = 7 /2. Thedipole charge distribution cosd in athin
hollow beam is approximated by the ring region r = r;
split into 45 segments, each carrying a charge proportional
to its cosf. The solution for the potentia is aso propor-
tional to cosA, and its maximal value at the beam gives
the transverse space-charge factor gr. Figure 12 shows 50
equipotential lines for the transverse case in the same lay-
out asin Figs. 9 and 10.

The comparison of analytical predictions for the trans-
verse factor Ry with the numerical results is presented in
Fig. 13. While the agreement is not as good here asfor the
longitudinal case, with the numerical results systematically
below the analytical results, it is still quite reasonable.

VIlI. CONCLUSIONS

For a charged-particle beam propagating inside of an
rf-shielding cage surrounded by concentric ceramic and
conducting beam pipes, the el ectrostatic fields due to sinu-
soidal longitudinal and transverse perturbations have been

104201-11
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calculated analytically for the case in which both the cage
and wires have circular cross sections. The rf cage con-
sidered is made of evenly spaced conducting wires. Only
the dipole mode has been treated for the transverse per-
turbation. We have assumed that the beam has a uni-
form charge distribution and the unperturbed system is
azimuthally symmetric. Using the calculated fields, we
have derived simple formulas shown in Egs. (41) and (42)
for the coupling impedances in the long wavelength re-
gion. Numerical examples were given to show the shield-
ing effects of the rf cage. Our results show that, in the
long wavel ength regime, the space-charge impedance does
not have strong dependence on the dielectric constant of
the ceramic pipe, and the size of wires is not important
when the number of wires is larger than 100. Compari-
son between analytical estimates and the results produced
by the field-solver computer program maria shows good
agreement.
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APPENDIX A: DETAILED DERIVATION OF
PERTURBED FIELDS (NO CERAMIC PIPE)

1. The longitudinal perturbed field

We first consider the solution of Eq. (1) for the case
without wire. We notice that for r = r, Eq. (1) admitsthe
solution [(o/€,k%) + Bly(kr)]e™*?, where B is a constant
to be determined and the unphysical solution Ky(x) has
been excluded. Inthe r, = r; = r, region Eq. (1) has a
general solution [A;Ko(kr) + AxIy(kr)]e’*, here A; and
A, are constants to be determined. Using the conditions
®(r;) = 0 and the continuity of electric flux and potential
a r = rp, we can derive the following equations:

AKo(kr;) + Axlo(kr;) = 0, (A1)
—AK(krp) + Axly(kry) = Bl (krp), (A2
and
g
AlKo(krb) + Az[o(kl"b) = (:‘ k2 + Blo(kl"b). (A3)

Solving these equations leads to the following solution of
Eqg. (2):

(I) = d)b = b|||:K()(kr) - IO(kr)

ho(kr;)

}e"kz, (A4)

104201-12
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forr, = r = rp, and
= ¢,
o 1 1 .
= — I + ikz
{egk2 b O(kr)[ho(krz) hl(krb):He |
(AD)
for r = r,, where
by = <o-rb )11 (krp), (A6)
€.k
and
hn(x) = I(x)/Kn(x). (A7)

To solve Eq. (1) for the case when wires are included,
wefirst consider the solutionintheregionof r, = r = r,.
In the presence of wires, the beam field will induce electric
charges on the surfaces of wires. These induced charges
also have an electric potential associated with them. We
then assume that the induced charges on each wire create
a potential which can be expanded into a Fourier series of
einlp as

bu = i [CuKn(kp) + Duly(kp)le™ e, (A8)

where C,, and D,, are the coefficients to be determined.
Note that Eq. (A8) is virtually the multipole expansion of
the induced field in the wire coordinate system. Using the
addition theorem of Bessel functions[15], ¢,, can also be
expressed in the global coordinate variables as

¢w = Z Z In+l(krc)

|=—con=—x

X [(=1)"C,K;(kr) + D,I;(kr)]e™e™.  (A9)

Oth wire

pth wire

FIG. 14. Shown isthe position of a point x represented by the
coordinates (p, ) and (p,, #,) in the loca coordinate systems
of the Oth wire and the uth wire, respectively.
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Applying the boundary condition of ¢, = 0atr = r,,  Thus, we call the wire under consideration the Oth wire and

we have number all others by their relative locations with respect
o ow Ie (ke (k) to the Oth wire cpunterclockwis_ze. For an arbitrary point

D, = — Z Z (—1)lc, 2= JrREe) x near the Oth wire, as shown in Fig. 14, we use (p, )

1 i hj(kr) and (p,,¥,) to denote the coordinates of point x in the

(A210)  loca coordinate systems of the Oth wire and the wth wire,
] ) ] ) ) respectively. Let W, be the sum of the induced potentials
Since all wires are electrically identical and are evenly gt point x from all wires except the Oth wire. Then, using

distributed, one can study the field around wires by con- Eq. (A8) and the addition theorem of Bessel functions we
sidering the electric potential around any individual wire.  ~an derive

v, = c WKn(kp,) + Dol (kp,)]e™ e’

oo o0 —1
Z > [Ze""*”(”“A>/2}[CIK,_n<kdu) + Dili-p(kd, ) (kp)e™ e, (AL1)
|=—ccon=—[ u=1

where d,, is the distance between the centers of the Oth and the uth wire.
The total electric potential around the Oth wire, including the field due to the perturbation in the beam, is

D=y + by + P, . (A12)

On the surface of each wire, the potential due to the induced charges should cancel the potential due to the beam and
the potential contributed by all other wires, i.e, ® = 0 a p = p,,. Thus, substituting Egs. (A4), (A8), and (A1l) into
Eqg. (A12), we obtain that on the surface of the Oth wire

]

N—1
, _ 1,(kr.)
DT =sRC Ky (kdy) + Dili—p(kd,)] + ——— + Dy + b [K kre) — = }zo. A13
I:Z:w;]e [ 18 n( ,u,) 1] n( /.L)] I, (k w) I ( rc) /’lo(k}";) ( )
Using Eq. (A10) and the relation
o N-—1 ) o N-—1 )
el(n+l)(7r*/,LA)/2DlIl_n(kd’u) _ Z Z i(n+1) (m—uld)/2
[=—o u=1 ]_7ocl,, 1
= s i(kr )i (kre
% Z ( l)m Z +/( r ) /+l( r )Ilfn(kd,u)
P2y o k)
— Iy j(kre)
— _ _l)m " m(n’ rA) tm+j\"c)
m;oo( MZ j—Zx hj (krt)

X z ei(l_n)(7_MA)/21j+l(krc)Il*n(kd,u,)

|=—x

- - i\KVc )L j+n\KF¢ =
= (_1)n+1 Z (-1)"C,, Z Im*J(k C)IJ (krc) ZeleA, (A14)

m=—o0 j:—sc hj(krt) /.L=1
we derive from Eq. (A13):
5[5 G
i(n+10)(m—unA)/2 n _
e Kj—n(kd )}Cz +
[=—o | u=1 . hn(kpw)
- - In+/'(krc)1j+l(krc) & A i |: In(krc):|
- ' 1+ (=1)" et -1)'C; + by| K (kre) — =0, Al15
ZZZOO j:Z_m ) (=1 ; (~V'Cr+ by Kulkre) = 005 (A15)

where C; is the unknown to be solved for.

The closed-form solution of Eq. (A15) is difficult, if not impossible, to obtain. However, in the regime of kp,, <
kr. < kr; < 1, one can expand the solution in the power series of h,(kp, ). If the multipole coupling is neglected by
retaining only the I = n terms in Eqg. (A15), the lowest order solution is
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C, =

_bllhn(kpw) |:K,,(krc) . In(krc):| (A16)

Giin ho(kr;)

where

g —inuA - [In+j(krc)]2 & A
Gin = 1+ (=1)'hy(kpy) S e ™2 Ko(kd,) = hy(kpy) S el RISV S eird | (AL7)
=1 j=— JAET u=1

The contribution of the potential from all wires can then be expressed in terms of global coordinate variables as

(;bw + v, =N i i (_l)ncnln+pN(krc) |:KpN(kr) - }fﬂvﬂ}eim\me”ﬁ, (A18)

p=—o0p=—o0 pN(krl)

with C,, given in Eq. (A16). In arriving at Eq. (A18), we made use of the relation

Z Dnln+pN(krc) = - Z Z ( 1) Cl Z In+j(k’”c)1j+l(k’”c) In+pN(krc)

n=-—m n=—]=—cw j=—oo hj(krl‘)
I kr.
_ Z (— I)ICI l+pN( re) (A19)
|=— pN(k t)
and the equality (holds good only when A = 277 /N)
N—1
iiia [N, forl=pN,p=0=*1,%2,...,
D e _{0, for I # pN. (A20)

Substituting the potentials in Egs. (A2) and (A18) into Eq. (A12) yields the following total potentia in the region of

ri=r = re.

IO(er) :| ikz - < |: IPN(kr) :| inNO ik
—— "™ + N -1)"C,I, kro)| Kon(lkr) — ——— |e'P"7 ™=, A2l
ho(kr,) ,,:ZM:Z@( VGl thre) | Konthr) =5 ) (A2

Next, we consider the solution in the region of » = r.. Applying the addition theorem of Bessel functionsto Eq. (A8)
renders

b = b|||:K0(kr) —

= > > [Cukusilkre) + Dyl i(kr) i (kr)e™ ei®. (A22)

[=—cn=—»®

With the aid of Egs. (A19) and (A20), the contribution of the potential from all wires can be evaluated as

) In+pN(krc)

d)w + \Pw =N Z Z Cn|:Kn+pN(krc) - (_1 :|11)N(kr)eipN0eikz‘ (A23)

p=—00n=—00 pN(krt)
Using the solution for ¢, in Egs. (A4) and (A5), we derive that

— IO(kr) . n n+pN(k C) ipNO _ikz
& = bk — LR N S S Kt - B e, a2

forro. =r =r,, and

P AR S T

€,k> ho(kr;) — hy(krp)
< < p Intp (kre) ipNO ikz
+ N DD Col Knapnlkry) = (—1)" =Ly (kr)e PV ok (A25)
p=—c0n=—x hpN(krt)
for r = r,. Thus, a r = 0 we have
E | — _@
=0 9z lr=0

In(krc)}eikz g {

_ Ii(krp) e
ho(kr;) eokl krb[ p +K1(krb)ﬂe . (A26)

~ —ikN Z C11|:Kn(krc) - (_l)n
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If we further take the approximation by considering n = 0 only, we obtain

Io(ki”c):| ik io {1 —k |:11(krb)
nolkr) 1© ek " ho(kr,)

E.l,—0 = —ikNCo[Ko(krc) - + Kl(krb)“e”“. (A27)

Now, from Eq. (A17),

. g _ “ [ (krc)] - ijuA
Glo = 1 + holkpyw) Y. Kolkd,) — ho(kpy) D Z ”
j=7oo

w=1 h; (kr,)
® N—1 o0
=1+ ]’lo(kpw){ S Kikrolkr) > ettt — N Y [Lpn (kre)? }
I==e n=1 p=—x pN(krr)

i [IpN(krc)]2 &

I+ hO(kpw){(N - I)KO(krc)IO(krc) -2 Z Kq(krc)lq(krc)
p=—c pN(krt) g=1

0 N—1
+ 2 Z |:(N - 1)KpN(krc)IpN(krc) - Z Kq+pN(krc)Iq+pN(krc):|}- (A28)

p=1 qg=1
One can show, by using the small argument expansions of Bessel functions, that for N > 1 and kr, < 1,
N-—1 © N—1
(N — DKo(kr)lo(kr,) — 2 Z Kq(krc)lq(krc) +2 Z |:(N - 1)KpN(krc)IpN(krc) - Z Kq+pN(krc)Iq+pN(krc):|
q=1 g=1

- o0

N -1 N-1 1
~ —(N = DIn(kr.) — Z Z[ PN Zl pN+q:|
— pn

= —(N — 1)In(kr.) — InN, (A29)

and

i Up(kroF i [I”N(er) :|2KpN(krt)IpN(krt) ~ —In(kr;) — ]}]In[l - (;})w] (A30)

p=—w hpN(krt) p=—o IpN(krt) rt
Substituting Egs. (A29) and (A30) into Eq. (A28) yields
2N
Gio =~ 1 — holkpy) [(N — DIn(kr.) + InN] + ho(kpw){NIn(krt) + In[l - (’—) }} (A31)
rt
Letting n = 0 in Eq. (A16) and using Eqg. (A31), we obtain
by In(re/ry)
NIn(re/re) = In(m fo) + In[1 = (re/r)*N]°

where f,, is the wire filling factor defined in Eq. (22). Substituting Eqg. (A32) into Eq. (A27) and applying the small
argument expansions of Bessel functions, we derive

E.l,—o ~ _Z_f’"’% {[1 + 2In< b)}(l — M) + [ + 2In< bﬂM”} (A33)

where M) is given in Eq. (47) in the main text.

Co’*‘

(A32)

2. The transverse perturbed field

For the case of transverse perturbation, the Poisson equation we want to solve is Eq. (27). Because the system under
consideration is invariant under the transformation # — —6, and because the Bessel functions that will appear in the
solution have the properties of 7_,(x) = I,(x) and K_,,(x) = K,(x), we will first solve the equation

ia(acb) 1@ ¢ ad

+ 2= - _ — i0 ik

ar r2 902 972 2¢€, 8(r = ry)e’e (A34)
The solution of Eqg. (27) then can be obtained from the solution of Eq. (A34) by the substitution of ¢’? /2 — cosh
appropriately. Following the same procedures as in deriving Egs. (A4) and (A5), we find that the solution of Eq. (A34)
in the absence of wires is

r or
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_ _ Il(kr)} i0 ikz
by —bl[Kl(kr) (k) e'’e™, (A35)
forr,=r=r, and
1 1 o
= _ I i0 ikz A
b0 =01 s~ s e e (A39)

for r = r,, where

b, = (‘”’ & )Il(kr;,) . (A37)
2€,

To include the effects due to the rf-shielding wires, we again consider first the region of r = r.. Different from the
case of longitudinal perturbation, the axial symmetry does not exist here, and the angular positions of wires need to be
taken into account when describing the potential around each wire. Take the wire located at the angle of mA, the mth
wire, as an example. When applying the addition theorem of Bessel functions, one has to make a change of variable from
0 to & — mA for trandating the description of the potential from the global coordinate to the local coordinate around
the mth wire. Therefore, the multipole expansion coefficients of the field induced on each wire depend on the location
of the wire.

The analysis here will follow the same path as in solving the field for the longitudinal perturbation. Thus, we assume
the mth wire induces a potential which can be described in terms of the wire coordinate system variables as

¢w,m = Z [Pm,nKn(kp) + Qm,nln(kp)]eim//eikz, (A38)

n=—ow

where P, , and Q,,, are the unknowns to be solved for. The contribution from all other N — 1 wires, ¥/, ., is

w,m?
© N-1

\I}w/v,m = Z Z Z (1 - (Sj,m)ei(rﬁl)DT?U?VMA]/2 [Pj,lKl—n(kdj,m) + Qj,lll—n(kdj,m)]ln(kp)einweikz, (A39)

|=—oon=—0 j=0
where d; ,, is the distance between the centers of the mth and the jth wires. In the global coordinate system, we have

d’w,m = Z Z I p(kre) [(_l)npm,nKl(kr) + Qm,nll(kr)]eiwei(17l)mAeikZ- (A4O)

n=—oJ]=—ow

Then, the requirement that the total potential is zero on the surface of the mth wire leads to

Pmn In+l(krc):| imA
N 4 Qn + b | Ksa(kre) — LR pimA
nkpn) O L[ #1(kre) (k) 1
i Nil . .
Z z (1 - 5j,m)€’("+[)[77_(J_m)A]/2 [P Ki—n(kdp) + Qjil1—n(kdj )] = 0. (A41)
1= j=0
For m = 0, we have
P, In+1(krc)i|
+ 0, + by | Kyei(krp) — 208
nkpn) 2 l[ w1(kre) hy(kre)
© N-1 ' _
Z Z (1 = 8;0)e’ "™ D T=IN2Ip K (kdj) + Qjili-n(kd;)] = 0, (A42)
1= j=0

where P, = P()’n, 0, = Q(),n, and dj = dj’().
Changing index in Eq. (A41) by letting j = m + ¢, one has

Pmne_imA —imA [ In+l(kr6)i|
ST 4 Qe A by | Ky (k) — SRR
hn(kpw) ¢ ne * +1( r) hl(krt)
i N—l . .
Z (1 - 5q,0)el(n+l)(WiqA)/ze7lmA[Pm+q,lKl—n(kdq,0) + Qm+q,lll—n(kdq,0)] =0. (A43)
[=—mo g=0

It can be seen now that Egs. (A42) and (A43) have the same form, or P, and P,,,,ne*"”’A have the same solution. We
then infer that
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Ppne ™ =P, (A44)
Pyipne " = Pe™™ =Py, (A45)
Quue ™ = 0,, (A46)
and
Oumikne "4 = 0ne™™ = 0y (A47)

Applying these identities to Eq. (A41), the requirement of zero total potential on the surfaces of all wires can be reduced
to a single equation similar to Eq. (A15):

© N-1
_ ~ 4 P Ly (kre)
it m=p 2 iwA P K, (kd ) + Qili—n(kd)] + —— + Q, + b [K ko) — 2= }=0.

1=7gcludgle e [ 1Kp—n( /.L) Oi11—n( ,u)] hn(kpw) On 1| Kn+1(kre) hl(kr,)

(A48)
Requiring ¢,,.,,» = 0 a r = r;, we can derive from Eq. (A40)
- i Il+n(krc)1l+j(krc)
mj — -1 an,n s A49
Onj == 2 0P 2 TGS (A49)
so that
d - I[+n(krc)ll+j(krc)
L= — -1)"P, , AS0
QJ n:Z—sc ( ) lzz_oc hl(krt) ( )
and
- i(n+0) (m—pA)/2 ipA n+1 c m C Ljin(kre) < iG+1)pA
d De K2y (kd ) Qr = (—1) > (—1)"P, D> Ij+m(krc)m D eflithua L (ABY)
[=—o pu=1 m=—x j=— J t u=1

where the addition theorem of Bessel functions has been invoked. Substituting Eq. (A50) into Eq. (A48) and using
Eqg. (A51) renders

o N-—

1
. . P
in+l)(m—puA)/2 jipA n _
e e Klfn(kd )P[ +
l:—w,u,gl K hn(kpw)
L Iisi(kre)s(kre) Ry Iy (kre)
—1)! : 1+ (=1)" iGHDuA Ap; + [K,, kre) — u}zo. A52
IZZ,OO,-:Z_@( ) hj(kr,) =D ,;e L b Kk = G (452

Neglecting the multipole coupling by retaining only the I = n termsin Eq. (A52) yields

RS & Ujsnlkre)P LT
Pal 14 (1 halkpy) D e " DHAKo(kdy) | = (S Puba(kpw) >, =7 L+ () D et
_ Sk,

n=1 j=— n=1
= bk Kealhro) - ’h;—,(f))} (A53)
Equation (A53) has the approximate solution
Pa = btk | Koithr) = 28D G ) (AS)
where
Gin =1+ (=1)"ha(kpy) Nfe*"‘”*”“AKo(kdw -y W [1 + (=1 Nf e’““)”“- (A55)
p=1 j==e M p=1
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Now, using Egs. (A40), (A20), and (A50), we can evaluate the potential due to all wires as

d)w,m + \Ifiv,m =N Z Z In+pN+l(er) [(_l)nPnKpN+l(kr) + QnIpN+1(k’»)]ei(p[\Hl)'geikZ

n=-—wp=—0©

> S o (kr)
= 2N Z Z In+pN+1(er)(—l)"Pn|:KpN+1(kr) _ IpNHIRTT

hon s (ki) }e”’w cosfe’™.  (A56)
p=—®n=—m P t

Adding the results in Egs. (A35) and (A56), we have the following solution of Eq. (27) intheregionof r. =< r = r;:

Ii(k :
O =~ 2bL[K1(kr) _ Lkn) }Cosﬂe’kZ

hl(krt)
- c IpN+l(kr) NO
+ 2N Z Z In+pN+l(krc)(_1)nPn KpN+l(kr) - N lp COS&E (A57)
p=—®np=— hpN+l(kr[)
where P, is given in Eq. (A54).
We next consider the solution in the r = r. region. Here, we have
bum = D D [PuKurilkre) + Qulyri(kr) ] (kr)e™ et e, (A58)
n=-—00°]=—own
and
n k c
buo + Vo =2 Y3 Lo cose[ Kysp1(kre) = (=1)" Nil()} (A59)
n=—w p=—o pN+1(krl)
Using these results and Egs. (A35) and (A36), we obtain the following solution of Eq. (27):
® = 2b,| Ki(kr) — cosfe'™
i[ D) = ey 900
In c
D) szH(kr)P[ K1 (kre) = (= 1)”L1()} "N cose’™s,  (ABO)
W p hpn+1(kry)
forr, =r =<r. and
d ~ 2b [ ! d }I(k)cos@ ikz
~ - r e
Lhlkry)  hikr) 1
[ee] o0 n k .
v Y Y 1,,N+1<kr>Pn[Kn+,,N+1<kn) (- 1)"M} "N cospes, (A61)
n=—o% p=—w pN+1(krt)
for r = rp.
The electric field at the beam center is given by
ad 1 1 , - In+1(krc)} :
E)lj—o= —— =~ —b k - ik= — Nk P,,[Kn kro) — (=) 52 ek
lr=o ar lo=o + [hl(kr;,) hl(kr,)}e ,;_oo wilkre) = (S0 oy e
(A62)
If only the monopole solution is considered, i.e., n = 0,
1 1 i Il(krc)i| i
Eyl,—o =~ —b k - ke — NkP [K kr.) — iz, A63
o= =5, [m(m) m(mde o KrEr) = e J° (A63)

where

Py ~ _bJ_h()(kpw){Kl(krc) - [ll(krc)/hl(krt)]} . (A64)

o Iy (kre
1+ ho(kpw){zl:_m[Nal,(prl) — 1K (kre ) (kr.) — sz__x [;I,N+l( kr,))] i
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Using the approximations

i NS (pn—1) — LK(kre)Ii(kre) = % + In(kr.) — InN, (A65)
1=
and
3tk L () e

one can show that

Po = =28 (1 = SVNDL — (fr?] = 20000 + /r? 4 fr P = /e (AGD
Therefore,
__odr (1l 1y, LI 0 P
Byl ~ — 52 [(g ,»g>(1 ML)+ <rg = e (A68)

where M | is defined in Eq. (48) in the main text.

APPENDIX B: THE DERIVATION OF PERTURBED FIELD (WITH CERAMIC PIPE)
1. The longitudinal perturbed field
We first consider the solution of Eq. (1) in the absence of wires. In zone |, Eqg. (1) has a solution [(o/€,k?) +

Arlo(kr)]e™ =, where Ay is a constant to be determined. In zones |1, 111, and IV, Eg. (1) has the solution in the form of
[A,Io(kr) + B,Ko(kr)]e’™, where A, and B, are constants, and the subscript » represent I1, 111, or IV. Applying the
boundary conditions discussed in the main text, we find
g
-2 T Alolkrs) = Aulo(kry) + BuKo(krs), (B1)
Anlg(kry) + BuiKo(kry) = Arlg(krs) (B2)
Anilo(kri) + BuKo(kr;) = Arnilo(kri) + BiiiKo(kr;), (B3)
€
Anlj(kr;) + BuKj(kr;) = (:)[Allllé(kri) + B Kj(kri)], (B4)
Anilo(kry) + BriKo(kr,) = Arvlo(kr,) + BivKo(kr,), (BY)
€o

Amnly(kr,) + BinKj(kr,) = (:)[Alvlé(kro) + BivK{(kr,)], (B6)

and
Arvlo(kry) + BiyKo(kr,) = 0. (B7)

Solving Egs. (B1)—(B7) leads to the following solution of Eq. (1) in zones | and II:
o 1 .

=& ={—— — bylp(kr)| So + ike B8
b I {e,,kz IHo( 7”)[ 0 hl(krb)}}e , (B8)

and
by = P11 = by[Kolkr) — Solo(kr)]e™, (B9)

respectively, where

_eNIlkry) + [e — €, — €, MM (kr)]K] (kry)
Si = e (kr)K)(kr;) — [€, — Mi(e — €)hi(kr) I (kry) (B10)

_ 1= YkrKi(kro) [I{(kry) — hy(kr)Kj(kr,)]
Ykroli(kro) [1](kr,) — hy(kr)K](kry)] — hy(kr,)’

Y (B11)
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Y=1-(e/e), (B12)

by and h,(x) were defined in Egs. (A6) and (A7), respectively, and the prime indicates derivative with respect to the
argument. Solutions in zones 111 and 1V are similar to Eq. (B9). Since these solutions will not be used directly in
calculating the impedance, we will concentrate on the solutions of ¢, in zones | and 11 only.

The discussion of solving Eg. (1) in the presence of wires will proceed by first considering the solution in the region
of r, = r = r.. We assume that each wire induces a potential which has the following multipole expansion in a local
coordinate system:

bw = D [CtinKulkp) + Diraly(kp)le™ ™, (B13)

n=-—w

where C1y, and Dyy, are the unknown quantities to be solved for. In terms of the global coordinate variables, ¢,, can be
written as

v =D DO Lisilkr)[(—1)"CriuKilkr) + Dradi(kr)]e™ e, (B14)

|=—con=—x

In zones 111 and IV, we assume the field due to a wire can be expressed in the global coordinate variables as

bw = > [Cokilkr) + Dyl i(kr)le e, (B19)

|=—x

where the subscript » stands for 111 or IV. Applying the boundary conditions at » = r; and r = r, together with the
condition ¢,, = 0 a r = r;, we obtain five simultaneous equations similar to Egs. (B3)—(B7). Solving these simulta-
neous equations we find

Dy, = — Z Z (=)' Crulys j(kre)S (ko) (kre) . (B16)

[:—ooj:—sc

We call the wire under consideration the Oth wire and number all others by their relative locations with respect to the
Oth wire counterclockwise. If W,, is the sum of the induced potentials from all other wires near the Oth one, we have

© © N-1
\I}w = Z Z |:Z e[(n+l)(W_MA)/2:|[CHIK1n(kd,u) + DIIZIl*n(kd,u)]In(kp)eml/jelkz' (B]-?)

[=—oon=—%] u=1

Imposing the condition that the total electric potential,
O =¢,+ ¢, +V,, (B18)

be zero on the surface of wires, we derive that, on the surface of the Oth wire,

0 N-1 ) C
Z |:Z el(n+1)(7rMA)/ZKl—n(kd,u,):|CIIl + I1n _

I=—o | p=1

]

0 N—1
> Inﬂ(krc)sjl,-ﬂ(krc)[l + (=" e"f'““(—l)’cm + by[K,(kre) — Sol,(kr)] =0,  (B19)

[=—w [j=—0© u=1

where use has been made of Eq. (B16).
In the regime of kp,, < kr. < kr; << 1, one can expand the solution of Eq. (B19) in powers of h,(kp,,). If the
multipole coupling is neglected, the lowest order solution for Cyy,, is

_bjhu(kpy)

Cin =
Gin

[Kn(kre) — Sol(kre)], (B20)
where

N—1 o0 N—1
Glo = 1+ (=1)"hu(kpy) D e "2 Ko(kd,) — halkpy) D s,[zw(kn)]z[l + (-1 > ewﬂ, (B21)
. pa

p=1 J=—°

and S; was defined in Eq. (B10) as well asin Eq. (6) in the main text. The contribution of the potential from all wires
can then be found as
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¢w + q}w =N Z Z (_l)ncllnln+pN(krc') [KpN(kr) - SpNIpN(kr)]eipNgeikz- (822)

p=—®n=—m

In deriving Eq. (B22), we used Eq. (A20) and the following relation similar to Eq. (A19):

Z Diinly+pn(kre) = — Z (=D CruSnLi+pn(kre) . (B23)

n=—o0 |=—o
Substituting the potentialsin Egs. (B9) and (B22) into Eq. (B18) yields the following solution of Eq. (1) in the region

of ri=r=r.

b =~ b||[K0(kr) - SOIO(kr)]eikz + N Z Z (_1)nCIInIn+pN(krc) [KpN(kr) - SpNIpN(kr)]epNeeikz‘ (824)

p=—®npn=—x

Next, we consider the solution in the region of r = r.. In this region,

bw = Z Z [CrinKnsi(kre) + Dipglysi(kro) 1L (kr)e'? e™, (B29)

[:700 n=-—oo

hence the total potential from wires should be

d’w + \Ifw =N Z Z Clln[Kn+pN(krc) - (_1)”SpNIn+pN(krc)]IpN(kr)eipNeeikz, (826)

p=—onpn=—0o

where use was made of Egs. (A20) and (B23). Note that since the results in Egs. (B25) and (B26) are derived for the
region of r = r. they are valid in both zone | and zone I1. Substituting Egs. (B26), (B8), and (B9) into Eq. (B18), the
solution of Eq. (1) can be readily found as

¢ ~ b||[K0(kl") - SOIO(kr)]eikZ + N Z Z CIIn[KIH—pN(er) - (_1)nSpN111+pN(krc)]IpN(kr)eipNeeikzs (827)

p=—0n=—m

forr. =r =r, and

(2 1 .
O =~ — 1, + ——— [t
{Eokz o(kr)b”[So hy(kry) }}e

+ N Z Z CIIn[Kn+pN(er) - (_])nSpNIn+pN(krc)]IpN(kr)eipNaeikz’ (B28)

p=—®pn=—©

forr = ry.

2. The transverse perturbed field

Following the same procedures in deriving Egs. (B8) and (B9), we find that the solution of Eq. (A34) in the absence
of wiresis

1

— S |1 (ke ikz’ B29
7h1(krb) 1} 1( V)e e ( )

b, = P; = bJ_|:
inzonel (r = rp), and
¢y = P11 = b [Ki(kr) — Sili(kr)]e'e™, (B30)

inzonell (r, = r = r;), where b, was defined in Eq. (30) aswell asin Eq. (A37). Solutions in zones |1l and IV are
similar to Eqg. (B30). The following discussions will focus on the solutions of ¢, in zones | and |1 only.

For the solution including the rf-shielding wires, we first consider the region of » = r.. Aswas discussed in Appen-
dix A 2, the system considered here is not axisymmetric so the angular positions of wires need to be taken into account
when describing the potential around each wire.

The analysis procedure here will be the same as that in Appendix A 2. Thus, we assume the mth wire induces a
potential which can be described in terms of the wire coordinate system variables as

¢w,m = z [PIIm,nKn(kp) + Qllm,nln(kp)]einweikz’ (B31)

n=—w

where Py, and Qq1,,,, are the unknowns to be solved. Using the addition theorem of Bessel functions, ¢,, , can be
expressed in terms of the global coordinate variables as
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0

¢w,m = Z Z Il+n(krc) [(_l)nPIIm,nKl(kr) + QIIm,nIZ(kr)]eimei(l_l)mAeikz- (B32)

n=—o|=—w

The contribution from all other N — 1 wires, ¥/ is

w,m?

o]

oo N—1
\pllv,m = Z Z Z (] - (gjj,m)el(nJrl)hri(]im)A]/2 [PIIj,lKl—n(kdj,m) + QIIj,lIl—n(kdj,m)]In(kp)emwelkzs (833)

[=—on=—% j=0

where d; ,,, is the distance between the centers of the mth and the jth wires,
Since the total potential on the surface of the mth wire should be zero, one has

Piimn .
Tt Otmn + bu[Kns1(kre) — SiIy(kre)]e™ +
hu(kpy) ’
w N—1 . '
Z Z (1 - ésj,m)el(’hLl)[ﬂ-i(jim)A]/2 [Pllj,lKlfn(kdj,m) + QIIj,lIlfn(kdj,m)] = 0. (B34)
1= j=0
For m = 0, Eq. (B34) becomes
P11
———— + Qun + bi[Knrilkre) — Sili(kre)] +
hn(kpw)
© NZl . .
Z Z (1 = 8;0)e’ "D T=IN2 [P Ky (kd)) + Quijdi-n(kdj)] =0, (B35)

|=— j=0

where P11, = Prion, Qiin = Qrion, and d; = d;jo. Changing index in Eq. (B34) by letting j = m + ¢ yields

P mne—imA Zim
W + Qtimae™ "™ + bi[Kuir(kre) = Silyi(kre)] +
n w
o N-—1 . ,
Z Z (1 — 8,0)e' TN m=ab)2e=imAlpy 1K)y (kdy o) + Qrim+guili—n(kdg0)] = 0. (B36)
[=—x g=0

Equation (B36) has the same form as Eq. (B35). We can infer that Py, and an,ne*i’”A have the same solution, and
relations similar to Egs. (A44)—(A47) also exist for Pryj; and Pryx. Therefore, the requirement of zero total potential on
the surfaces of al wires can be reduced to a single equation similar to Eq. (A48):

o N-—1

Z Z ei(nJrl)(77#A)/zei#A[PlllKlll—n(kd;L) + Qlllll—n(kdu)] +
[=—o u=1
Py
1t Oty + bi[Karilkre) = Silysi(kre)] = 0. (B37)
ho(kp.y)

We assume that in regions 111 and 1V the field due to the wires has the form of

]

o N—1
bw=C, =2N > > Lilkr) [(1)"PyKi(kr) + lez(kr)]e“g[ > e"“‘”’"A}cosee’“, (B38)

— [=—o m=0

where v stands for Il or IV. Applying the boundary conditions a r = r; and r = r, together with the condition
¢, = 0 a r = r;, we obtain five simultaneous eguations similar to Egs. (B3)—(B7). Solving these simultaneous equa-
tions determines the constants P,,,, and Q,,,,. As aresult, we find

Otim = — Z (=1D)"Pr1n Z I nlkre)Silyyj(kre) . (B39)

n=—ow |=—

Since the explicit solutions of ®;; and ®y are not involved in deriving the impedance, we concentrate on the explicit
solutions in zones | and |1 in the following. From Eq. (B39), one can show that
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[ N—1 o
ei(n+l)(W_MA)/zei'uAIl*n(kd,u)QHl = (_1)n+1 Z ( 1) Prim Z Ij+m(krc)S Ij+n krc) Z el(]+l
I=—o u=1 m=—o0 j=—w =1
(B40)
Using Eqg. (B40) and neglecting the multipole coupling, Eq. (B37) can be rewritten as
N-1
Puaa| 1 1) halkpn) 3 e Kk, |
n=1
0 N—1 o
— (=1 Puaha(kpy) S,-[I,+n(krc)]2[1 + (=" Y e’”“"ﬂ
j==c p=1
= _bLhn(kpw) [Kn+](krc) - S]In+l(krc)]a (B4l)
which has the approximate solution
PIIn = _blhn(kpw)[KnJrl(krc) - SlInJrl(krc)]GIplla (B42)

where

N—1 N—1
Gin =1+ (=)"huylkpy){ D e " VrAKy(kd,) — Z S[1,+n(krc)]2[1 + (= 1)"26“““”” (B43)

p=1 J=—= n=l

Using Egs. (B32), (A40), and (B39), we can evaluate the potential due to all wires as

Gwm + Y, = Z n+pN+l(krc)[( D"PrinKpn+1(kr) + Qrin pN+l(kr)]el(pN+l)0 ihe

~ 2N Z D Luivilkr) [(1)"Pri Ko (kr) + Q“nz,w)]ew[z elt” “’"A}cosee""

n=—o|=—ow m=0

= 2N Z Z Lt pn+1(kre) (= 1) Prig[Kpw+1(kr) — Spn1lpn+1(kr)]e’PN? cospe™ . (B44)

p=—on=—»

Putting the potentialsin Egs. (B30) and (B44) together givesthe following solution of Eq. (27) inther. = r = r; region:
o = ZbJ_[Kl(kr) - Slll(kr)] C()SaeikZ

+2N D D Lot kr) ()" Prig[Kpn+1(kr) = Spnsilpy+1(kr)]e?V? cosge™,  (B4B)

p=—on=—x

where Pyp, is given in Eq. (B42).
Next, we consider the solution in the » =< r. region. Here we have

d)w,m = Z Z [PIInKn+l(krc) + QIInIn+I(krc)]ll(kr)eiweilmAeikz» (B46)

n=—oJ|=—ow

and

d)w,m + \P:‘; m 2N Z Z IpN+l(kr)Plln[Kn+pN+l(krc) - (_I)HSpN+IIn+pN+1(krc)]eipNe Cosaeikz' (B47)

n=-—0op=—m

Using these results, we can obtain

® =~ 2b,[K(kr) — SI,(kr)]cose’*
+ 2N Z Z Lon+1 ) Prin[Kus py+1(kre) = (= 1Sy 1Lt py+1(kre)JeN? cospe’™, (B48)
n=—00w p=—0o0

forr, =r =r,, and
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1 .
® ~2b,| ——— — S; |I,(kr) cosfe’**
l[/fu(krb) 1} 1{kr) coshe

+ 2N z Z IpN+l(kr)PIIn[Kn+pN+l(er) - (_1)nSpN+lIn+pN+l(krc)]eipNa Coseeikz,

n=—o p=—wx

forr = rp.
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