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Space-charge impedance of rf-shielding wires with external ceramic and conducting pipes
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We studied the electrostatic field due to a charged-particle beam with uniform particle density propa-
gating inside an rf-shielding cage (rf cage) constructed from evenly spaced conducting wires. The beam
and the rf cage are surrounded by a ceramic beam pipe positioned inside a conducting pipe concentric
with the beam and the rf cage. The space-charge impedances in the long wavelength regime are in-
vestigated by considering the electrostatic fields due to the longitudinal and transverse perturbations on
the density of the charged-particle beam. Shielding effects due to the rf cage are discussed and simple
formulas are derived for estimating the space-charge impedances. Numerical examples are given for illus-
tration. Comparisons between analytical estimates and the results produced by the field-solver computer
program MAFIA show good agreement.
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I. INTRODUCTION

An rf-shielding cage, or an rf cage, used in an accelera-
tor or storage ring is a cagelike structure made of perfectly
conducting wires or rods parallel to the direction of the cir-
culating charged particle beam [1]. The conducting wires
of the cage are arranged to surround the beam to create
an electromagnetically shielded environment for the beam.
This type or similar types of devices together with ce-
ramic beam pipes have been implemented [1] and planned
[2–4] or are being planned [5] in some high-intensity
rapid-cycling proton synchrotrons. One of the main rea-
sons for choosing the rf cage instead of a solid conducting
beam pipe is to avoid excess eddy current that may be
induced on the beam pipe by the fast-changing magnetic
field. In high-current accelerators, the interaction between
the charged particle beam and the surrounding environ-
ment, characterized by the “coupling impedance” [6,7],
plays an important role in the stability of the circulating
beam. To avoid any collective instability, it is important
to reduce the coupling impedance when the beam inten-
sity is increased. Another reason for selecting the rf cage
emerges when the impedance consideration becomes criti-
cal. It is easier to vary the cross section of an rf cage in
order to reduce the coupling impedance than to change the
cross section of a solid pipe. In the long wavelength re-
gion, an appropriately designed rf cage can provide electro-
magnetic shielding similar to that of a solid beam pipe.

Although an rf cage was built and installed in an exist-
ing proton synchrotron over a decade ago [1], serious stud-
ies of the electromagnetic field of a charged particle beam
propagating in an rf cage were not attempted until recently
[8–13]. The need to understand the electromagnetic fields
in an rf-cage environment is prompted by several high-
intensity rapid-cycling synchrotrons proposed recently, as
mentioned above. The purpose of this work is to inves-
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tigate the space-charge impedance of an rf cage mounted
inside a ceramic and a conducting beam pipe. The analysis
of the full electromagnetic field due to a beam traveling in-
side an rf cage is complicated by the details of the geome-
try of the cage and boundary conditions. However, in the
long wavelength regime, electrostatic fields can be used.
The studies presented in this paper will exploit such an ap-
proximation. We will solve the Poisson equation to obtain
the electrostatic fields due to a perturbed beam traversing
an rf cage. Then, we will derive simple formulas for com-
puting both the longitudinal and transverse coupling im-
pedances in the long wavelength regime. These formulas
can be used as a guide in designing rf cages. Numeri-
cal examples will be given to illustrate the effect of rf
shielding and the effect due to the ceramic pipe. Compari-
sons between analytical estimates and the results produced
by the field-solver computer program MAFIA [14] will be
provided.

Since the mathematical calculation involved in deriving
the impedances is complicated and very lengthy, we will
include the derivation of the perturbed field in the appen-
dices and summarize the results in Sec. III. As the algebra
is greatly simplified without the ceramic pipe, hence the
details of deriving the perturbed field for a simpler case
of no ceramic pipe will be presented in Appendix A to
illustrate the procedures. The derivation of the perturbed
field including the effects of a ceramic beam pipe will be
outlined in Appendix B. Readers who are interested only
in applying the final results for the impedances can skip
Sec. III.

II. THEORETICAL MODEL

The cross section of the system considered here is shown
in Fig. 1. A beam having a circular cross section of radius
rb and a uniform charge distribution is propagating inside
2001 The American Physical Society 104201-1
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FIG. 1. Cross-sectional view of a beam inside an rf cage and
the ceramic beam pipe and the external conducting beam pipe.
rt , rc, and rb are the radii of the conducting beam pipe, the rf
cage, and the beam, respectively. ro and ri are the external and
the internal radii of the ceramic beam pipe, respectively. D is
the angle subtended by two adjacent wires, and rw is the radius
of a wire.

an rf cage composed of N conducting wires parallel to the
beam. The beam and the rf cage are surrounded by a ce-
ramic beam pipe which is enclosed inside a conducting
beam pipe with radius rt . The external and the internal
radii of the ceramic beam pipe are ro and ri , respectively.
We assume the ceramic has a uniform and isotropic per-
mittivity e. For simplicity, we shall limit our discussion to
the geometry in which wires are evenly distributed over a
circle; the conducting and the ceramic pipes as well as the
rf cage are positioned concentric with the beam. The ra-
dius of the rf cage, measured from the center of the cage to
the centers of wires, is rc. The pipe and wires are electri-
cally grounded and all wires have the same circular cross
section of radius rw . The studies in the following will be
focused on the regime of rw ø rc and N ¿ 1.

A cylindrical coordinate system �r , u, z� is chosen such
that the z axis coincides with the central axis of the beam.
We call this coordinate system the “beam coordinate sys-
tem” or the “global coordinate system.” In order to make
it convenient to describe the electric field near an individ-
ual wire, we also use another cylindrical coordinate system
104201-2
FIG. 2. The local and the global coordinates adopted in this
study. The origins of the local and the global coordinates are
located at the center of the beam and the center of a wire, respec-
tively. The positive directions of c and u go counterclockwise
and clockwise, respectively.

�r,c , z� in which the z axis coincides with the central
axis of a wire, as shown in Fig. 2. This “local coordinate
system” will also be referred to as the “wire coordinate
system” in the following.

III. PERTURBED FIELDS

The analysis proceeds by first obtaining the electrostatic
potential due to a perturbation in a beam propagating in-
side the rf cage described in the previous section. The lon-
gitudinal and transverse perturbations of the beam charge
density will be considered separately in the following.

A. Field due to a longitudinal perturbation

Here, we will concentrate on the electrostatic potential
due to a longitudinal charge-density perturbation in the
beam that varies in the z direction according to eikz , where
k is the wave number of the perturbation. The Poisson
equation we want to solve is
1
r

≠

≠r

µ
r
≠F

≠r

∂
1

1
r2

≠2F

≠u2 1
≠2F

≠z2 �

Ω
0, for rt . r . rb ,
2�s�eo�eikz , for r # rb , (1)

where F is the electric potential, s is the volume charge density associated with the perturbation, and eo is the permittiv-
ity of free space. We are interested in the solution of Eq. (1) in the region where krt ø 1. For mathematical convenience,
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the space inside the conducting pipe is divided into
four zones: zone I in r # rb , zone II in rb # r # ri ,
zone III in ri # r # ro , and zone IV in ro # r # rt .
We assume F � 0 at r � rt . The boundary conditions at
ri are eo≠FII�≠r � e≠FIII�≠r, ≠FII�≠z � ≠FIII�≠z,
and ≠FII�≠u � ≠FIII�≠u, where the subscripts of F

indicate the zones considered. Similarly, the bound-
ary conditions at ro are e≠FIII�≠r � eo≠FIV�≠r,
≠FIII�≠z � ≠FIV�≠z, and ≠FIII�≠u � ≠FIV�≠u.

The closed-form solution of Eq. (1) appears to be in-
accessible. However, in the regime of krw ø krc ,
krt ø 1, it is possible to find a solution expanded in pow-
ers of hn�krw�, where
104201-3
hn�x� � In�x��Kn�x� , (2)

and where In�x� and Kn�x� are the nth order modified
Bessel functions of the first kind and the second kind, re-
spectively. The solutions of FII, FIII, and FIV are not
directly required for calculating the space-charge impe-
dance, except for field matching at zone boundaries in
determining the solution of FI needed to obtain the im-
pedance. We therefore concentrate on the explicit solu-
tions in the region of r # rc in the following. As discussed
in Appendix B, if the coupling among the multipole fields
due to the induced charges on wires is neglected, the solu-
tion for F in the lowest order of hn�krw� is
F � bk�K0�kr� 2 S0I0�kr��eikz 1 N
X̀

p�2`

X̀
n�2`

CIIn�Kn1pN �krc� 2 �21�nSpNIn1pN �krc��IpN �kr�eipNueikz , (3)

for rc $ r $ rb , and

F �
Ω
s

eok2 2 I0�kr�bk
∑
S0 1

1
h1�krb�

∏æ
eikz

1 N
X̀

p�2`

X̀
n�2`

CIIn�Kn1pN �krc� 2 �21�nSpNIn1pN �krc��IpN �kr�eipNueikz , (4)

for r # rb , where

bk �

µ
srb
eok

∂
I1�krb� , (5)

Sl �
ellI

0
l �kri� 1 �e 2 eo 2 eollhl�kri��K 0

l �kri�
ehl�kri�K 0

l �kri� 2 �eo 2 ll�e 2 eo�hl�kri��I 0l�kri�
, (6)

ll �
1 2 ŶkroKl�kro� �I 0l�kro� 2 hl�krt�K 0

l �kro��
ŶkroIl�kro� �I 0l �kro� 2 hl�krt�K 0

l �kro�� 2 hl�krt�
, (7)

Ŷ � 1 2 �eo�e� , (8)

CIIn � 2bkhn�krw� �Kn�krc� 2 S0In�krc���Gkn , (9)

Gkn � 1 1 �21�nhn�krw�
N21X
m�1

e2inmDK0�kdm� 2 hn�krw�
X̀
j�2`

Sj�In1j�krc��2

∑
1 1 �21�n

N21X
m�1

eijmD
∏

, (10)

the prime indicates the derivative with respect to the argument, D � 2p�N is the angular separation between two adjacent
wires, dm is the distance between the centers of the 0th and the mth wires, and wires are numbered by their angular
locations relative to an arbitrarily chosen 0th wire in counterclockwise direction.

When e ! eo , we have Ŷ ! 0, Sl ! 1�hl�krt�, and the electric potential approaches the limit of no ceramic pipe
(found in Appendix A and in earlier work [10]). Further, for e � eo and rt ! `, one finds hl�krt� ! ` and the electric
potential approaches that of no external conducting pipe (studied previously [9]).

In the regime of krb ø 1, the axial component of the electric field Ez varies little over the beam cross section. Hence,
for the purpose of investigating the longitudinal impedance, we shall concentrate on Ez at the center of the beam. Thus,
taking the gradient of the electric potential in Eq. (4) and evaluating Ez at r � 0 yields

Ezjr�0 � 2ikN
X̀

n�2`

CIIn�Kn�krc� 2 �21�nS0In�krc��eikz 2 i

Ω
s

eok
2 kbk

∑
S0 1

1
h1�krb�

∏æ
eikz . (11)
104201-3



PRST-AB 4 TAI-SEN F. WANG, SERGEY S. KURENNOY, AND ROBERT L. GLUCKSTERN 104201 (2001 )
For a small wire diameter, we can further take the approximation by retaining only the n � 0 term in the summation,
i.e., by considering the monopole contribution from the induced charges on each wire only, to obtain

Ezjr�0 �
ikNbkh0�krw�

Gk0
�K0�krc� 2 S0I0�krc��2eikz 2 i

Ω
s

eok
2 kbk

∑
S0 1

1
h1�krb�

∏æ
eikz . (12)

Using the addition theorem of Bessel function [15], Eq. (10) becomes

Gk0 � 1 1 h0�krw�
Ω
�N 2 1�K0�krc�I0�krc� 2 2

N21X
q�1

Kq�krc�Iq�krc�

1 2
X̀
p�1

∑
�N 2 1�KpN �krc�IpN �krc� 2

N21X
q�1

Kq1pN �krc�Iq1pN �krc�
∏æ

2 Nh0�krw�
X̀

p�2`

SpN �IpN �krc��2. (13)

For N ¿ 1 and krc ø 1, one can apply the small argument expansions of Bessel functions in Eqs. (6) and (13) to show
that

S0 � 2 ln�krt� 1 Y ln

µ
ro
ri

∂
, (14)

S1 �
22H1

N�krc�2 , (15)

SpN �IpN �krc��2 �
HpN

2N
, (16)

for p . 0, X̀
p�2`

SpN11�IpN11�krc��2 � 2
H1

2
2

T
N

, (17)

and

Gk0 � 1 2 h0�krw�
Ω
�N 2 1� ln�krc� 1 lnN 1 N

X̀
p�2`

SpN �IpN �krc��2

æ

�
1

ln�krw�

∑
2N ln

µ
rtri
rcro

∂
1 ln�pfw� 1 N

µ
eo

e

∂
ln

µ
ri
ro

∂
1

X̀
p�1

HpN

∏
, (18)

where

Y � 1 2 �e�eo� , (19)

Hl �
N
l

µ
rc
ri

∂2lΩ �e 2 eo� 2 ll�Il�kri��Kl�kri�� �e 1 eo�
�e 1 eo� 2 ll�Il�kri��Kl�kri�� �e 2 eo�

æ

�
2N
l

µ
rc
ri

∂2lΩ �eo 1 e�2� rirt �
l 2 �eo 2 e�2� r2

o

rirt �
l 1 �e2

o 2 e2� �� rirtr2
o

�l 2 � rtri �
l�

�e 1 eo�2� rtri �
l 2 �eo 2 e�2� rirtr2

o
�l 1 �e2

o 2 e2� �� r2
o

rirt �
l 2 � rirt �

l�

æ
, (20)

T �
21
2

X̀
p�1

�HpN11 1 HpN21� , (21)

and

fw �
uw

D
�

Nrw
prc

(22)

is the “wire filling factor” defined as the ratio between the angle subtended by a wire in the beam coordinate system uw
and D. Substituting Eqs. (14) and (18) into Eq. (12), we can derive

Ezjr�0 �
2iskr2

b

2eo

(
1
2
1 ln

µ
rc
rb

∂
2

�ln� rcrt � 2 Y ln� rir0
�� �ln�pfw� 1

P
`
p�1 HpN �

N�ln� rcrt � 2 Y ln� riro �� 1 ln�pfw� 1
P`
p�1 HpN

)
eikz . (23)
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Note that, when 1 ø l and �ri�rt�2l ø jeo 2 ej��eo 1 e�, the following approximations are valid:

Hl �
N
l

µ
eo 2 e

eo 1 e

∂ µ
rc
ri

∂2l

, (24)

X̀
p�1

HpN � 2

µ
eo 2 e

eo 1 e

∂
ln

∑
1 2

µ
rc
ri

∂2N∏
, (25)

and

T �
eo 2 e

2�eo 1 e�

∑µ
rc
rt

∂2

1

µ
rt
rc

∂2∏
ln

∑
1 2

µ
rc
rt

∂2N∏
. (26)

These approximations can be helpful in the numerical computation of Ez given in Eq. (23).

B. Field due to a transverse perturbation

The model of the perturbation studied here is a shell with surface charge density varying according to eikz cosu. (We
assume the beam or the global coordinate system is oriented in such a way that the maximal perturbed charge density is
at the angle of u � 0.) The appropriate Poisson equation is

1
r

≠

≠r

µ
r
≠F

≠r

∂
1

1
r2

≠2F

≠u2 1
≠2F

≠z2 � 2
sd̄
eo

d�r 2 rb�eikz cosu , (27)

where d̄ is the maximal displacement of the beam.
Here again, we will concentrate on the explicit solutions in the region of r # rc. In Appendix B, we derived the

following solution of Eq. (27):

F � 2b��K1�kr� 2 S1I1�kr�� cosueikz

1 2N
X̀

p�2`

X̀
n�2`

IpN11�kr�PIIn�Kn1pN11�krc� 2 �21�nSpN11In1pN11�krc��eipNu cosueikz , (28)

for rb # r # rc, and

F � 2b�

∑
1

h1�krb�
2 S1

∏
I1�kr� cosueikz

1 2N
X̀

p�2`

X̀
n�2`

IpN11�kr�PIIn�Kn1pN11�krc� 2 �21�nSpN11In1pN11�krc��eipNu cosueikz , (29)

for r # rb , where

b� �

µ
sd̄rb
2eo

∂
I1�krb� , (30)

hl�x� and Sl were defined in Eqs. (2) and (6), respectively,

PIIn � 2b�hn�krw� �Kn11�krc� 2 S1In11�krc��G21
�n , (31)

G�n � 1 1 �21�nhn�krw�

(
N21X
m�1

e2i�n21�mDK0�kdm� 2
X̀
j�2`

Sj�Ij1n�krc��2

"
1 1 �21�n

N21X
m�1

ei� j11�mD

#)
, (32)

and dj,m is the distance between the centers of the mth and jth wires.
Taking the limit of e ! eo in Eqs. (28) and (29) yields the electric potential for the case of no ceramic pipe (obtained

in Appendix A as well as in Ref. [10]). If the limit of rt ! ` is also considered, we find the electric potential in the
case of no ceramic and conducting pipes [9].

For studying the transverse impedance, we will focus on the transverse electric field Ey at the beam center. By taking
the gradient of the electric potential given in Eq. (29) and retaining the monopole �n � 0� term only, we have

Eyjr�0 � 2b�k

∑
1

h1�krb�
2 S1

∏
eikz 2 NkPII0�K1�krc� 2 S1I1�krc��eikz , (33)

where

PII0 � 2b�h0�krw� �K1�krc� 2 S1I1�krc��G21
�0 , (34)
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and

G�0 � 1 1 h0�krw�

(
N

X̀
l�2`

X̀
p�2`

djlj,jpN21jKl�krc�Il�krc� 2
X̀
l�2`

Kl�krc�Il�krc� 2 N
X̀

p�2`

SjpN11j�IjpN11j�krc��2

)
.

(35)

Substituting Eqs. (15) and (17) into Eq. (35), and using the small argument expansions of Bessel functions, one can show
that

G�0 � 1 1 h0�krw�

(
N
2
1 ln�krc� 2 lnN 2 N

X̀
p�2`

SjpN11j�IjpN11j�krc��2

)

� 1 1 h0�krw�
∑
N
2
1 ln�krc� 2 lnN 1

H1

2N
1

T
N

∏
. (36)

From this result and Eq. (34), we have

PII0 �
22�b��krc� �1 1 �H1�N��
N 1 H1 2 2 ln�pfw� 1 2T

, (37)

where Hl is given in Eq. (20). Substituting Eqs. (30), (15), and (37) into Eq. (33) yields

Eyjr�0 � 2

µ
sd̄r2

b

2eo

∂ Ω
1

r2
b
2

1
r2
c
2

2�ln�pfw� 2 T � �N 1 H1�
Nr2

c �N 1 H1 2 2 ln�pfw� 1 2T �

æ
eikz . (38)

IV. SPACE-CHARGE IMPEDANCE

We now study the space-charge impedance in the long wavelength regime, i.e., the regime of krw ø krt ø 1. The
discussion here will concentrate on the field at the center of the beam �r � 0� given in Eqs. (23) and (38). It is important
to recall that in arriving at these results we have retained only the most significant terms (the n � 0 or the monopole
terms) in the summations, and we have neglected the couplings among the multipole fields since they are negligibly small
in the parameter range of our interest.

From the fields at the center of the beam given in Eqs. (23) and (38), we can infer that, for a circular accelerator or a
storage ring, the longitudinal space-charge impedance Zk and the transverse space-charge impedance Z� are given by

Zk �
inZ0

2bg2

Ω
1 1 2 ln

µ
rc
rb

∂
2

2�ln� rcrt � 2 �1 2
e

eo
� ln� riro �� �ln�pfw� 1

P
`
p�1 HpN �

N�ln� rcrt � 2 �1 2
e

eo
� ln� riro �� 1 ln�pfw� 1

P`
p�1 HpN

æ
, (39)

and

Z� �
µ
iRZ0

b2g2

∂ Ω
1

r2
b
2

1
r2
c
2

2�ln�pfw� 2 T � �N 1 H1�
Nr2

c �N 1 H1 2 2 ln�pfw� 1 2T �

æ
, (40)

where n is the harmonic number of the longitudinal perturbation around the ring, Z0 � 377 V, b is the ratio of the
speed of the beam particles to the speed of light, g � �1 2 b2�21�2, R is the effective machine radius, fw was defined
in Eq. (22); Hl and T are given in Eqs. (20) and (21), respectively. These impedances can be put into more convenient
forms as

Zk �
inZo
2bg2

Ω∑
1 1 2 ln

µ
rc
rb

∂∏
�1 2 Mk� 1

∑
1 1 2 ln

µ
rt
rb

∂∏
Mk

æ
, (41)

and

Z� �
iRZo
b2g2

∑µ
1

r2
b
2

1
r2
c

∂
�1 2 M�� 1

µ
1

r2
b
2

1

r2
t

∂
M�

∏
, (42)

where

Mk �
�ln� rcrt � 2 �1 2

e

eo
� ln� riro �� �ln�pfw� 1

P`
p�1 HpN �

ln� rcrt � �N�ln� rcrt � 2 �1 2
e

eo
� ln� riro �� 1 ln�pfw� 1

P`
p�1 HpN �

, (43)

and

M� �
22�N 1 H1� �ln�pfw� 2 T �

N�1 2 �rc�rt�2� �N 1 H1 2 2 ln�pfw� 1 2T �
. (44)
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Effective shielding by the rf cage is then achieved by requiring Mk ø 1 or M� ø 1, or, equivalently,

N ln

µ
rt
rc

∂
¿ 2 ln�pfw� 1 ln

∑
1 2

µ
rc
rt

∂2N∏
, (45)

for effective shielding of the longitudinal impedance, and

N

∑
1 2

µ
rc
rt

∂2∏
¿ 22 ln�pfw� 1 2T 2

4�ln�pfw� 2 T �2

N 1 H1 2 2 ln�pfw� 1 2T
, (46)

for effective shielding of the transverse impedance. It is worthwhile to reiterate that, when 1 ø l and �ri�rt�2l ø jeo 2
ej��eo 1 e�, the approximations in Eqs. (24)–(26) can be used throughout Eqs. (39)–(46) for numerical estimates.

Equations (39)–(42) are valid in the limit of N ¿ 1 and krt � vrt�y ø 1. In these limits, we expect the effect of
the dielectric to be unimportant since the frequency will not be large enough to encounter resonant effects within the
dielectric layer. We therefore obtain the results in the absence of the dielectric by setting e � eo , or by setting ri � ro .
In either case, we have

Mk �
2 ln�pfw� 1 ln�1 2 �rc�rt�2N �

N ln�rt�rc� 2 ln�pfw� 1 ln�1 2 �rc�rt�2N �
, (47)

and

M� �
22 ln�pfw� 1 ��rc�rt�2 1 �rt�rc�2� ln�1 2 �rc�rt�2N �

N�1 2 �rc�rt�2� 2 2 ln�pfw� 1 ��rc�rt�2 1 �rt�rc�2� ln�1 2 �rc�rt�2N �
. (48)

These results are consistent with those in earlier studies [10,13]. The condition for effective shielding of longitudinal
impedance is the same as shown in Eq. (45), and the condition for effective shielding of transverse impedance is simpli-
fied to

N

∑
1 2

µ
rc
rt

∂2∏
¿ 22 ln�pfw� 1

∑µ
rc
rt

∂2

1

µ
rt
rc

∂2∏
ln

∑
1 2

µ
rc
rt

∂2N∏
. (49)
V. NUMERICAL EXAMPLES

As can be seen from Eqs. (41)–(44), there are several
parameters involved in the impedances. We therefore focus
on the numerical results for the quantities Mk and M�.
Examples are presented in Figs. 3–6, where the values of
Mk and M� computed using Eqs. (43) and (44) are plotted
as functions of the number of wires for various values
of rc�ri , ri�ro , ro�rt , fw , and e�eo . As can be seen
from these examples, the values of Mk and M� decrease
when the shielding is improved by increasing the number
of wires, while the variation of the dielectric constant does
not seem to make a significant effect. The only appreciable
differences between the cases of e � eo and e � 10eo
appear when N , 30. This is partly because the ceramic
pipe is placed outside the rf cage. We also observe that the
values of Mk and M� decrease with increasing wire size
or fw when the shielding effect of the cage increases. Our
results also show that the variation of the wire filling factor
fw can make appreciable difference only when the number
of wires is less than 75. When the external conducting pipe
is close to the ceramic pipe and fw # 0.1, the dielectric
pipe appears to have opposite effects on Mk and M�, as
shown in Figs. 5 and 6.
104201-7
In the practical parameter range, N ¿ 1,
�1 2 �e�eo�� ln�ro�ri� ø N , and rt is always larger than
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(a)  f w = 0.05

(b)  f w = 0.1
(c)  f w = 0.15

(e)  f w = 0.25

(d)  f w = 0.2

(f)   f w = 0.3

ε / εo  = 1 ε / εo  = 10

ri / ro = 0.9,rc / ri = 0.8, ro / rt = 0.9
(a)

(b)

(c)

(d)

(e)
(f)

FIG. 3. Mk as a function of the total number of wires N
for (a) fw � 0.05, (b) fw � 0.1, (c) fw � 0.15, (d) fw � 0.2,
(e) fw � 0.25, and (f) fw � 0.3. Here, Mk was calculated us-
ing Eq. (43) for rc�ri � 0.8, ri�ro � 0.9, and ro�rt � 0.9.
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(f)   f w = 0.3
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FIG. 4. M� as a function of the total number of wires N
for (a) fw � 0.05, (b) fw � 0.1, (c) fw � 0.15, (d) fw � 0.2,
(e) fw � 0.25, and (f) fw � 0.3. Here, M� was calculated us-
ing Eq. (44) for rc�ri � 0.8, ri�ro � 0.9, and ro�rt � 0.9.

rc, it is easy to obtain the following approximations from
Eqs. (43) and (44):

RL �
NMk

1 2 Mk

�
ln�pfw�
ln�rc�rt�

, (50)

and

RT �
NM�

1 2 M�

�
22 ln�pfw�
1 2 �rc�rt�2 . (51)

Thus the quantities RL and RT mainly depend on fw and
rc�rt but not much on other parameters. It is therefore
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(e)
(f)

FIG. 5. Mk as a function of the total number of wires N
for (a) fw � 0.05, (b) fw � 0.1, (c) fw � 0.15, (d) fw � 0.2,
(e) fw � 0.25, and (f) fw � 0.3. Here, Mk was calculated us-
ing Eq. (43) for rc�ri � 0.8, ri�ro � 0.9, and ro�rt � 0.1.
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(c)  f w = 0.15
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FIG. 6. M� as a function of the total number of wires N
for (a) fw � 0.05, (b) fw � 0.1, (c) fw � 0.15, (d) fw � 0.2,
(e) fw � 0.25, and (f) fw � 0.3. Here, M� was calculated us-
ing Eq. (44) for rc�ri � 0.8, ri�ro � 0.9, and ro�rt � 0.1.

useful to present the numerical values of RL and RT as
functions of fw and rc�rt so that Mk and M� can be easily
calculated for a given number of wires. Such examples are
shown in Figs. 7 and 8, where the values of RL and RT
were computed using Mk and M� obtained from Eqs. (43)
and (44) for N � 60. We can see from the results in
Figs. 7 and 8 that the values of RL and RT increase with the
value of ratio rc�rt as one can expect from Eqs. (50) and
(51). For e � eo and N $ 30, we found that the values
of RL and RT are practically independent of the number
of wires.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
rc / rt 

-2

0

2

4

6

8

10

ri / ro = 0.9, ro / rt = 0.9N = 60,

(a)

(b)

(c)

(d)

(e)

(f)

(a)  f w = 0.05

(b)  f w = 0.1
(c)  f w = 0.15

(e)  f w = 0.25

(d)  f w = 0.2

(f)   f w = 0.3

ε / εo  = 1 ε / εo  = 10

R L

FIG. 7. RL as a function of rc�rt for (a) fw � 0.05, (b) fw �
0.1, (c) fw � 0.15, (d) fw � 0.2, (e) fw � 0.25, and (f) fw �
0.3. Here, RL was calculated using the definition in Eq. (50) for
N � 60, ri�ro � 0.9, and ro�rt � 0.9.
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(a)  f w = 0.05

(b)  f w = 0.1
(c)  f w = 0.15
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(d)  f w = 0.2
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R T

FIG. 8. RT as a function of rc�rt for (a) fw � 0.05, (b) fw �
0.1, (c) fw � 0.15, (d) fw � 0.2, (e) fw � 0.25, and (f) fw �
0.3. Here, RT was calculated using the definition in Eq. (51) for
N � 60, ri�ro � 0.9, and ro�rt � 0.9.

VI. COMPARISON WITH MAFIA COMPUTATIONS

In the long wavelength regime, krt ø 1, calculations of
the space-charge coupling impedances for homogeneous
chambers with an arbitrary cross section can be greatly
simplified by reducing the problem to a 2D electrostatic
problem. It was demonstrated in [11] that the value at
r � rb of the potential c , which satisfies =2c � 2d�r 2
rb��rb , gives us directly the so-called space-charge g fac-
tor for a hollow thin beam of radius rb , gL � c�rb�. The
longitudinal space-charge impedance of a hollow beam is
related to gL as Zk � ingLZ0��bg2�. As defined here,
104201-9
gL is equal to ln�rt�rb� for a smooth circular pipe of ra-
dius rt with perfectly conducting walls. The space-charge
impedance for the uniform beam, given by Eq. (39), can
be rewritten in terms of gL of the hollow beam as Zk �
in�gL 1 1�2�Z0��bg2�; see Ref. [11] for detail.

Similarly, the transverse space-charge impedance
of a homogeneous chamber can be written as Z� �
igTRZ0��b2g2r2

b�, where gT is the transverse g factor. It
is the same for hollow and uniform beams, and equal to
1 2 �rb�rt�2 in a smooth circular pipe of radius b with
perfectly conducting walls. The factor gT can be found by
solving the following boundary problem in the chamber
cross section: =2f � 2 cosud�r 2 rb��rb , with trivial
boundary conditions. Then, for an axisymmetric case,
gT is simply equal to the maximal value f�rb� of the
potential in the beam region [11].

From these considerations and Eqs. (41) and (42), one
can relate the g factors and the screening coefficients Mk

and M�:

gL � �1 2 Mk� ln
rc
rb

1 Mk ln
rt
rb

, (52)

and

gT �

µ
1 2

r2
b

r2
c

∂
�1 2 M�� 1

µ
1 2

r2
b

r2
t

∂
M� . (53)

One should emphasize that the space-charge g factors de-
pend on the beam size rb , while the coefficients Mk and
M� do not.

For some particular cases the boundary problems
presented above have simple analytical solutions. In a
general case, one can solve them numerically for an
arbitrary geometry of the cross section by means of one
0.00 0.100.05

0.00

0.06

0.03

x

y

+z

0.000 0.281 0.563 0.844 1.13

FIG. 9. (Color) Fifty equipotential lines for a hollow beam in the circular chamber with N � 40 wires. Only one 36± sector with
four wires (blue squares) is shown. The axes show longitudinal �x� and vertical �y� coordinates of the chamber cross section in our
MAFIA model in meters. The value of the normalized potential is indicated by the color scale at the bottom.
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FIG. 10. (Color) The same as in Fig. 9, but with the ceramic layer (green).
of numerous 2D electrostatic codes. We use the 2D static
solver in the MAFIA code package [14] to calculate the
g factors for a circular vacuum chamber with screening
wires, with or without an inner ceramic chamber between
the screening wire cage and the outer metal chamber
wall. In the longitudinal case, for a circular chamber it
is enough to solve the problem only in an angular sector
containing one wire with periodic boundary conditions.
For a large number N of wires, it is more convenient,
from the numerical viewpoint, to work with a wider sector
containing a few wires, as shown in Fig. 9 for N � 40,
fw � 0.1, and rc�rt � 0.6. The sector here is 36± and
contains four wires. We solve for the electric potential
c produced by a normalized electric charge uniformly

FIG. 11. Comparison of analytical and numerical results for
the longitudinal factor RL.
distributed in (a sector of) a thin hollow beam of radius
rb (rb�rt � 0.2 in Figs. 9 and 10). The value of the
potential in the beam region gives us the longitudinal
factor gL. Figure 9 shows 50 equipotential lines, with
the maximum in the beam region, and zero on the wall
and the wires. One can see that 40 wires screen the beam
field rather effectively. Adding a ceramic layer behind the
wires (Fig. 10) helps a little, but changes are very small
in this case.

One can note in Figs. 9 and 10 that the wires have square
cross sections, while the analytical study above was car-
ried out for the circular wires. Our numerical approach
is sensitive enough that the results depend on the wire
shape, even for thin wires. Without going into much de-
tail (we hope to discuss this topic elsewhere), we just
mention that in our MAFIA computations the wires with
an equivalent square cross section were used. A square
wire with side s � 2�2E�1�2� 2 K�1�2��rw � 1.694rw ,
where E�x�,K�x� are the complete elliptic integrals, gives
the same screening as a thin wire of radius rw . This state-
ment was checked numerically using very dense meshes in

TABLE I. Numerical results for fw � 0.1.

rc�rt N e�e0 gL Mk RL

0.4 40 1 0.7214 0.0308 1.270
0.4 90 1 0.7056 0.0136 1.239

0.4 � · · · 0.6931 0 · · ·

0.6 40 1 1.1255 0.0526 2.221
0.6 40 10 1.1246 0.0509 2.146
0.6 90 1 1.1115 0.0252 2.324

0.6 � · · · 1.0986 0 · · ·
104201-10
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FIG. 12. (Color) Fifty equipotential lines for a hollow beam with a cosu charge distribution in the circular chamber with N � 40
wires. Only one-quarter of the chamber cross section is shown. The dimensions are in meters. The value of the normalized potential
is indicated by the color scale at the bottom.
a couple of cases, and results for the coefficients Mk and
M� agree within a few percent.

The comparison of analytical and MAFIA results for
the longitudinal factor RL with e�e0 � 1 is presented
in Fig. 11. The agreement is excellent for fw � 0.1,
and good for the thicker wires, with fw � 0.2. The
numerical results also confirm the conclusion of the
previous section that RL is independent of the number
of wires when N ¿ 1. One should note that in all the
numerical cases the space-charge impedance (proportional

FIG. 13. Comparison of analytical and numerical results for
the transverse factor RT .
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to gL) is very close to that of a continuous metal screen
placed at r � rc, and depends essentially only on rc�rt
as evidenced by Table I for fw � 0.1 and rb�rt � 0.2.
The continuous screen cases correspond to fw � 1 and
are marked by � in the table. Introducing a dielectric layer
as shown in Fig. 10 has very little effect for this layout
(compare the fifth and fourth lines in Table I).

For the transverse space-charge impedance computa-
tions, we work with one-quarter of the chamber cross
section, imposing a symmetric boundary condition at the
azimuth u � 0, and an antisymmetric boundary condition
at u � p�2. The dipole charge distribution cosu in a thin
hollow beam is approximated by the ring region r � rb
split into 45 segments, each carrying a charge proportional
to its cosu. The solution for the potential is also propor-
tional to cosu, and its maximal value at the beam gives
the transverse space-charge factor gT . Figure 12 shows 50
equipotential lines for the transverse case in the same lay-
out as in Figs. 9 and 10.

The comparison of analytical predictions for the trans-
verse factor RT with the numerical results is presented in
Fig. 13. While the agreement is not as good here as for the
longitudinal case, with the numerical results systematically
below the analytical results, it is still quite reasonable.

VII. CONCLUSIONS

For a charged-particle beam propagating inside of an
rf-shielding cage surrounded by concentric ceramic and
conducting beam pipes, the electrostatic fields due to sinu-
soidal longitudinal and transverse perturbations have been
104201-11
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calculated analytically for the case in which both the cage
and wires have circular cross sections. The rf cage con-
sidered is made of evenly spaced conducting wires. Only
the dipole mode has been treated for the transverse per-
turbation. We have assumed that the beam has a uni-
form charge distribution and the unperturbed system is
azimuthally symmetric. Using the calculated fields, we
have derived simple formulas shown in Eqs. (41) and (42)
for the coupling impedances in the long wavelength re-
gion. Numerical examples were given to show the shield-
ing effects of the rf cage. Our results show that, in the
long wavelength regime, the space-charge impedance does
not have strong dependence on the dielectric constant of
the ceramic pipe, and the size of wires is not important
when the number of wires is larger than 100. Compari-
son between analytical estimates and the results produced
by the field-solver computer program MAFIA shows good
agreement.
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APPENDIX A: DETAILED DERIVATION OF
PERTURBED FIELDS (NO CERAMIC PIPE)

1. The longitudinal perturbed field

We first consider the solution of Eq. (1) for the case
without wire. We notice that for r # rb Eq. (1) admits the
solution ��s�eok2� 1 BI0�kr��eikz , where B is a constant
to be determined and the unphysical solution K0�x� has
been excluded. In the rb # rs # rt region Eq. (1) has a
general solution �A1K0�kr� 1 A2I0�kr��eikz , here A1 and
A2 are constants to be determined. Using the conditions
F�rt� � 0 and the continuity of electric flux and potential
at r � rb , we can derive the following equations:

A1K0�krt� 1 A2I0�krt� � 0 , (A1)

2A1K1�krb� 1 A2I1�krb� � BI1�krb� , (A2)

and

A1K0�krb� 1 A2I0�krb� �
s

eok2 1 BI0�krb� . (A3)

Solving these equations leads to the following solution of
Eq. (1):

F � fb � bk

∑
K0�kr� 2

I0�kr�
h0�krt�

∏
eikz , (A4)
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for rt $ r $ rb , and

F � fb

�

Ω
s

eok2 2 bkI0�kr�
∑

1
h0�krt�

1
1

h1�krb�

∏æ
eikz ,

(A5)

for r # rb , where

bk �

µ
srb
eok

∂
I1�krb� , (A6)

and

hn�x� � In�x��Kn�x� . (A7)

To solve Eq. (1) for the case when wires are included,
we first consider the solution in the region of rt $ r $ rc.
In the presence of wires, the beam field will induce electric
charges on the surfaces of wires. These induced charges
also have an electric potential associated with them. We
then assume that the induced charges on each wire create
a potential which can be expanded into a Fourier series of
einc as

fw �
X̀

n�2`

�CnKn�kr� 1 DnIn�kr��einceikz , (A8)

where Cn and Dn are the coefficients to be determined.
Note that Eq. (A8) is virtually the multipole expansion of
the induced field in the wire coordinate system. Using the
addition theorem of Bessel functions [15], fw can also be
expressed in the global coordinate variables as

fw �
X̀
l�2`

X̀
n�2`

In1l�krc�

3 ��21�nCnKl�kr� 1 DnIl�kr��eilueikz . (A9)

ψ

ψµ

ρ

ρµ

µ∆

dµ

rc

o

x

0th wire

µth wire rc

FIG. 14. Shown is the position of a point x represented by the
coordinates �r,c� and �rm,cm� in the local coordinate systems
of the 0th wire and the mth wire, respectively.
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Applying the boundary condition of fw � 0 at r � rt ,
we have

Dn � 2
X̀
l�2`

X̀
j�2`

�21�lCl
In1j�krc�Ij1l�krc�

hj�krt�
.

(A10)

Since all wires are electrically identical and are evenly
distributed, one can study the field around wires by con-
sidering the electric potential around any individual wire.
104201-13
Thus, we call the wire under consideration the 0th wire and
number all others by their relative locations with respect
to the 0th wire counterclockwise. For an arbitrary point
x near the 0th wire, as shown in Fig. 14, we use �r,c�
and �rm,cm� to denote the coordinates of point x in the
local coordinate systems of the 0th wire and the mth wire,
respectively. Let Cw be the sum of the induced potentials
at point x from all wires except the 0th wire. Then, using
Eq. (A8) and the addition theorem of Bessel functions we
can derive
Cw �
N21X
m�1

X̀
n�2`

�CnKn�krm� 1 DnIn�krm��eincmeikz

�
X̀
l�2`

X̀
n�2`

"
N21X
m�1

ei�n1l� �p2mD��2

#
�ClKl2n�kdm� 1 DlIl2n�kdm��In�kr�einceikz , (A11)

where dm is the distance between the centers of the 0th and the mth wire.
The total electric potential around the 0th wire, including the field due to the perturbation in the beam, is

F � fb 1 fw 1 Cw . (A12)

On the surface of each wire, the potential due to the induced charges should cancel the potential due to the beam and
the potential contributed by all other wires, i.e., F � 0 at r � rw . Thus, substituting Eqs. (A4), (A8), and (A11) into
Eq. (A12), we obtain that on the surface of the 0th wire

X̀
l�2`

N21X
m�1

ei�n1l� �p2mD��2�ClKl2n�kdm� 1 DlIl2n�kdm�� 1
Cn

hn�krw�
1 Dn 1 bk

∑
Kn�krc� 2

In�krc�
h0�krt�

∏
� 0 . (A13)

Using Eq. (A10) and the relation

X̀
l�2`

N21X
m�1

ei�n1l� �p2mD��2DlIl2n�kdm� � 2
X̀
l�2`

N21X
m�1

ei�n1l� �p2mD��2

3
X̀

m�2`

�21�mCm
X̀
j�2`

Im1j�krc�Ij1l�krc�
hj�krt�

Il2n�kdm�

� 2
X̀

m�2`

�21�mCm
N21X
m�1

ein�p2mD�
X̀
j�2`

Im1j�krc�
hj�krt�

3
X̀
l�2`

ei�l2n� �p2mD��2Ij1l�krc�Il2n�kdm�

� �21�n11
X̀

m�2`

�21�mCm
X̀
j�2`

Im1j�krc�Ij1n�krc�
hj�krt�

N21X
m�1

eijmD, (A14)

we derive from Eq. (A13):

X̀
l�2`

"
N21X
m�1

ei�n1l� �p2mD��2Kl2n�kdm�

#
Cl 1

Cn
hn�krw�

2

X̀
l�2`

( X̀
j�2`

In1j�krc�Ij1l�krc�
hj�krt�

"
1 1 �21�n

N21X
m�1

eijmD
#)

�21�lCl 1 bk

∑
Kn�krc� 2

In�krc�
h0�krt�

∏
� 0 , (A15)

where Ck is the unknown to be solved for.
The closed-form solution of Eq. (A15) is difficult, if not impossible, to obtain. However, in the regime of krw ø

krc , krt ø 1, one can expand the solution in the power series of hn�krw�. If the multipole coupling is neglected by
retaining only the l � n terms in Eq. (A15), the lowest order solution is
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Cn � 2
bkhn�krw�

Gkn

∑
Kn�krc� 2

In�krc�
h0�krt�

∏
, (A16)

where

Gkn � 1 1 �21�nhn�krw�
N21X
m�1

e2inmDK0�kdm� 2 hn�krw�
X̀
j�2`

�In1j�krc��2

hj�krt�

"
1 1 �21�n

N21X
m�1

eijmD
#

. (A17)

The contribution of the potential from all wires can then be expressed in terms of global coordinate variables as

fw 1 Cw � N
X̀

p�2`

X̀
n�2`

�21�nCnIn1pN �krc�
∑
KpN �kr� 2

IpN �kr�
hpN �krt�

∏
eipNueikz , (A18)

with Cn given in Eq. (A16). In arriving at Eq. (A18), we made use of the relation

X̀
n�2`

DnIn1pN �krc� � 2
X̀

n�2`

X̀
l�2`

�21�lCl
X̀
j�2`

In1j�krc�Ij1l�krc�
hj�krt�

In1pN �krc�

� 2
X̀
l�2`

�21�lCl
Il1pN �krc�
hpN �krt�

, (A19)

and the equality (holds good only when D � 2p�N)
N21X
j�0

eijlD �

Ω
N , for l � pN ,p � 0,61,62, . . . ,
0, for l fi pN . (A20)

Substituting the potentials in Eqs. (A2) and (A18) into Eq. (A12) yields the following total potential in the region of
ri $ r $ rc:

F � bk

∑
K0�kr� 2

I0�krc�
h0�krt�

∏
eikz 1 N

X̀
p�2`

X̀
n�2`

�21�nCnIn1pN �krc�
∑
KpN �kr� 2

IpN �kr�
hpN �krt�

∏
eipNueikz . (A21)

Next, we consider the solution in the region of r # rc. Applying the addition theorem of Bessel functions to Eq. (A8)
renders

fw �
X̀
l�2`

X̀
n�2`

�CnKn1l�krc� 1 DnIn1l�krc��Il�kr�eilueikz . (A22)

With the aid of Eqs. (A19) and (A20), the contribution of the potential from all wires can be evaluated as

fw 1 Cw � N
X̀

p�2`

X̀
n�2`

Cn

∑
Kn1pN �krc� 2 �21�n

In1pN �krc�
hpN �krt�

∏
IpN �kr�eipNueikz . (A23)

Using the solution for fb in Eqs. (A4) and (A5), we derive that

F � bk

∑
K0�kr� 2

I0�kr�
h0�krt�

∏
eikz 1 N

X̀
p�2`

X̀
n�2`

Cn

∑
Kn1pN �krc� 2 �21�n

In1pN �krc�
hpN �krt�

∏
IpN �kr�eipNueikz , (A24)

for rc $ r $ rb , and

F �
Ω
s

eok2 2 I0�kr�bk
∑

1
h0�krt�

1
1

h1�krb�

∏æ
eikz

1 N
X̀

p�2`

X̀
n�2`

Cn

∑
Kn1pN �krc� 2 �21�n

In1pN �krc�
hpN �krt�

∏
IpN �kr�eipNueikz , (A25)

for r # rb . Thus, at r � 0 we have

Ezjr�0 � 2
≠F

≠z

Ç
r�0

� 2ikN
X̀

n�2`

Cn

∑
Kn�krc� 2 �21�n

In�krc�
h0�krt�

∏
eikz 2

is
eok

Ω
1 2 krb

∑
I1�krb�
h0�krt�

1 K1�krb�
∏æ
eikz . (A26)
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If we further take the approximation by considering n � 0 only, we obtain

Ezjr�0 � 2ikNC0

∑
K0�krc� 2

I0�krc�
h0�krt�

∏
eikz 2

is
eok

Ω
1 2 krb

∑
I1�krb�
h0�krt�

1 K1�krb�
∏æ
eikz . (A27)

Now, from Eq. (A17),

Gk0 � 1 1 h0�krw�
N21X
m�1

K0�kdm� 2 h0�krw�
X̀
j�2`

�Ij�krc��2

hj�krt�

"
1 1

N21X
m�1

eijmD
#

� 1 1 h0�krw�

( X̀
l�2`

Kl�krc�Il�krc�
N21X
m�1

eilmD 2 N
X̀

p�2`

�IpN �krc��2

hpN �krt�

)

� 1 1 h0�krw�

(
�N 2 1�K0�krc�I0�krc� 2 N

X̀
p�2`

�IpN �krc��2

hpN �krt�
2 2

N21X
q�1

Kq�krc�Iq�krc�

1 2
X̀
p�1

"
�N 2 1�KpN �krc�IpN �krc� 2

N21X
q�1

Kq1pN �krc�Iq1pN �krc�

#)
. (A28)

One can show, by using the small argument expansions of Bessel functions, that for N ¿ 1 and krc ø 1,

�N 2 1�K0�krc�I0�krc� 2 2
N21X
q�1

Kq�krc�Iq�krc� 1 2
X̀
p�1

∑
�N 2 1�KpN �krc�IpN �krc� 2

N21X
q�1

Kq1pN �krc�Iq1pN �krc�
∏

� 2�N 2 1� ln�krc� 2
N21X
q�1

1
q

1
X̀
p�1

∑
N 2 1
pN

2

N21X
q�1

1
pN 1 q

∏

� 2�N 2 1� ln�krc� 2 lnN , (A29)

and X̀
p�2`

�IpN �krc��2

hpN �krt�
�

X̀
p�2`

∑
IpN �krc�
IpN �krt�

∏2

KpN �krt�IpN �krt� � 2 ln�krt� 2
1
N

ln

∑
1 2

µ
rc
rt

∂2N∏
. (A30)

Substituting Eqs. (A29) and (A30) into Eq. (A28) yields

Gk0 � 1 2 h0�krw� ��N 2 1� ln�krc� 1 lnN� 1 h0�krw�
Ω
N ln�krt� 1 ln

∑
1 2

µ
rc
rt

∂2N∏æ
. (A31)

Letting n � 0 in Eq. (A16) and using Eq. (A31), we obtain

C0 �
bk ln�rc�rt�

N ln�rt�rc� 2 ln�pfw� 1 ln�1 2 �rc�rt�2N �
, (A32)

where fw is the wire filling factor defined in Eq. (22). Substituting Eq. (A32) into Eq. (A27) and applying the small
argument expansions of Bessel functions, we derive

Ezjr�0 �
2iskr2

b

4eo

Ω∑
1 1 2 ln

µ
rc
rb

∂∏
�1 2 Mk� 1

∑
1 1 2 ln

µ
rt
rb

∂∏
Mk

æ
, (A33)

where Mk is given in Eq. (47) in the main text.

2. The transverse perturbed field

For the case of transverse perturbation, the Poisson equation we want to solve is Eq. (27). Because the system under
consideration is invariant under the transformation u ! 2u, and because the Bessel functions that will appear in the
solution have the properties of I2n�x� � In�x� and K2n�x� � Kn�x�, we will first solve the equation

1
r

≠

≠r

µ
r
≠F

≠r

!
1

1
r2

≠2F

≠u2 1
≠2F

≠z2 � 2
sd̄
2eo

d�r 2 rb�eiueikz . (A34)

The solution of Eq. (27) then can be obtained from the solution of Eq. (A34) by the substitution of eiu�2 ! cosu
appropriately. Following the same procedures as in deriving Eqs. (A4) and (A5), we find that the solution of Eq. (A34)
in the absence of wires is
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fb � b�

∑
K1�kr� 2

I1�kr�
h1�krt�

∏
eiueikz , (A35)

for rt $ r $ rb , and

fb � b�

∑
1

h1�krb�
2

1
h1�krt�

∏
I1�kr�eiueikz , (A36)

for r # rb , where

b� �

µ
sd̄rb
2eo

∂
I1�krb� . (A37)

To include the effects due to the rf-shielding wires, we again consider first the region of r $ rc. Different from the
case of longitudinal perturbation, the axial symmetry does not exist here, and the angular positions of wires need to be
taken into account when describing the potential around each wire. Take the wire located at the angle of mD, the mth
wire, as an example. When applying the addition theorem of Bessel functions, one has to make a change of variable from
u to u 2 mD for translating the description of the potential from the global coordinate to the local coordinate around
the mth wire. Therefore, the multipole expansion coefficients of the field induced on each wire depend on the location
of the wire.

The analysis here will follow the same path as in solving the field for the longitudinal perturbation. Thus, we assume
the mth wire induces a potential which can be described in terms of the wire coordinate system variables as

fw,m �
X̀

n�2`

�Pm,nKn�kr� 1 Qm,nIn�kr��einceikz , (A38)

where Pm,n and Qm,n are the unknowns to be solved for. The contribution from all other N 2 1 wires, C0
w,m, is

C0
w,m �

X̀
l�2`

X̀
n�2`

N21X
j�0

�1 2 dj,m�ei�n1l� �p2� j2m�D��2 �Pj,lKl2n�kdj,m� 1 Qj,lIl2n�kdj,m��In�kr�einceikz , (A39)

where dj,m is the distance between the centers of the mth and the jth wires. In the global coordinate system, we have

fw,m �
X̀

n�2`

X̀
l�2`

Il1n�krc� ��21�nPm,nKl�kr� 1 Qm,nIl�kr��eiluei�l21�mDeikz . (A40)

Then, the requirement that the total potential is zero on the surface of the mth wire leads to

Pm,n

hn�krw�
1 Qm,n 1 b�

∑
Kn11�krc� 2

In11�krc�
h1�krt�

∏
eimD 1

X̀
l�2`

N21X
j�0

�1 2 dj,m�ei�n1l� �p2� j2m�D��2 �Pj,lKl2n�kdj,m� 1 Qj,lIl2n�kdj,m�� � 0 . (A41)

For m � 0, we have

Pn
hn�krw�

1 Qn 1 b�

∑
Kn11�krc� 2

In11�krc�
h1�krt�

∏
1

X̀
l�2`

N21X
j�0

�1 2 dj,0�ei�n1l� �p2jD��2 �Pj,lKl2n�kdj� 1 Qj,lIl2n�kdj�� � 0 , (A42)

where Pn � P0,n, Qn � Q0,n, and dj � dj,0.
Changing index in Eq. (A41) by letting j � m 1 q, one has

Pm,ne2imD

hn�krw�
1 Qm,ne

2imD 1 b�

∑
Kn11�krc� 2

In11�krc�
h1�krt�

∏
1

X̀
l�2`

N21X
q�0

�1 2 dq,0�ei�n1l� �p2qD��2e2imD�Pm1q,lKl2n�kdq,0� 1 Qm1q,lIl2n�kdq,0�� � 0 . (A43)

It can be seen now that Eqs. (A42) and (A43) have the same form, or Pn and Pm,ne2imD have the same solution. We
then infer that
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Pm,ne
2imD � Pn , (A44)

Pm1k,ne
2ikD � Pne

2imD � Pm,n , (A45)

Qm,ne
2imD � Qn , (A46)

and

Qm1k,ne
2ikD � Qne

2imD � Qm,n . (A47)

Applying these identities to Eq. (A41), the requirement of zero total potential on the surfaces of all wires can be reduced
to a single equation similar to Eq. (A15):

X̀
l�2`

N21X
m�1

ei�n1l� �p2mD��2eimD�PlKl2n�kdm� 1 QlIl2n�kdm�� 1
Pn

hn�krw�
1 Qn 1 b�

∑
Kn11�krc� 2

In11�krc�
h1�krt�

∏
� 0 .

(A48)

Requiring fw,m � 0 at r � rt , we can derive from Eq. (A40)

Qm,j � 2
X̀

n�2`

�21�nPm,n

X̀
l�2`

Il1n�krc�Il1j�krc�
hl�krt�

, (A49)

so that

Qj � 2
X̀

n�2`

�21�nPn
X̀
l�2`

Il1n�krc�Il1j�krc�
hl�krt�

, (A50)

and

X̀
l�2`

N21X
m�1

ei�n1l� �p2mD��2eimDIl2n�kdm�Ql � �21�n11
X̀

m�2`

�21�mPm
X̀
j�2`

Ij1m�krc�
Ij1n�krc�
hj�krt�

N21X
m�1

ei� j11�mD, (A51)

where the addition theorem of Bessel functions has been invoked. Substituting Eq. (A50) into Eq. (A48) and using
Eq. (A51) renders

X̀
l�2`

N21X
m�1

ei�n1l� �p2mD��2eimDKl2n�kdm�Pl 1
Pn

hn�krw�
2

X̀
l�2`

X̀
j�2`

�21�l
Ij1l�krc�Ij1n�krc�

hj�krt�

"
1 1 �21�n

N21X
m�1

ei� j11�mD

#
Pl 1 b�

∑
Kn11�krc� 2

In11�krc�
h1�krt�

∏
� 0 . (A52)

Neglecting the multipole coupling by retaining only the l � n terms in Eq. (A52) yields

Pn

"
1 1 �21�nhn�krw�

N21X
m�1

e2i�n21�mDK0�kdm�

#
2 �21�nPnhn�krw�

X̀
j�2`

�Ij1n�krc��2

hj�krt�

"
1 1 �21�n

N21X
m�1

ei� j11�mD

#

� 2b�hn�krw�
∑
Kn11�krc� 2

In11�krc�
h1�krt�

#
. (A53)

Equation (A53) has the approximate solution

Pn � 2b�hn�krw�
∑
Kn11�krc� 2

In11�krc�
h1�krt�

∏
G21

�n , (A54)

where

G�n � 1 1 �21�nhn�krw�

(
N21X
m�1

e2i�n21�mDK0�kdm� 2
X̀
j�2`

�Ij1n�krc��2

hj�krt�

"
1 1 �21�n

N21X
m�1

ei� j11�mD

#)
. (A55)
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Now, using Eqs. (A40), (A20), and (A50), we can evaluate the potential due to all wires as

fw,m 1 C0
w,m � N

X̀
n�2`

X̀
p�2`

In1pN11�krc� ��21�nPnKpN11�kr� 1 QnIpN11�kr��ei�pN11�ueikz

� 2N
X̀

p�2`

X̀
n�2`

In1pN11�krc� �21�nPn
∑
KpN11�kr� 2

IpN11�kr�
hpN11�krt�

∏
eipNu cosueikz . (A56)

Adding the results in Eqs. (A35) and (A56), we have the following solution of Eq. (27) in the region of rc # r # ri :

F � 2b�

∑
K1�kr� 2

I1�kr�
h1�krt�

∏
cosueikz

1 2N
X̀

p�2`

X̀
n�2`

In1pN11�krc� �21�nPn
∑
KpN11�kr� 2

IpN11�kr�
hpN11�krt�

∏
eipNu cosueikz , (A57)

where Pn is given in Eq. (A54).
We next consider the solution in the r # rc region. Here, we have

fw,m �
X̀

n�2`

X̀
l�2`

�PnKn1l�krc� 1 QnIn1l�krc��Il�kr�eilueilmDeikz, (A58)

and

fw,m 1 C0
w,m � 2N

X̀
n�2`

X̀
p�2`

IpN11�kr�eipNu1ikz cosu

∑
Kn1pN11�krc� 2 �21�n

In1pN11�krc�
hpN11�krt�

∏
Pn . (A59)

Using these results and Eqs. (A35) and (A36), we obtain the following solution of Eq. (27):

F � 2b�

∑
K1�kr� 2

I1�kr�
h1�krt�

∏
cosueikz

1 2N
X̀

n�2`

X̀
p�2`

IpN11�kr�Pn
∑
Kn1pN11�krc� 2 �21�n

In1pN11�krc�
hpN11�krt�

∏
eipNu cosueikz , (A60)

for rb # r # rc, and

F � 2b�

∑
1

h1�krb�
2

1
h1�krt�

∏
I1�kr� cosueikz

1 2N
X̀

n�2`

X̀
p�2`

IpN11�kr�Pn
∑
Kn1pN11�krc� 2 �21�n

In1pN11�krc�
hpN11�krt�

∏
eipNu cosueikz , (A61)

for r # rb .
The electric field at the beam center is given by

Eyjr�0 � 2
≠F

≠r

Ç
u�0

� 2 b�k

∑
1

h1�krb�
2

1
h1�krt�

∏
eikz 2 Nk

X̀
n�2`

Pn

∑
Kn11�krc� 2 �21�n

In11�krc�
h1�krt�

∏
eikz .

(A62)

If only the monopole solution is considered, i.e., n � 0,

Eyjr�0 � 2b�k

∑
1

h1�krb�
2

1
h1�krt�

∏
eikz 2 NkP0

∑
K1�krc� 2

I1�krc�
h1�krt�

∏
eikz , (A63)

where

P0 �
2b�h0�krw� �K1�krc� 2 �I1�krc��h1�krt���

1 1 h0�krw� �
P`
l�2`�Ndl,�pN21� 2 1�Kl�krc�Il�krc� 2 N

P`
p�2`

�IpN11�krc��2

hpN11�krt� �
. (A64)
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Using the approximations X̀
l�2`

�Ndl,�pN21� 2 1�Kl�krc�Il�krc� �
N
2
1 ln�krc� 2 lnN , (A65)

and X̀
p�2`

�IpN11�krc��2

hpN11�krt�
�

1
2

µ
rc
rt

∂2Ω
1 2

1
N

∑
1 1

µ
rt
rc

∂4∏
ln

∑
1 2

µ
rc
rt

∂2N∏æ
, (A66)

one can show that

P0 � 2
sd̄r2

b

2eorc

µ
1 2

r2
c

r2
t

∂
�N�1 2 �rc�rt�2� 2 2 ln�pfw� 1 ��rc�rt�2 1 �rt�rc�2� ln�1 2 �rc�rt�2N ��21. (A67)

Therefore,

Eyjr�0 � 2
sd̄r2

b

2eo

∑µ
1

r2
b
2

1
r2
c

∂
�1 2 M�� 1

µ
1

r2
b
2

1

r2
t

∂
M�

∏
eikz , (A68)

where M� is defined in Eq. (48) in the main text.

APPENDIX B: THE DERIVATION OF PERTURBED FIELD (WITH CERAMIC PIPE)

1. The longitudinal perturbed field

We first consider the solution of Eq. (1) in the absence of wires. In zone I, Eq. (1) has a solution ��s�eok2� 1
AII0�kr��eikz , where AI is a constant to be determined. In zones II, III, and IV, Eq. (1) has the solution in the form of
�AnI0�kr� 1 BnK0�kr��eikz , where An and Bn are constants, and the subscript n represent II, III, or IV. Applying the
boundary conditions discussed in the main text, we find

s

eok2 1 AII0�krb� � AIII0�krb� 1 BIIK0�krb� , (B1)

AIII
0
0�krb� 1 BIIK

0
0�krb� � AII

0
0�krb� , (B2)

AIII0�kri� 1 BIIK0�kri� � AIIII0�kri� 1 BIIIK0�kri� , (B3)

AIII
0
0�kri� 1 BIIK

0
0�kri� �

µ
e

eo

∂
�AIIII

0
0�kri� 1 BIIIK

0
0�kri�� , (B4)

AIIII0�kro� 1 BIIIK0�kro� � AIVI0�kro� 1 BIVK0�kro� , (B5)

AIIII
0
0�kro� 1 BIIIK

0
0�kro� �

µ
eo

e

∂
�AIVI

0
0�kro� 1 BIVK

0
0�kro�� , (B6)

and

AIVI0�krt� 1 BIVK0�krt� � 0 . (B7)

Solving Eqs. (B1)–(B7) leads to the following solution of Eq. (1) in zones I and II:

fb � FI �

Ω
s

eok2 2 bkI0�kr�
∑
S0 1

1
h1�krb�

∏æ
eikz , (B8)

and

fb � FII � bk�K0�kr� 2 S0I0�kr��eikz , (B9)

respectively, where

Sl �
ellI

0
l �kri� 1 �e 2 eo 2 eollhl�kri��K 0

l �kri�
ehl�kri�K 0

l �kri� 2 �eo 2 ll�e 2 eo�hl�kri��I 0l�kri�
, (B10)

ll �
1 2 ŶkroKl�kro� �I 0l�kro� 2 hl�krt�K 0

l �kro��
ŶkroIl�kro� �I 0l �kro� 2 hl�krt�K 0

l �kro�� 2 hl�krt�
, (B11)
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Ŷ � 1 2 �eo�e� , (B12)

bk and hn�x� were defined in Eqs. (A6) and (A7), respectively, and the prime indicates derivative with respect to the
argument. Solutions in zones III and IV are similar to Eq. (B9). Since these solutions will not be used directly in
calculating the impedance, we will concentrate on the solutions of fb in zones I and II only.

The discussion of solving Eq. (1) in the presence of wires will proceed by first considering the solution in the region
of ri $ r $ rc. We assume that each wire induces a potential which has the following multipole expansion in a local
coordinate system:

fw �
X̀

n�2`

�CIInKn�kr� 1 DIInIn�kr��einceikz , (B13)

where CIIn and DIIn are the unknown quantities to be solved for. In terms of the global coordinate variables, fw can be
written as

fw �
X̀
l�2`

X̀
n�2`

In1l�krc� ��21�nCIInKl�kr� 1 DIInIl�kr��eilueikz . (B14)

In zones III and IV, we assume the field due to a wire can be expressed in the global coordinate variables as

fw �
X̀
l�2`

�CnlKl�kr� 1 DnlIl�kr��eilueikz , (B15)

where the subscript n stands for III or IV. Applying the boundary conditions at r � ri and r � ro together with the
condition fw � 0 at r � rt , we obtain five simultaneous equations similar to Eqs. (B3)–(B7). Solving these simulta-
neous equations we find

DIIn � 2
X̀
l�2`

X̀
j�2`

�21�lCIIlIn1j�krc�Sj�krt�Ij1l�krc� . (B16)

We call the wire under consideration the 0th wire and number all others by their relative locations with respect to the
0th wire counterclockwise. If Cw is the sum of the induced potentials from all other wires near the 0th one, we have

Cw �
X̀
l�2`

X̀
n�2`

"
N21X
m�1

ei�n1l� �p2mD��2

#
�CIIlKl2n�kdm� 1 DIIlIl2n�kdm��In�kr�einceikz . (B17)

Imposing the condition that the total electric potential,

F � fb 1 fw 1 Cw , (B18)

be zero on the surface of wires, we derive that, on the surface of the 0th wire,

X̀
l�2`

"
N21X
m�1

ei�n1l� �p2mD��2Kl2n�kdm�

#
CIIl 1

CIIn

hn�krw�
2

X̀
l�2`

( X̀
j�2`

In1j�krc�SjIj1l�krc�

"
1 1 �21�n

N21X
m�1

eijmD
#)

�21�lCIIl 1 bk�Kn�krc� 2 S0In�krc�� � 0 , (B19)

where use has been made of Eq. (B16).
In the regime of krw ø krc , krt ø 1, one can expand the solution of Eq. (B19) in powers of hn�krw�. If the

multipole coupling is neglected, the lowest order solution for CIIn is

CIIn � 2
bkhn�krw�

Gkn
�Kn�krc� 2 S0In�krc�� , (B20)

where

Gkn � 1 1 �21�nhn�krw�
N21X
m�1

e2inmDK0�kdm� 2 hn�krw�
X̀
j�2`

Sj�In1j�krc��2

"
1 1 �21�n

N21X
m�1

eijmD
#

, (B21)

and Sl was defined in Eq. (B10) as well as in Eq. (6) in the main text. The contribution of the potential from all wires
can then be found as
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fw 1 Cw � N
X̀

p�2`

X̀
n�2`

�21�nCIInIn1pN �krc� �KpN �kr� 2 SpNIpN �kr��eipNueikz . (B22)

In deriving Eq. (B22), we used Eq. (A20) and the following relation similar to Eq. (A19):X̀
n�2`

DIInIn1pN �krc� � 2
X̀
l�2`

�21�lCIIlSpNIl1pN �krc� . (B23)

Substituting the potentials in Eqs. (B9) and (B22) into Eq. (B18) yields the following solution of Eq. (1) in the region
of ri $ r $ rc:

F � bk�K0�kr� 2 S0I0�kr��eikz 1 N
X̀

p�2`

X̀
n�2`

�21�nCIInIn1pN �krc� �KpN �kr� 2 SpNIpN �kr��epNueikz . (B24)

Next, we consider the solution in the region of r # rc. In this region,

fw �
X̀
l�2`

X̀
n�2`

�CIInKn1l�krc� 1 DIInIn1l�krc��Il�kr�eilueikz , (B25)

hence the total potential from wires should be

fw 1 Cw � N
X̀

p�2`

X̀
n�2`

CIIn�Kn1pN �krc� 2 �21�nSpNIn1pN �krc��IpN �kr�eipNueikz , (B26)

where use was made of Eqs. (A20) and (B23). Note that since the results in Eqs. (B25) and (B26) are derived for the
region of r # rc they are valid in both zone I and zone II. Substituting Eqs. (B26), (B8), and (B9) into Eq. (B18), the
solution of Eq. (1) can be readily found as

F � bk�K0�kr� 2 S0I0�kr��eikz 1 N
X̀

p�2`

X̀
n�2`

CIIn�Kn1pN �krc� 2 �21�nSpNIn1pN �krc��IpN �kr�eipNueikz , (B27)

for rc $ r $ rb , and

F �
Ω
s

eok2 2 I0�kr�bk
∑
S0 1

1
h1�krb�

∏æ
eikz

1 N
X̀

p�2`

X̀
n�2`

CIIn�Kn1pN �krc� 2 �21�nSpNIn1pN �krc��IpN �kr�eipNueikz , (B28)

for r # rb .

2. The transverse perturbed field

Following the same procedures in deriving Eqs. (B8) and (B9), we find that the solution of Eq. (A34) in the absence
of wires is

fb � FI � b�

∑
1

h1�krb�
2 S1

∏
I1�kr�eiueikz , (B29)

in zone I �r # rb�, and

fb � FII � b��K1�kr� 2 S1I1�kr��eiueikz , (B30)

in zone II �rb # r # ri�, where b� was defined in Eq. (30) as well as in Eq. (A37). Solutions in zones III and IV are
similar to Eq. (B30). The following discussions will focus on the solutions of fb in zones I and II only.

For the solution including the rf-shielding wires, we first consider the region of r $ rc. As was discussed in Appen-
dix A 2, the system considered here is not axisymmetric so the angular positions of wires need to be taken into account
when describing the potential around each wire.

The analysis procedure here will be the same as that in Appendix A 2. Thus, we assume the mth wire induces a
potential which can be described in terms of the wire coordinate system variables as

fw,m �
X̀

n�2`

�PIIm,nKn�kr� 1 QIIm,nIn�kr��einceikz , (B31)

where PIIm,n and QIIm,n are the unknowns to be solved. Using the addition theorem of Bessel functions, fw,m can be
expressed in terms of the global coordinate variables as
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fw,m �
X̀

n�2`

X̀
l�2`

Il1n�krc� ��21�nPIIm,nKl�kr� 1 QIIm,nIl�kr��eiluei�l21�mDeikz . (B32)

The contribution from all other N 2 1 wires, C0
w,m, is

C0
w,m �

X̀
l�2`

X̀
n�2`

N21X
j�0

�1 2 dj,m�ei�n1l� �p2� j2m�D��2 �PIIj,lKl2n�kdj,m� 1 QIIj,lIl2n�kdj,m��In�kr�einceikz , (B33)

where dj,m is the distance between the centers of the mth and the jth wires.
Since the total potential on the surface of the mth wire should be zero, one has

PIIm,n

hn�krw�
1 QIIm,n 1 b��Kn11�krc� 2 S1I1�krc��eimD 1

X̀
l�2`

N21X
j�0

�1 2 dj,m�ei�n1l� �p2� j2m�D��2 �PIIj,lKl2n�kdj,m� 1 QIIj,lIl2n�kdj,m�� � 0 . (B34)

For m � 0, Eq. (B34) becomes

PIIn

hn�krw�
1 QIIn 1 b��Kn11�krc� 2 S1I1�krc�� 1

X̀
l�2`

N21X
j�0

�1 2 dj,0�ei�n1l� �p2jD��2 �PIIj,lKl2n�kdj� 1 QIIj,lIl2n�kdj�� � 0 , (B35)

where PIIn � PII0,n, QIIn � QII0,n, and dj � dj,0. Changing index in Eq. (B34) by letting j � m 1 q yields

PIIm,ne2imD

hn�krw�
1 QIIm,ne

2imD 1 b��Kn11�krc� 2 S1In11�krc�� 1

X̀
l�2`

N21X
q�0

�1 2 dq,0�ei�n1l� �p2qD��2e2imD�PIIm1q,lKl2n�kdq,0� 1 QIIm1q,lIl2n�kdq,0�� � 0 . (B36)

Equation (B36) has the same form as Eq. (B35). We can infer that PIIn and PIIm,ne2imD have the same solution, and
relations similar to Eqs. (A44)–(A47) also exist for PIIj,l and PIIk . Therefore, the requirement of zero total potential on
the surfaces of all wires can be reduced to a single equation similar to Eq. (A48):

X̀
l�2`

N21X
m�1

ei�n1l� �p2mD��2eimD�PIIlKIIl2n�kdm� 1 QIIlIl2n�kdm�� 1

PIIn

hn�krw�
1 QIIn 1 b��Kn11�krc� 2 S1In11�krc�� � 0 . (B37)

We assume that in regions III and IV the field due to the wires has the form of

fw � Fn � 2N
X̀

n�2`

X̀
l�2`

In1l�krc� ��21�nPnnKl�kr� 1 QnnIl�kr��eilu
"
N21X
m�0

ei�l21�mD

#
cosueikz , (B38)

where n stands for III or IV. Applying the boundary conditions at r � ri and r � ro together with the condition
fw � 0 at r � rt , we obtain five simultaneous equations similar to Eqs. (B3)–(B7). Solving these simultaneous equa-
tions determines the constants Pnn and Qnn. As a result, we find

QIIm � 2
X̀

n�2`

�21�nPIIn

X̀
l�2`

Il1n�krc�SlIl1j�krc� . (B39)

Since the explicit solutions of FIII and FIV are not involved in deriving the impedance, we concentrate on the explicit
solutions in zones I and II in the following. From Eq. (B39), one can show that
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X̀
l�2`

N21X
m�1

ei�n1l� �p2mD��2eimDIl2n�kdm�QIIl � �21�n11
X̀

m�2`

�21�mPIIm

X̀
j�2`

Ij1m�krc�SjIj1n�krc�
N21X
m�1

ei� j11�mD.

(B40)

Using Eq. (B40) and neglecting the multipole coupling, Eq. (B37) can be rewritten as

PIIn

∑
1 1 �21�nhn�krw�

N21X
m�1

e2i�n21�mDK0�kdm�
∏

2 �21�nPIInhn�krw�
X̀
j�2`

Sj�Ij1n�krc��2

∑
1 1 �21�n

N21X
m�1

ei� j11�mD
∏

� 2b�hn�krw� �Kn11�krc� 2 S1In11�krc�� , (B41)

which has the approximate solution

PIIn � 2b�hn�krw� �Kn11�krc� 2 S1In11�krc��G21
�n , (B42)

where

G�n � 1 1 �21�nhn�krw�

(
N21X
m�1

e2i�n21�mDK0�kdm� 2
X̀
j�2`

Sj�Ij1n�krc��2

"
1 1 �21�n

N21X
m�1

ei� j11�mD

#)
. (B43)

Using Eqs. (B32), (A40), and (B39), we can evaluate the potential due to all wires as

fw,m 1 C0
w,m � N

X̀
n�2`

X̀
p�2`

In1pN11�krc� ��21�nPIInKpN11�kr� 1 QIInIpN11�kr��ei�pN11�ueikz

	 2N
X̀

n�2`

X̀
l�2`

In1l�krc� ��21�nPIInKl�kr� 1 QIInIl�kr��eilu
"
N21X
m�0

ei�l21�mD

#
cosueikz

� 2N
X̀

p�2`

X̀
n�2`

In1pN11�krc� �21�nPIIn�KpN11�kr� 2 SpN11IpN11�kr��eipNu cosueikz . (B44)

Putting the potentials in Eqs. (B30) and (B44) together gives the following solution of Eq. (27) in the rc # r # ri region:

F � 2b��K1�kr� 2 S1I1�kr�� cosueikz

1 2N
X̀

p�2`

X̀
n�2`

In1pN11�krc� �21�nPIIn�KpN11�kr� 2 SpN11IpN11�kr��eipNu cosueikz , (B45)

where PIIn is given in Eq. (B42).
Next, we consider the solution in the r # rc region. Here we have

fw,m �
X̀

n�2`

X̀
l�2`

�PIInKn1l�krc� 1 QIInIn1l�krc��Il�kr�eilueilmDeikz , (B46)

and

fw,m 1 C0
w,m � 2N

X̀
n�2`

X̀
p�2`

IpN11�kr�PIIn�Kn1pN11�krc� 2 �21�nSpN11In1pN11�krc��eipNu cosueikz . (B47)

Using these results, we can obtain

F � 2b��K1�kr� 2 S1I1�kr�� cosueikz

1 2N
X̀

n�2`

X̀
p�2`

IpN11�kr�PIIn�Kn1pN11�krc� 2 �21�nSpN11In1pN11�krc��eipNu cosueikz , (B48)

for rb # r # rc, and
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104201-2
F � 2b�

∑
1

h1�krb�
2 S1

#
I1�kr� cosueikz

1 2N
X̀

n�2`

X̀
p�2`

IpN11�kr�PIIn�Kn1pN11�krc� 2 �21�nSpN11In1pN11�krc��eipNu cosueikz , (B49)
for r # rb .
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