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Robinson instabilities with a higher-harmonic cavity
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A radio frequency system with a fourth-harmonic “Landau” cavity suppresses coupled-bunch instabili-
ties and increases the beam lifetime of the Aladdin electron storage ring. When the storage ring is operated
with a small momentum compaction, instabilities limit the utility of the Landau cavity. Analytical mod-
eling of instability frequencies and growth rates, simulations, and experiments suggest that the observed
instabilities result from coupling between dipole and quadrupole Robinson modes.
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I. INTRODUCTION By modeling the coupling between dipole and

A radio frequency cavity with resonant frequency near aquadrupole Robinson modes, the observed instabilities are
harmonic of (tqhe fur):dam;tal (f cavity may ?ncrea)ée I_an_predicted. Simulations and experiments show instabilities
dau damping of synchrotron oscillations and lengthen théén nwhéigb}gemb;nrﬁ?ugggtmgx agrciimls:]ltgatlh d?;\?g”:rt]iwthtﬁ at
bunch, thereby suppressing coupled-bunch instabilities an@ P 9 : h

increasing the Touschek lifetime [1-9]. A Landau cavity'nsllt"’lbt'.IIty resudlts when the OSC'”at'.O ? frfzqu%r:mes of tvlvo d
may be operated in passive mode, where its voltage is ingp elc Ve (TO els ‘?O”VEF?G’ consistent with-acouple
duced by the beam current, or active mode, where its volt- Ipole-quadrupole Instability.

. oo In Sec. Il, we discuss formulas for the bunch length
age is maintained by an rf power supply and feedback. In d Robinson instabilities. In Secs. lll and IV, passive
either case, quiet operation requires avoidance of Robir"d RO S L Vi P )

; o : . operation of the Landau cavity is studied using analytic
son instabilities [3,5,10—-16], which are coupled-bunch 'n'modeling simulations, and experiment. Sections V and
stabilities where all bunches oscillate in unison. - . P ' . .

. . : | describe active operation of the Landau cavity, while

Since 1995, a fourth-harmonic cavity has been operate ec. VIl discusses our results
at the Aladdin 800 MeV, 300 mA electron storage ring, ’ '
suppressing coupled-bunch instabilities and doubling the
beam lifetime [6]. Passive-mode operation is stable with 1. ROBINSON INSTABILITY FORMULAS
beam currents exceeding 120 mA. Experimentally, tun-
ing in the Landau cavity at lower beam currents results in
instability before optimal bunch lengthening is obtained, Consider a bunch confined in a double-rf system consist-
in approximate agreement with the predicted onset of théng of a fundamental cavity and a higher-harmonic cavity.
dipole Robinson instability [5,17]. Active operation suc- Let Cavity 1 be the fundamental rf cavity with resonant
cessfully provides optimal bunch lengthening at all valuedrequencyw; near w,, the rf generator frequency. Let
of the beam current (0—300 mA) when using feedback orQ; be its quality factor,R; its impedance at resonance
the fundamental and Landau cavities that is predicted t¢1/2 of the “accelerator” definition of shunt impedance),
avoid dipole Robinson instabilities [11]. and ¢, its tuning angle(—90° < ¢; < 90°), defined by

To increase the brightness of Aladdin’s synchrotron ratang; = 2Q(w, — wi)/w;. This tuning angle is the
diation, a low-emittance mode of operation is being desame as that used by Marchand [14] and Sands [19], and
veloped. Successful operation of the Landau cavity ighe negative of that used by Wilson [20]. The cavity
required to suppress coupled-bunch and microwave instampedance at frequenay, is R, cosp e’?'. R, and Q,
bilities and to obtain a lifetime comparable to the standardvhich describe the loaded cavity including fast rf feed-
Aladdin lattice. In low-emittance mode with the “LF20" back, equal /(1 + B;) times the unloaded valugy and
lattice, the momentum compaction of 0.0043 is abiot&  Q7, whereg; is the equivalent rf coupling coefficient of
of its value of 0.0335 in the standard Aladdin lattice, re-Cavity 1 [17,19,20].
ducing the synchrotron frequency by a factor-e3 [18]. Cavity 2 is a higher harmonic cavity with resonant fre-
Experimentally, passive operation of the Landau cavity isjuency w, nearvw,, wherev is its harmonic number.
unstable with optimally lengthened bunches, but stable afthe unloaded impedance and quality factor &% and
ring currents of 80—300 mA when the bunches are length@?, while the equivalent rf coupling coefficient of Cav-
ened beyond optimal to assume a double-hump shapiy 2 is B,. Q, is the loaded quality factor equaling
Active operation with optimally lengthened bunches is un-Q3/(1 + B,), R, is the loaded impedance at resonance
stable at ring currents exceedingl00 mA; instabilities  given byR5/(1 + B,), and ¢, is the tuning angle, which
include an oscillation of the bunch position and length. obeys ta, = 20:(rw, — w1)/w,.

A. Synchrotron frequency and bunch length
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We let e > 0 represent the magnitude of the elec-
tronic charge, T, the storage ring recirculation time,
w, = 2 /T, the angular revolution frequency, E the
storage ring energy, o the natural electron energy spread,
a the momentum compaction, and 7 > 0 the ring current.
For symmetric bunches, F; and F, denote the bunch form
factorsin Cavities 1 and 2 for bunch length o, [5,20]. We
let V1 and V5, denote the peak voltages in Cavities 1
and 2, while ¢, and ¢, denote the synchronous phases
in each cavity, equaling zero for a bunch passing through
the cavity at the peak accelerating voltage. This definition
of ¢ and ¢, is the same as that used by Sands [19]
and Wilson [20], and it is the complement of the phase
angle used by some authors. A synchronous electron
receives an energy of e(Vr;cosyr + ViyoCOSYp) = eV
when passing through the rf cavities, and radiates (on
average) an energy of eV, per revolution, where V; is the
synchronous voltage.

Choosing a time coordinate where ¢+ = 0 is a syn-
chronous time, the accelerating voltage experienced by an
electron passing through the rf cavities at time ¢ is

V(t) =V COS(lﬁl + wgt) + Vo COS(lﬂz + ngt),
(1)

where V(0) = V,. Neglecting radiation damping and the
random nature of synchrotron radiation emission, the ar-
rival time of a single electron (7) relative to the syn-
chronous time obeys

d*r ae dU
- = — |]=-—, 2
az e,V =y @
where
ae

U(r) = — fo ‘W) - via @

ET,
isthe synchrotron effective potential. The potential may be
expanded in aTaylor seriesU(7) = ar?> + b7 + c7* +
.-+, where [5]

aewg . H

a= o (Vrising, + vV sing,), 4
aewf, 2

b= —rr (Vricosjy + v'Vpacosg),  (9)

(o]

aewg . 3 :

¢ = = apr. Vnsngy + 2 Vrasings).  (6)

[}

When ao? > |bo}| and |co?|, the synchrotron poten-
tial is “mostly quadratic” in the region occupied by the
bunch [5].

For small oscillations, the linear synchrotron frequency
w,; = 0 therefore obeys
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2 _ _ aew,
w; = 2a ET.
Defining ¢ = —vVy, Singn/Vr Sing as the negative of
the ratio of the Landau-cavity longitudinal “force” to that
from the fundamental cavity [13], Eq. (7) may be written

as

(Vrising, + vVpysings).  (7)

ol = aewg

s ET,
For 0 < ¢ < 1, the synchrotron frequency is reduced and
the bunch is lengthened by the harmonic cavity. For
& =1, the forces from the two cavities cancel; there is
no net linear restoring force and the linear synchrotron fre-
guency is zero. A long bunch length confined in acubic +
quartic potential may thereby be obtained; we refer to the
case ¢ = 1 as"optimal bunch lengthening.” When ¢ > 1,
the synchrotron potential is a double well with two min-
ima, resulting in a double-hump bunch shape.

For bunch lengthening, the rf phases obey 0° < ¢ <
90° and —180° < ¢, < —90° for either passive opera
tion of the higher-harmonic cavity [5] or for active op-
eration in which the cubic term (b) of the synchrotron
potential is made to equal zero [11]. When the fun-
damental cavity is operated in the “compensated condi-
tion” where the rf current is in phase with the cavity
voltage [19,20], its tuning angle obeys 0° < ¢; < 90°
(i.e, w1 < wy). In contrast, passive operation of the har-
monic cavity or active operation in the compensated condi-
tion yields —90° < ¢, < 0° (i.e,, vw, < w>) for bunch
lengthening.

The synchrotron potential is occupied to the “filling
height” U, = a?(0r/E)?/2, and the bunch length obeys
o2 = (1?) — (1)* = (1?), where [1,15,21]

[ exp[—U(r)/2U,]dt ®
Jexp-U(7)/2U,]dr

In Eq. (8), the integration should be taken over an inter-
val in 7 that greatly exceeds o, but is smaller than the
confining rf bucket. Equation (8) gives, for a quadratic
synchrotron potential [U(7) = a7?], o, = a(og/E)/ wy,
and, for a quartic synchrotron potential [U(7) = c7],
o = 0.69(U,/c)"/*.

(1 = &Vrising, . (79)

(") =

B. Collective oscillations

In a quadratic synchrotron potential, where the fre-
quency of a synchrotron oscillation is independent of
amplitude, the natural frequency of a collective bunch
oscillation is the linear synchrotron frequency. In a
general synchrotron potential produced by two rf cavities,
we estimate the collective dipole oscillation frequency
(the “Robinson” frequency) by approximating the dipole
motion as a small rigid oscillation of a symmetric bunch.
Neglecting the rf voltage induced by the motion (the
excited rf sidebands) yields
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dXr) _
dt?

[VT1<COS(l//1 + wgT)) + Vrolcos(yy, + vwgT)) — V]

?i[FIVTl Cos(if; + we(T)) + FaVia Cos(yhy + vawy(r)) — V]

—aew

BT L (F\Vrisingy + vFaVry singn) (), 9
(0]

where (---) denotes the average over dal €electrons in a | quartic potential, where rigidity of the bunch oscillation
symmetric bunch. Thus, the frequency of collective dipole s not assumed (see Appendix A).

oscillations wg approximately obeys Without a harmonic cavity (¢ = 0), Egs. (8) and (10)
indicate that o, and wg are proportional to « 172 Thelow-

) aewg , . emittance LF20 lattice (o« = 0.0043) istherefore expected

“k = g1, (F1Vrisingy + vFaVra sSingn) to have bunch length and Robinson frequency equaling

36% of the values obtained with the standard Aladdin lat-

_ dewg _ : tice (@ = 0.0335) at the same rf voltage. With aharmonic

- ET, (Fy = £F2)Vrisings (10) cavity utilized for optimal bunch lengthening (¢ = 1),

Egs. (8) and (11) indicate that o, < a'/* while wg

For a quadratic synchrotron potential (in which F; = &>/, For the case of optimal bunch lengthening, the ex-
Fr =1), wg = wy. pected LF20 bunch length is 60% of that obtained with

A restoring force for collective dipole oscillationsispre-  the standard lattice, while the Robinson frequency is only
dicted when wﬁ > 0, which occurs for values of ¢ < 21% of that obtained with the standard lattice at the same
F1/F,, where F|/F, exceeds 1 because of the smaller  f voltage. The large decrease in the Robinson frequency
form factor in the Landau cavity. Phase stability may there-  may increase the susceptibility to Robinson instabilities
fore be obtained for small beam currentswhen thebunchis ~ when the low-emittance lattice is utilized.
optimally lengthened with ¢ = 1, or when a double-hump
bunch is obtained with 1 < & < F/F>. C. Single-mode Robinson instability formulas

For ¢ = 1, approximating the form factors in Eq. (10)

T imatel del Robi instabilitiesi -
BSF, = 1 — (0,0,)2/2, Fy = | — (vw,o,)?/2 gives 0 approximately mo obinson instabilitiesin agen

eral synchrotron potential produced by two rf cavities, we

3 substitute the rigid dipole estimate of the collective oscil-
w2 ~ aew, (b2 — 1)o2Vy sing, . (11)  lation frequency (wg) in place of the linear synchrotron
2ET, frequency (wy) in a formula obtained for a quadratic po-

tential [22]. In this model, the real angular frequency ()
Equation (11) yields a dipole Robinson frequency 10%  and damping rate ai of the w,th Robinson mode approxi-
higher than that obtained by the Vlasov equation for a  mately obey, for |ar| < [Q],

a a)21 Ho™
(@ = i) = (paon)? + gl BTV S o2, Zln, + 1), 12
where Z is the ring impedance, F,,,, is the bunch form factor at angular frequency nw,, and the sum is over n = Mj
(j = —o,...,%),where M = w,/w, isthe number of rf buckets. The modes with u, = 1, 2, 3, and 4 are the dipole,
quadrupole, sextupole, and octupole modes, respectively.
For the case of two rf cavities, we keep the dominant terms in the sum over Z(nwy + ), wheren = *M, *vM, to
obtain a formula for the w,th mode frequency

n

aewyl po(wga,) o2

T, 2me(y — D RIFTEN21- + SN2gy.) + v TRy FH (S + S2gsy)].
o o

> = (mowg)® —
(13
The sideband tuning angles are defined by tang ;- = 2Q0i(w, = Q — wi)/w; and tang,+ = 20>(rw, * O —

w,)/wy. A zero-frequency instability onsets when 22 — 0, in which case ¢~ — ¢ and ¢,+ — ¢,. Zero-frequency
instability is therefore predicted when

aewyl (wgo )2
ET, 2t~ lpy,!

2 <

w3 (R\F}sin2g, + v** 'Ry F3sin2¢,). (14
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The dipole mode zero-frequency instability criterion may also be obtained as the condition under which the rf generator
voltages do not provide a restoring force for slow rigid bunch motions in which the wake fields move with the bunch

[19]; the instahility is known accordingly as the equilibrium phase instability [3].
When zero-frequency instability is avoided, the Robinson damping rate is given by

aewyl po(wgo,)?o?

[F?R (oS- — COSp1+) + v?* 1 FIR,(coS pa— — COS pa+)].

R T QET, 2ke(ue — 1)! (15)
Using the definitions of ¢+ and ¢,+, Eq. (15) may be written in the form
202
ag = Bael prolwy ) (FIR Q) tang; coS’ 11 COS"p - + > 2F3R,Q; tanch, oS’ s+ COS’p5—),  (16)

ET, 2M°(/vbo - 1)!

showing that .z approaches a finite limit as Q2 — 0. |
A negative vaue of ar indicates growth. Because
0° < ¢p; < 90° and —90° < ¢, < 0° for bunch length-
ening, the fundamental cavity contributes to Robinson
damping while the higher-harmonic cavity contributes
to Robinson growth. Radiation damping increases the
damping rate of the uoth mode by w,7;', where 7,
is the longitudinal radiation damping time which obeys
< Q.

Equations (13)—(16) may be obtained directly for the
dipole mode by assuming arigid bunch motion in the syn-
chrotron potential produced by two rf cavities [5].

For the dipole mode of an optimally lengthened bunch,
Sec. 1B indicates that wz « «3/2, while the second
term on the right-hand side (RHS) of Eg. (13) is ap-
proximately o« «. Consequently, rea frequency shifts
comparable to wr may result for sufficiently smal «.
This may cause the equilibrium phase instability (when
) — 0) or strong coupling to the quadrupole mode (when
Q— ZwR).

Because the above Robinson-mode results are valid for
a quadratic synchrotron potential (where wr = wy), ap-
proximate validity is expected for low Landau-cavity volt-
ages with ¢ < 1, in which case the potentia is mostly
quadratic [consisting of a quadratic confining potential
with relatively small cubic and quartic terms given by
Egs. (5) and (6)]. For a quartic synchrotron potential with
¢ =1, the above results are in approximate agreement
with Vlasov-equation results (see Appendix A) for the
dipole and quadrupole modes. The above sextupole and
octupol e results overestimate the frequency shifts (real and
imaginary) in a quartic potential, and therefore may over-
estimate instability growth rates.

The approximate validity of the above formulas for
dipole and quadrupole Robinson modes in both quar-
tic and quadratic synchrotron potentials suggests that
Egs. (12)—(16) will provide a good approximation for
these modes in a genera synchrotron potential with
& =1. For & > 1, a double-hump bunch is formed in
which a given electron may be confined to a single hump.
Because our model does not account for any associated
maodification of the dynamics, its accuracy may be reduced
for double-hump bunches with ¢ > 1.

074401-4

D. Coupling between the dipole and quadrupole
Robinson modes

In modeling a passive harmonic cavity, we find that the
quadrupole Robinson frequency may be comparable to
the dipole Robinson frequency, so that coupling of these
modes may occur [12,22]. To better model these modes,
dipole-quadrupole mode coupling may be included in their
frequencies and growth rates by using Egs. (B11)—(B13)
of Appendix B. When the mode coupling is insignifi-
cant, these formulas reproduce the single-mode dipole
and quadrupole results of Sec. IIC. We refer to the
coupled modes as the coupled-dipole and coupled-
quadrupole modes. If the frequencies of the coupled-
dipole and coupled-quadrupole modes become equal, the
threshold for afast “mode-coupling” instability is reached.

Because fast instabilities involving many synchrotron
modes may result when there is no restoring force for
a perturbation of the bunch position or length [15], the
mode-coupling model may be applicable only when the
equilibrium phase and zero-frequency quadrupole Robin-
son instabilities are avoided. Thus, these instabilities are
also considered in the coupled-mode analysis.

E. Coupled-bunch instability

When a harmonic cavity has alow value of Q or is de-
tuned far from the frequency rvw,, it may excite dipole
coupled-bunch oscillations with longitudinal mode num-
bersof 1or M — 1 (i.e., =1). Thisinstahility is described
by EqQ. (12) provided that the sum is over n = Mj * 1
j .,%) [15]. Consequently, for rw, > w,,
the oscillation frequency and damping rate approximately
obey Egs. (13) and (15), provided that (3 *£ w,) issubsti-
tuted for (2 in the definitions of the sideband tuning angles
b1+, d1-, 2+, ad ¢

(j = —oo,..

F. Landau damping

To estimate whether Landau damping is overcome in a
general synchrotron potential, we would like to compare
the complex frequency shift of the w,th mode, AQ =
Q — iag — powg, to a Landau damping rate that is
proportional to the synchrotron frequency spread. For a

074401-4
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dipole mode in a mostly quadratic synchrotron potential,
the Landau damping rate is 0.78c,, [23,24], where the
synchrotron frequency spread is given by [5]

_ a*(op/E)? | 3c 3b\?

In a quartic synchrotron potential, Appendix A indicates
that the Landau damping rate is 0.310,,, where

0o, = 1.17(Usc) 4, (18)

yielding a Landau damping rate of 0.36(U,c)'/*. An ap-
proximate formula for the dipole Landau damping rate in
a general synchrotron potential is given by

a*(og/E)? | 3¢ 3b\?
(0£/E) - <w§>
(19

WR
For a mostly quadratic synchrotron potential (¢ < 1),
Eqg. (19) is vaid because wp = w,. For a quartic syn-
chrotron potential (¢ = 1,5 = 0), Eq. (19) yields a Lan-
dau damping rate of 0.34(U,c)'/4, which is 6% lower than
that obtained with the Vlasov equation. Thus, Eq. (19) is
expected to provide agood model of the dipole-maode Lan-
dau damping rate for ¢ = 1.

For a quadrupole mode in a mostly quadratic potential,
the Landau damping rate is 2.240,, [23,24], while Ap-
pendix A indicates that, in a quartic potential, the Landau
damping rate is 0.58¢,,. Assuming that the quadrupole
Landau damping rate is 2.24/0.78 times the dipole damp-
ing rate of Eq. (19) gives avalid result for ¢ < 1. For a
quartic synchrotron potential, a damping rate of 0.830,
is thereby obtained, which is 43% high. A reasonable
approximation of the quadrupole damping rate is thereby
obtained for ¢ = 1. An estimate of sextupole Landau
damping may be obtained by multiplying the dipole damp-
ing rate by 4.12/0.78, while octupole Landau damping
may be estimated by multiplying the dipole damping rate
by 6.36/0.78 [24].

(17)

Wy

[AQ |ihresn = 0.78

I11. PASSIVE LANDAU CAVITY WITH THE
ALADDIN LATTICE

A. Analytic modeling

To analyze a passive Landau cavity, we have modified
an algorithm described in Ref. [5] to consider Robinson
instabilities for a given fundamental rf voltage Vry, ring
current I, and harmonic cavity tuning angle ¢,. This
analysis also calculates whether resonant interaction with
a rea parasitic impedance Z(wcp) at frequency ~wcp
will excite a dipole coupled-bunch instability, where the
vauesof Z(wcp) and wcp areinputsto the analysis. Thus,
one may estimate whether sufficient Landau damping is
provided by the harmonic cavity to suppress parasitic
coupled-bunch instabilities.  The parameters used in
modeling the standard Aladdin lattice and the LF20 low-
emittance lattice are shown in Table I. The values of

074401-5

TABLE |. Standard Aladdin parameters, with low-emittance
(LF20) values of Vi, a, and 7, in parentheses.
Parameter Value
E 800 MeVv
o&/E 48 x 107*
Vs 17.4 kV
T, 296 X 1077 s
w, /27 50.6 MHz
M 15 bunches
R} (unloaded) 0.5 MQ
07 (unloaded) 8000
Bi 11
v 4
R3 (unloaded) 1.24 MQ
05 (unloaded) 20250
B> (passive) 0
a)CB/Z'n' 1 GHz
Z(wCB) 10 kQ
Vri 90 kV (50 kV)
a 0.0335 (0.0043)
TL 13.8 ms (13.5 ms)

Z(wcp) and wcp represent a typical higher-order mode
of the Aladdin fundamental rf cavity.

We initially set F; = 1 and F, = 0.1, and iterate until
the form factors are consistent with the computed bunch
length. Our agorithm proceeds as follows.

(i) Caculate ¢, the synchronous phase (with 0° <
1 < 90°), using the equation

Vs = Vricosy + Vrp cOSyrp

=V COS¢1 — 2IR,F, COSZ(f)Q. (20)

If this equation can only be solved with |cosy;| > 1, there
is no equilibrium phase and the cal culation is discontinued.

(i) Calculate the tuning angle of Cavity 1 for operation
in the compensated condition in which the beam-loaded
cavity appears as a resistive load to the rf generator. In
this case, 0° < ¢; < 90°, and ¢ obeys [19,20]

¢1 = tan '(2F IR, siny; /Vry) . (21)

(iii) Calculate the coefficients of the Taylor expansion
of the synchrotron potential, U(r) = a7?> + b7 +
ct*, using Egs. (4)—(6), in which, for a passive
Landau cavity, VyscoSy, = —2IF,R,COS’¢p, and
Vi Sinlﬂg = IF»R, sin2¢2.

(iv) Caculate the bunch length using Eq. (8) with
U(r) = ar? + b3 + c7.

(v) Caculate the form factors from the bunch lengths
using the Gaussian bunch formulas F| = exp(—w;o7/2)
and F, = exp(—»*w;o7/2). We repeat steps (i)—(v) if
the newly computed form factors differ significantly from
the values input at step (i). For new input values of F; and
F,, we use aweighted average of the newly computed form
factors and their previous values. After several iterations,
the form factors are consistent with the bunch length.

074401-5
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(vi) Estimate whether the dipole longitudinal coupled-
bunch instability is damped for resonant interaction with
aparasitic longitudinal cavity mode of impedance Z(wcg)
at approximate frequency wcp. For resonant interaction
with a parasitic cavity mode, the complex frequency shift
is imaginary with magnitude equaling the coupled-bunch
growth rate, given by

ela a)CBZ(wCB)Fz,CB

1AQc| e @
where F,,., is the bunch form factor at frequency wcs.
If, after subtracting the radiation damping rate 7, ', the
growth rate remains positive, it is compared with the cal-
culated dipole Landau damping rate of Eq. (19) to es
timate whether Landau damping is sufficient to prevent
instability.

We now consider Robinson instabilities.

(vii) To analyze Robinson stability without consid-
eration of mode coupling, the single-mode formulas of
Sec. |1 C are applied. For the w,th mode (where u, = 1,
2, 3, or 4), the zero-frequency instability is first consid-
ered. If the zero-frequency instability is not predicted,
the frequency and Robinson damping rates (including
radiation damping) are then calculated. If the resultant
damping rate is negative (corresponding to growth), the
magnitude of the complex frequency shift is compared
with the Landau damping rate to predict whether Landau
damping is overcome.

(viii) Next, we compute the frequency and damping rate
of the dipole coupl ed-bunch modes with longitudinal mode
numbers of *+1, according to Sec. IE. We add 7, ' to
the damping rate to account for radiation damping. If the
damping rate is negative, implying growth, we compare
the frequency shift magnitude with the calculated dipole
Landau damping rate to estimate whether Landau damping
is overcome.

(ix) To include the effects of dipole-quadrupole mode
coupling, the computation of dipole and quadrupole mode
frequencies and damping rates is replaced by computation
of the coupled-dipole and coupled-quadrupole Robinson
frequencies and damping rates using Egs. (B11)—(B13),
which include radiation damping. To estimate whether the
coupled-dipole mode overcomes Landau damping, we
use the dipole-mode criterion. To estimate whether the
coupled-quadrupole mode overcomes Landau damping,
we use the quadrupole-mode criterion. Because a restor-
ing force for dow dipole and quadrupole motions may
be necessary for the dipole-quadrupole mode coupling
theory to apply, we also test for the equilibrium phase and
zero-frequency quadrupole instability thresholds.

We solve Egs. (B11) and (B13) by iteration, starting
with the values (Q, ag) = (wg, 7. ') for the coupled-
dipole mode and (Q, ag) = (2wg,27. ") for the coupled-
quadrupole mode. To stabilize the iteration, we take
an absolute value before performing the sguare root in
Eqg. (B13). If the argument of the square root is negative
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in the converged solution, a fast mode-coupling insta-
bility is predicted. We have confirmed that this method
identifies the threshold in which the coupled-dipole and
coupl ed-quadrupole mode frequencies are equal.

InFig. 1(a), uncoupled dipole and quadrupole Robinson
instabilities are predicted for the Aladdin lattice with a
passive fourth harmonic cavity. The analysisis performed

0.3 1
(a)
~ —
= 0.2
N~—
- ™~
8 0.1 T
E | "
5 ek
)
0.0 . . . . | . . ! )
-90 -85 -80
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( ) 0.3 d
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FIG. 1. (@) Robinson instabilities are predicted without consid-
eration of mode coupling, for passive Landau-cavity operation
with the Aladdin lattice and afundamental rf voltage of 90 kV. A
solid curve shows the parameters for optimal bunch lengthening,
in which case the linear synchrotron frequency is zero. A symbol
is plotted when Robinson instability is predicted for a given ring
current and Landau-cavity tuning angle. Vertical line: dipole
instability; *: quadrupole instability. (b) Dipole-quadrupole
mode coupling isincluded in Robinson instability predictions. In
this case, the dipole and quadrupole modes are perturbed by the
coupling, but a fast mode-coupling instability is not predicted.
Vertical line: coupled-dipole instability; * : coupled-quadrupole
instability. (c) Instabilities observed in 500000 turn simulations.
When the relative energy spread at the end of a simulation ex-
ceeds the natural value (4.8 X 10™*) by =10%, acircle is plot-
ted to signify instability.
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for currents that are multiples of 20 mA and Landau-
cavity tuning angles that are multiples of 0.25°. A solid
curve shows the tuning angle for optimal bunch lengthen-
ing (¢ = 1) versusring current. For £ = 0, the Robinson
angular frequency wg = 62900 rad/s = w, (fr =
wgr/27 = 10000Hz), while, for & =1, wr =
28600 rad/s (fr = 4550 Hz). When tuning in the
cavity with currents below 180 mA, a dipole Robinson
instability is predicted to onset before optimal bunch
lengthening is attained. For currents exceeding 200 mA, a
guadrupole Robinson instability is predicted to occur when
the Landau cavity voltage is 15% higher than optimal
(¢ = 1.15). The sextupole Robinson instability is pre-
dicted to occur where the quadrupole Robinson instability
is dready present, in the upper right-hand corner of
the plot where 7 > 140 mA and ¢, > —83°. Because
the calculated quadrupole mode frequency (~11 kHz)
exceeds that of the dipole mode (~10 kHz) by only ~10%
in the region of Fig. 1(a) where 0.9 < ¢ < 1.15, the un-
coupled mode analysis may be inapplicable for optimally
lengthened bunches.

In Fig. 1(b), dipole-quadrupole mode coupling is in-
cluded in the analysis. When tuning in the Landau cavity
at currents below 120 mA, the coupled-dipole Robinson
instability is predicted to onset well before optimal bunch
lengthening is obtained. When tuning in the Landau cavity
at higher currents, the coupled-quadrupol e Robinson insta-
bility is predicted to onset after optimal bunch lengthen-
ing is obtained, when the Landau cavity voltage is ~15%
higher than required for optimal bunch Iengthening.

B. Simulation

To study the evolution of unstable behavior, simula-
tions have been performed in which 900 macroparticles are
evenly distributed among the 15 buckets of Aladdin. The
macroparticles of the nth bunch initialy pass through the
rf cavities at time r = nt, with energy equaling the syn-
chronous energy, where t, = 27 /w, is the time between
buckets. On subsequent revolutions, random energy offsets
of the macroparticles are generated by “synchrotron radia-
tion”; these offsets then decay away from radiation damp-
ing. Passage of the macroparticles through the rf cavities
results in energy gain or loss (depending upon the time of
passage) and excitation of wake fields.

To speed up the simulations, the rf fields are described
using slowly varying “in-phase” components [V.(¢) and
V2 (2)] and “quadrature” components [V, (¢) and Vi, (r)]
which yield the total rf voltages in each cavity according
to [25,26]

AVper =

2R R
9 [—1 coS(@yty) + ——
7l

2 0171 Sin(wgtm)}
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R
AV = i[ .

Vi(t) = Vei(r) cos(wgt) — Vii(r) sin(wgt), 23)
Va(t) = Veolt) cos(vw,t) — Violt) Sin(vwgt) .

Here, V.i(t) = Vye1 + Vi (2) is the sum of the constant
rf-generator in-phase voltage V,.; and that resulting from
the beam’'s wake V.1 (¢). Similarly, Vi (z), Veo(¢), and
V2 (1) are sums of rf-generator voltages and wakes. For a
passive Landau cavity, V,.» = V0 = 0. Within asingle
bunch, we neglect the time variation of the in-phase and
guadrature rf-field components, except for that resulting
from the accumulation of wake fields from each passing
macroparticle. This is valid for rf cavities with O > 1,
provided that the macroparticles remain bunched within
thelir rf buckets.

For a given ring current 7, fundamental rf voltage
Vri1, and Cavity 2 tuning angle ¢,, we first perform
steps (i)—(v) of Sec. Il A to determine the synchronous
phase ¢, form factors F; and F,, and Cavity 1 tuning
angle ¢,. Steady-state operation has V., = Vr; cosy,
Vs1 = V1 Singrq, with beam-loading contributions V,.; =
—2F IR, coS ¢, Vps1 = F1IR;SiN2¢p;, so that the rf-
generator in-phase and quadrature voltages are given by

Vgcl = Vricosy + 2F IR, COSZQ{)] R
Vest = Vprsingy — FiIR1 SN2 .

The resonant frequencies of the rf cavities are deter-
mined from the tuning angles by

w1 = wg/(l + tand)l/le)a (25)
wy = v, /(1 + tang,/20,),
while the rf decay times are

T = 2Q1/w1, T, = 2Q2/w2. (26)

We now track macroparticles. When the mth macropar-
ticle belongs to the nth bunch, let ¢, denoteits arrival time
at therf cavitiesrelative to the reference time nt,, while its
energy offset relative to the synchronous energy is denoted
en. We begin our simulation with ¢, = ¢, = 0 for dl
macroparticles, and no wake fields [Vj1(0) = Vps1(0) =
Vie2(0) = Vi0(0) = 0]. Physically, this corresponds to
injecting cold bunches at the synchronous phase during a
single revolution.

The macroparticles within abunch are considered one at
atime, starting with the onethat arrivesearliest. According
to the fundamental theorem of beam loading, 1/2 of each
macroparticle’s wake is added to the cavity fields before
computing its energy gain or loss; the remaining half of the
wake is added afterwards. One-half of the wake from the
macroparticle charge ¢ = —T7,1/900 causes the Cavity 1
wake voltage to change at the reference time nt, by [26]

(24)

cos(wgty) — 2T—Iilsin(wgtm)] (27)

2 LO1T

074401-7



PRST-AB 4 R.A. BOSCH, K.J. KLEMAN, AND J.J. BISOGNANO 074401 (2001)

Similarly, the Cavity 2 wake voltage at the reference time is changed by

q i[ R
2 L0

2R, R, . }
— | —=co tn) + ——49gn tm) |, AVpon =
2 |: ) S(ng ) Q27'2 (ng ) Vb 2
When 1,, > 0, the wake voltage increments of Eqgs. (27) and (28) are fictitious because the reference time nt, precedes
the macroparticle’ s passage. However, the incremented wake voltage is used only to compute the wake at times =1,,, SO
that no fictitious effects arise in the tracking.
For a natural energy spread of o and radiation damping time 7, the macroparticle energy offset is incremented by
[27,28]

2R, .
AVyer = cos(rvwgty) — T—;SII’I(V&)gtm):|. (28)

Ag, = (=2To/7L)em + 20E(To/T1)*Run + e[V(tn) — V]
= (_ZTO/TL)sm + 20E(T0/TL)1/2Rn1n
+ e[Voe1 CO@gtm) — Vg1 SN@gt) + Voo COS(Vwyty) — Voo SIN(vw gtyy)

+ Vbcl Cos(wgtm) - Vbslgn(wgtm) + Vch COS(V&)g[m) - VszS.n(ngtm) - Vs]y (29)

where R,,,, isarandom number with zero mean and unity standard deviation. For apassive Landau cavity, wehave V., =
Ves2 = 0in Eq. (29). The remaining half of the macroparticle’s wake field is now included by executing Egs. (27) and

(28) again. The macroparticle time offset is incremented by
At, = aTye,/E. (30

We then consider the remaining macroparticles in the bunch.
After considering all of the macroparticles within a bunch, the Cavity 1 wake fields are propagated ahead one rf period

to the new reference time (n + 1)z, using [26]

Vier[(n + l)tg] = exp(_tg/'rl)[COS(Awltg)thl(ntg) - Sin(Awllg)Vbsl(ntg)],

(3D)

Vbsl[(n + l)tg] = exp(_tg/'rl)[COS(Awltg)Vbsl(ntg) + Sin(Awltg)vbcl(ntg)]a

where Aw; = @, — w,. The Cavity 2 wake fields are |
propagated by the same equation with subscripts “1”
changed to “2" and Aw> = w2 — vw,. The macropar-
ticle tracking of the next bunch may now be performed. As
beam diagnostics, we calculate the average and rms values
(1), {e), oy, and o, for each turn, in addition to the distri-
butions of ¢, and g,, after the final turn that is tracked.
We have typically tracked for 500000 turns (0.148 s),
which is ~11 times the radiation damping time.

In our simulations, the energy spread o, increases above
its natural value when oscillations of the bunch centroid ()
or length o, indicate instability, or in cases where el ectrons
are not confined to their rf buckets. Because such cases
generally occur within a regime of strong instability, they
may also be taken to signify instability. Figure 1(c) shows
simulation results for a passive Landau cavity in which a
circle indicates that the average energy spread during the
final 10000 turns exceeds its natural value by more than
10%. The simulation results are in approximate agreement
with the analytic predictions of Fig. 1(b) in which dipole-
quadrupole coupling is included.

The simulated instability growth and saturation for a
current of 100 mA and ¢, = —86° is shown in Fig. 2.
The amplitude of the beam centroid oscillations greatly ex-
ceeds that of the oscillations in o, indicating a dipolelike
instability. From the simulation, an oscillation frequency
of 9900 Hz and exponential growth rate of 95 s™! were
determined. This agrees approximately with the analytic

074401-8

prediction that the coupled dipole mode is unstable, with
frequency equaling 10000 Hz and growth rate of 70 s™!.
Figure 3 shows the simulated unstable behavior for a
current of 200 mA when ¢, = —85°, showing a relax-
ation oscillation in o;. The amplitude of o, oscillations
is much greater than that of the beam centroid, consistent
with analytic prediction of a coupled-quadrupole instabil-
ity. The simulated oscillation frequency of 14.4 kHz is 8%
higher than the analytic calculation of 13.3 kHz, within the
expected ~10% accuracy of the analytic calculations for

time (ns)

— Oy

<>

2 | | | |
0 100000 200000 300000 400000

turns

500000

FIG. 2. Simulation of coupled-dipole Robinson instability for
passive Landau-cavity operation with the Aladdin lattice, for a
ring current of 100 mA and Landau-cavity tuning angle of —86°.
The time offset of the bunch centroid (z) and bunch length o,
are plotted every 100 turns.
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FIG. 3. Simulation of coupled-quadrupole Robinson instability
for passive Landau-cavity operation with the Aladdin lattice,
for a ring current of 200 mA and Landau-cavity tuning angle
of —85°.

& ~ 1. Anexponential growth rate could not be estimated
from the simulated relaxation oscillations.

C. Experiment

Experimental results were obtained by varying the tun-
ing angle of the Aladdin harmonic cavity at a fixed beam
current. The bunch shape and length were obtained from
a capacitive pickup [6] whose time response broadens the
bunch length measurements by ~100 ps. For single-hump
bunches, a computer program fits the measured data to a
Gaussian bunch shape to yield a bunch length. An uncali-
brated voltage monitor in the harmonic cavity was used
to estimate & within ~5% by assuming that ¢ is propor-
tional to voltage and equals 1 at the dividing line between
single-hump and double-hump bunches.

Without the Landau cavity, synchrotron sidebands were
observed on a tune signal by dightly turning down the
sextupoles. They were separated from the main tune signa
by 10 kHz, in agreement with the analytic prediction that
fR = a)R/27T = 10 kHz.

Experiments with ring currents of 113 and 213 mA were
compared with analytic results and simulations for 100 and
200 mA. For I = 113 and 213 mA, parasitic coupled-
bunch instabilities were suppressed experimentally when
& exceeded 0.3, within 8% of analytic estimates of the
threshold values of &. For I = 113 mA, an apparent
Robinson instability onset when ¢ = 0.78, within 10% of
the predicted value of £ for onset of coupled-dipole Robin-
soninstability. For I = 213 mA, an apparent Robinsonin-
stability onset when ¢ = 1.09, agreeing with the analytic
prediction for the coupled-quadrupole Robinson instability
within 5%.

In Fig. 4, we display experimental measurements of the
bunch length versus ¢ taken with I = 213 mA, aswell as
the analytic result of Eq. (8) and values from simulations.
The three curves agree within the ~100 ps experimental
uncertainty. With optimal bunch lengthening (¢ = 1), the
bunch length is approximately doubled [6].
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FIG. 4. Bunch length determined from experiment, analytic
modeling, and simulations, for passive Landau-cavity operation
with the Aladdin lattice. The parameter ¢ is proportional to the
Landau-cavity voltage, equaling unity for an optimally length-
ened bunch.

The analytic modeling of coupled dipole-quadrupole
modes, simulations, and experiments agree for passive op-
eration of the harmonic cavity with the standard Aladdin
lattice. Because of Robinson instability, optimal bunch
lengthening with passive operation of the harmonic cavity
is limited to currents exceeding ~120 mA [6].

IV. PASSIVE LANDAU CAVITY WITH THE
LOW-EMITTANCE LF20 LATTICE

A. Analytic modeling

The analytic results for passive harmonic-cavity opera-
tion with the LF20 lattice were obtained by changing three
parameters input to the analysis. The momentum com-
paction was decreased from 0.0335 to 0.0043, while the
longitudinal radiation damping time changed dlightly from
13.8 to 13.5 ms. For comparison with experimenta data
taken with an rf voltage of 50 kV (where maximum LF20
lifetime is achieved experimentally), the rf voltage was re-
duced from 90 to 50 kV.

InFig. 5(a), instability predictions are made anaytically
for uncoupled dipole and quadrupole Robinson modes.
Unstable sextupole and octupole modes are predicted for
parameters where the quadrupole mode is al'so unstable, in
the upper right-hand corner of the plot where 7 > 100 mA
and ¢, > —82.5°. For ¢ =0, the Robinson angular
frequency wg = 16450 rad/s = w, (fr = wr/27™ =
2620 Hz), while, for &€ = 1, wgr = 5280 rad/s (fr =
840 Hz). For currents exceeding 60 mA, stability is
predicted for optimally lengthened bunches. However,
for 0.85 < ¢ < 1.10 (approximately), the calculated
quadrupole mode frequency is less than the calcu-
lated dipole mode frequency of ~2500 Hz, so that the
uncoupled-mode analysis may be invalid.

In Fig. 5(b), dipole-quadrupole mode coupling is in-
cluded in the analysis. A fast mode-coupling instabil-
ity is predicted for near-optimal bunch lengthening where
0.85 < ¢ < 1.10, while alarge stable region is predicted
for double-hump buncheswith ¢ > 1.10 and I > 80 mA.
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FIG. 5. Robinson instabilities are predicted without considera-
tion of mode coupling, for passive Landau-cavity operation with
the LF20 low-emittance lattice and a fundamental rf voltage of
50kV. Vertical line: dipoleinstability; * : quadrupoleinstability.
(b) Dipole-quadrupole mode coupling is included in Robinson
instability predictions. Vertical line: coupled-dipole instability;
*: coupled-quadrupole instability; #: fast mode-coupling insta-
bility. (c) Instabilities observed in 500000 turn simulations.

B. Simulations

For passive harmonic cavity operation with the LF20
lattice, Fig. 5(c) shows the instabilities observed in simu-
lations, where a final energy spread exceeding the natural
value by more than 10% is taken to signify instability. The
simulation results confirm the existence of a band of insta-
bility for optimally lengthened bunches with ¢ = 1.

In smulations with 7 =200 mA and ¢ = 1, the
amplitude of unstable oscillations is largest when ¢, =
—88.08°. Because of instability, thevaluesof £ and o /E
do not remain constant. At the end of the 500 000th turn, &
equals 1.14, while the relative energy spread o /E equals
5.9 X 1074, 23% larger than the natural energy spread
of 4.8 X 107%. The simulation results, shown in Fig. 6,
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were separated from the main tune signal by 2.75 kHz,
in approximate agreement with the analytic prediction that
fR = a)R/27T = 2.6 kHz.

For I = 107 and 220 mA, parasitic coupled-bunch in-
stabilities were suppressed experimentally for & = 0.7, in
approximate agreement with the analytic estimates. This
threshold value of ¢ is about twice as large as that mea-
sured with the standard Aladdin lattice and a 90 kV rf
voltage. For I = 107 mA, Robinson instabilities were ob-
served experimentally for 0.88 < ¢ < 1.13and ¢ > 1.23.
For I = 220 mA, Robinson instabilitieswere observed ex-
perimentally for 1.01 < ¢ < 1.15and ¢ > 1.30. The ex-
perimental observations confirm the existence of a band of
instability for optimally lengthened bunches with ¢ = 1,
as did the simulations.

Figure 7(a) displays experimental measurements of the
LF20 bunch length versus harmonic cavity voltage (pa-
rametrized by &), for ring currents of 107 and 220 mA.
The time response of the capacitive pickup broadens the
measurements by ~100 ps. For £ = 1, the bunch lengths
are given by a Gaussian fit to the bunch shape, while the
double-hump bunch length for ¢ = 1.2 was determined
from an oscilloscope trace. Analytic modeling and simula-
tionsgivenearly identical resultsfor 7/ = 100 and 200 mA;
results for 7 = 200 mA are plotted.
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1200 T | Landau cavity. Because the ring's broadband impedance

@ ol TS e is poorly characterized, it is not included in the analytic
=% experiment (107mA) X 7 modeling or simulations.

2 T | T e ] In Fig. 7(b), we display a bunch oscillation signal ob-

iﬁ . tained by connecting a spectrum analyzer to a beam phase
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FIG. 7. (a) Bunch length determined from experiment, analytic

modeling, and simulations, for passive Landau-cavity operation
with the LF20 lattice. The parameter £ is proportiona to the
Landau-cavity voltage, equaling unity for an optimally length-
ened bunch. (b) Bunch oscillation signal for passive Landau-
cavity operation with the LF20 lattice and a ring current of
128 mA, for a stable double-hump bunch with & = 1.12. Peaks
are observed at 3.1 and 3.4 kHz. (c) Bunch oscillation frequen-
cies observed for passive Landau-cavity operation with the LF20
lattice at a ring current of 128 mA. Instability occurs when
the frequencies converge for ¢ = 1.07. Anaytic modeling of
the coupled-dipole and coupled-quadrupole mode frequenciesis
also shown.

For ¢ < 1, themeasured 200 mA bunch lengthislarger
than the measured 100 mA bunch length. This is an
apparent effect of the microwave instability caused by
the ring's broadband impedance (estimated to be in the
range of 10—15 ), in which the energy spread increases
with current. Measurements of the beam’s horizontal size
suggest that the microwave instability increases the en-
ergy spread above its natural value for currents exceeding
~60 mA without the Landau cavity and for currents ex-
ceeding ~180 mA when along bunch is obtained with the
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detector circuit, for the case of a stable double-hump bunch
with I = 128 mA and ¢ = 1.12. When taking the data of
Figs. 7(b) and 7(c), an rf circulator was attached to the
Landau cavity coupling loop, so that 8, = 1.5. We ob-
serve two peaks, which may be interpreted as frequencies
of collective oscillations excited by noise. The frequen-
cies of these peaks were observed as a function of ¢ by
varying the Landau cavity tuning angle. The frequen-
cies converge when ¢ equals 1.07, at which point instabil-
ity increases the oscillation amplitude by 25 dB (a factor
of 18). In Fig. 7(c), the observed frequencies are com-
pared with analytic calculations of the coupled-dipole and
coupled-quadrupole Robinson mode frequencies, showing
approximate agreement. The data supports our interpreta-
tion of instability resulting from dipole-quadrupole mode
coupling.

Approximate agreement between anaytic modeling,
simulations, and experiment is therefore obtained for
passive operation of the harmonic cavity with the LF20
lattice, provided that dipole-quadrupole mode coupling is
included in the analytic modeling.

V. ACTIVE LANDAU CAVITY WITH THE
ALADDIN LATTICE

A. Analytic modeling

To analyze an active Landau cavity, we modified an al-
gorithm described in Ref. [11]. The fast-rf feedback of the
two cavities is included in the equivalent rf-coupling co-
efficients B8, and 8,. For active operation of the harmonic
cavity, the combination of a circulator and fast feedback
is estimated to be approximately equivalent to an rf-
coupling coefficient of 8, = 160. We consider operation
of the rf cavities in the compensated condition [19,20]
with the rf-generator current in phase with the cavity
voltage, for the case where the cubic term of the syn-
chrotron potential is made equal to zero to produce an
approximately symmetric bunch.

For a given ring current I, fundamental rf voltage V74,
and Landau cavity voltage parametrized by &, our algo-
rithm proceeds as follows.

(i) Caculate ¢, and ¢, the synchronous phase angles
of Cavities 1 and 2, and V7,, the peak voltage in Cavity 2.
For a given value of £, we have

Vrising, + (1/é)vVrasing, = 0. (32)
The cubic term of the synchrotron potential is zero when

Vricosy, + v2Vracosyg, = 0. (33)
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The energy of a synchronous electron is unchanged by a
revolution about the ring,

Vs = Vricosyy + Vo COSY, .
From Egs. (32)—(34), we obtain

U = cosl[i(1 _ij)VT, }

o = tan” (v & tany;) — 180°,

(34)

(35)

(36)
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FIG. 8. (a) Robinson instabilities are predicted without con-
sideration of mode coupling, for active Landau-cavity opera-
tion with optimally lengthened bunches in the Aladdin lattice
with a fundamental rf voltage of 90 kV. A symbol is plotted
when Robinson instability is predicted for a given ring current
and effective rf coupling of the Landau cavity (83,). Vertical
line: dipole instability. (b) Dipole-quadrupole mode coupling
is included in Robinson instability predictions. Vertical line:
coupled-dipole instability; #: fast mode-coupling instability.
(c) Instabilities observed in 500000 turn simulations. When the
relative energy spread at the end of a simulation exceeds the
natural value (4.8 X 107*) by =10%, acircle is plotted to sig-
nify instability.
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Vry = —EVrising /(v sing,). (37)

If Eq. (35) cannot be solved with ¢, between 0° and 90°,
there is no equilibrium phase.

(if) Calculate the quadratic and quartic coefficients of
the synchraotron potential (¢ and ¢) using Egs. (4) and (6).

(iii) Caculate the bunch length using Eg. (8) with
U(r) = ar? + c7*, and the form factors using formu-
las for Gaussian bunches, F, = exp(—w;o7/2) and
F, = eXp(—Vzwgaf/Z).

(iv) Calculate the tuning angle of the rf cavities for op-
eration in the compensated condition

¢1 = tan '(2F IR, siny, /Vry), -
¢o = tan" '(2F2 IRy Sinya /Vira) .

(V) We now analyze instabilities in the same manner as
with a passive Landau cavity, described in steps (vi)—(ix)
of Sec. Il A.

In Fig. 8(a), uncoupled dipole and quadrupole Robin-
son instabilities are predicted for an optimally lengthened
bunch (¢ = 1), for avariety of ring currents I and Landau-
cavity coupling coefficients 3,. Figure 8(b) displays pre-
dictions when coupling between dipole and quadrupole
modes is included in the analysis. Stability is predicted
for B, > 40. Nearly the same predictions were obtained
for optimally lengthened bunches by using the quartic-
potential formula for the coupled dipole-quadrupole insta-
bility [Eq. (B5)]. Simulation results (described below) are
shown in Fig. 8(c).

To model Landau-cavity operation for a specified value
of B, (i.e, a given feedback gain), dipole-quadrupole
mode coupling is included in the analysis for a variety
of Landau-cavity voltages (parametrized by &) and ring
currents. In Fig. 9, we consider the case where 8, =
160. The loaded Q is sufficiently low that the coupled-
bunch instability with longitudinal mode number equaling
1 is predicted to be excited by the harmonic cavity for
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FIG. 9. Instability predictions which include dipole-

quadrupole mode coupling, for active Landau-cavity opera-
tion with the Aladdin lattice and B, = 160. c: coupled-bunch
instability with longitudinal mode number of 1.
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I = 140 mA and ¢ < 0.3; stable operation is predicted
when ¢ > 0.3.

B. Simulations

To simulate an active Landau cavity for a specified ring
current 1, fundamental rf voltage V7, and value of £, we
first perform steps (i)—(iv) of Sec. V A to determine the
synchronous phases ; and ¢, form factors F, and F»,
tuning angles ¢, and ¢, (for operation in the compen-
sated condition) and Landau cavity voltage Vr,. The rf-
generator in-phase and quadrature voltages for Cavity 1
are then determined by Eq. (24); the rf-generator voltage
components for Cavity 2 are determined by substituting
the subscript “2” for “1” in EqQ. (24). From this point on,
the simulations proceed identically to those for a passive
harmonic cavity.

An evaluation of ¢ and Vr; at the end of stable simu-
lations indicates that the specified values are obtained
within ~3% except when £ > 1, in which case the spec-
ified value of ¢ was obtained within ~10%. Thus, the rf-
generator voltage components are accurately obtained by
the above method.

In Fig. 8(c), instabilities observed in simulations are
shown for an optimally lengthened bunch (¢ = 1), for a
variety of ring currents / and Landau-cavity coupling co-
efficients 8,. The simulations agree approximately with
the analytic results of Fig. 8(b).

Simulations were performed for B, = 160 with I =
100, 200, and 300 mA and 0 < ¢ < 2. Consistent with
the analytic predictions, no Robinson instabilities were ob-
served. For I = 200 mA, a coupled-bunch instability with
mode number of =1 was observed for 0.02 = ¢ = 0.16
while, for I = 300 mA, this instability was observed for
0.008 = ¢ = 0.29, in excellent agreement with the ana-
lytic predictions of Fig. 9. A coupled-bunch instability
with mode number of =1 was identified in simulations
by the sinusoidal dependence of bunch arrival time versus
bunch number.

Simulations performed for B, equaling 20 and 40 dis-
played Robinson instabilities, in agreement with the ana-
lytic predictions of Fig. 8.

C. Experiment

Experimental studies of active harmonic cavity opera
tion with the Aladdin lattice were performed for ring cur-
rents of 84 and 193 mA, with an estimated value of 8, =
160. Parasitic coupled-bunch instabilities were suppressed
for ¢ = 0.21 and ¢ = 0.33, respectively. These threshold
values of ¢ agree with the analytic predictions within 10%.

In Fig. 10, the measured bunch length with 7 =
193 mA is compared with analytic modeling and simula-
tions performed for I = 200 mA. The agreement is quite
good, considering that the experimental determination
of ¢ is accurate to within ~5%, while the experimental
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FIG. 10. Bunch length determined from experiment, analytic
modeling, and simulations, for active Landau-cavity operation
with the Aladdin lattice. The parameter ¢ is proportional to the
Landau-cavity voltage, equaling unity for an optimally length-
ened bunch.

measurement of bunch length is increased by ~100 ps by
the time response of the capacitive pickup.

When ¢ was increased above 1.25 for I = 84 or
193 mA, a loss of beam current occurred. At this level
of the Landau cavity voltage, the fast feedback amplifiers
on the rf system are saturating so that the effective value
of B, is decreased. Anaytic modeling predicts that
saturation of the feedback gain will result in Robinson
instabilities if B, drops below ~50. Thus, a possible
explanation for the beam losses is the onset of Robinson
instabilities caused by saturation of the fast rf feedback.

A previous test of feedback where B, was estimated
to equal 40 displayed unstable operation, consistent with
analytic modeling and simulations. In normal Aladdin
operations, the harmonic cavity is used actively with an
estimated value of B, = 160, for currents of 0—300 mA,
achieving stable operation for optimally lengthened
bunches.

Thus, for active operation of the Landau cavity with the
Aladdin lattice, the analytic modeling, simulations, and
experiments are in approximate agreement.

V1. ACTIVE LANDAU CAVITY WITH THE LF20
LATTICE

A. Analytic modeling

In Fig. 11(a), uncoupled dipole and quadrupole Robin-
son instabilities are predicted for an optimaly length-
ened bunch, for active Landau-cavity operation with the
LF20 lattice and a fundamental rf voltage of 50 kV. For
large feedback gains where B, > 170, the equilibrium
phaseinstability is predicted when the ring current exceeds
200 mA.

When dipole-quadrupole mode coupling is included
in the analysis [Fig. 11(b)], a fast mode-coupling insta-
bility is predicted for 8, < 130, even though the dipole
and quadrupole mode frequencies differ greatly in the
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uncoupled-mode analysis. The prevalence of equilibrium
phase and fast mode-coupling instabilities indicates
that frequency shifts produced by the beam current are
comparable to the Robinson frequency wg, whose value is
small when using the LF20 lattice. Stable operation with
acurrent of 300 mA is predicted for a narrow range of 3,
values with 130 < B, < 170. Nearly the same predic-
tions for optimally lengthened bunches were obtained by
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FIG. 11. (a) Robinson instabilities are predicted without con-
sideration of mode coupling, for active Landau-cavity opera-
tion with optimally lengthened bunches in the LF20 lattice,
with a fundamental rf voltage of 50 kV. A symbol is plot-
ted when Robinson instability is predicted for a given ring
current and effective rf coupling of the Landau-cavity (8.).
Vertical line: dipole instability; /: equilibrium phase instability.
(b) Dipole-quadrupole mode coupling is included in Robinson
instability predictions. Vertical line: coupled-dipole instability;
#. fast mode-coupling instability; /: equilibrium phase insta-
bility; \: zero-frequency coupled dipole-quadrupole instability.
(¢) Instabilities observed in 500000 turn simulations.
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using the quartic-potential formulafor the coupled dipole-
quadrupole instability [Eg. (B5)]. Simulation results
(described below) are shown in Fig. 11(c).

InFig. 12, weinclude dipole-quadrupol e mode coupling
to model bunches with 0 < ¢ < 2, for the cases where
B> = 40, 80, and 160. For the lower vaues of B3,, a
fast mode-coupling instability is predicted when ¢ ~ 1.
The equilibrium phase instability is predicted for 8, =
160 when a large current (~300 mA) is lengthened with
& =~ 1. A coupled-bunch instability with mode number of
1 is predicted for large currents and small values of ¢&.
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FIG. 12. Instability predictions which include dipole-

quadrupole mode coupling for active Landau-cavity operation
with the LF20 lattice for three values of the Landau-cavity ef-
fective rf coupling (B,). Vertical line: coupled-dipole Robinson
instability; *: coupled-quadrupole Robinson instability; #: fast
mode-coupling Robinson instability; /: equilibrium phase
instability; c: coupled-bunch instability with longitudina mode
number of 1. (&) B, = 40, (b) B, = 80, and (c) B> = 160.
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B. Simulations

For optimally lengthened bunches, Fig. 11(c) shows in-
stabilities observed in simulations, where a final energy
spread exceeding the natural value by 10% is taken to
indicate instability. The simulations are in approximate
agreement with Fig. 11(b), in which dipole-quadrupole
mode coupling is modeled. While the analytic modeling
predicts a narrow range of B3, values for which optimally
lengthened 300 mA beams are stable, the simulations pre-
dict instability when I = 260 mA for al values of B,
considered.

In Fig. 13, simulations are shown for comparison with
the analytic modeling of Fig. 12. The simulations display
aregion of Robinson instability for optimally lengthened
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FIG. 13. Instabilities observed in 500000 turn simulations of
active Landau-cavity operation with the LF20 lattice for three
values of the active Landau-cavity effective rf coupling (8,).
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and double-hump bunches, consistent with the fast mode-
coupling instability predictedin Fig. 12. Optimally length-
ened bunches are unstable for 7 = 120 mA when 8, =
80; they are unstable for I = 260 mA when B, = 160.
Throughout most of the 0—-300 mA current range, stable
operation with optimally lengthened bunches is obtained,
provided that 8, = 160.

For single-hump bunches (¢ = 1), thesimulationsarein
approximate agreement with the analytic modeling. How-
ever, simulations of double-hump bunches may display
instability that is not predicted by the analytic model. Such
a discrepancy may result if the collective oscillation fre-
guency of double-hump bunches (wy) is overestimated by
therigid dipole model, if the frequency shift resulting from
the beam current is underestimated in the analytic model,
or if coupling to higher-order synchrotron modes (e.g.,
sextupole and octupole) becomes important in these
lengthened bunches.

Figure 14 displays simulated unstabl e behavior for a cur-
rent of 300 mA, B, = 160, and ¢ = 1.03. According to
analytic modeling, the system is at the threshold of equi-
librium phase instability. The bunch position and length
undergo relaxation oscillations of comparable magnitude,
during which the relative energy spread oscillates between
its natural value of 4.8 X 10~* and ~1.5 X 1073,

With an increased fundamental rf voltage of 90 kV
(identical to that of standard Aladdin operation), the
equilibrium phase instability is no longer predicted for
LF20 with currents of 0-300 mA. For 0—300 mA,
stable optimally lengthened bunches are predicted analyt-
icaly for B, = 110. Simulations for B, = 160, shown
in Fig. 15, indicate that double-hump bunches with ¢
dlightly greater than 1 are unstable for 7 = 200 mA. In
simulations for B, = 80, optimally lengthened bunches
are unstable when I = 160 mA. For 90 kV rf operation
of LF20, simulations of optimally lengthened bunches are
stable for 0—300 mA, provided that 8, = 160 [29].

e}
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FIG. 14. Simulation of Robinson instability for active Landau-
cavity operation with the LF20 lattice, for a ring current of
00 mA, B, = 160, and ¢ = 1.03.
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FIG. 15. Instabilities observed in 500000 turn simulations of
active Landau-cavity operation with the LF20 lattice and 8, =
160, with an increased fundamental rf voltage of 90 kV.

C. Experiment

Experimental studies of active harmonic cavity opera
tion with the LF20 lattice and V1 = 50 kV were per-
formed with an estimated value of 8, = 160. For currents
of 100—200 mA, coupled-bunch instabilities were sup-
pressed when the Landau cavity voltage was sufficiently
large that ¢ exceeded 0.6—0.85, in rough agreement with
the analytic estimate that £ must exceed 0.8—0.9 to sup-
press coupled-bunch instability.

For aring current of 16.5 mA, an apparent Robinson
instability was observed when ¢ > 1.14. For aring cur-
rent of 104 mA, apparent Robinson instabilities were ob-
served when 0.81 < ¢ < 1.24, and when ¢ > 1.41. For
ring currents of 160 and 174 mA, instability was ob-
served for £ > 0.84 and ¢ > 0.74, respectively. For these
higher currents, beam losses occurred when ¢ was in-
creased above the threshold values.

The experimental results approximately agree with the
modeling and ssimulations of Figs. 12 and 13. The model-
ing and simulations for B, equaling 40 or 80 agree closely
with experiment, suggesting that the value of 3, in the ex-
periment is less than 160. This could result if the feedback
gain is less than the low-signal value used to estimate 3;.
In addition, there is considerable uncertainty in the experi-
mental values of a, o /E, and &.

InFig. 16(a), we display the bunch oscillation frequency
observed on a spectrum analyzer connected to a beam
phase detector circuit for an extremely low current of
1.5 mA. The observed frequency is ~20% higher than the
analytically calculated coupled-dipole frequency, which
nearly equals wg/27 for this low ring current. This
discrepancy may arise from the experimental momentum
compaction exceeding the value used in the calculation.
With a current of 155 mA, two oscillation frequencies
are observed with the values shown in Fig. 16(b). When
the frequencies converge for ¢ = 0.89, instability results
in which the oscillation amplitude increases by 18 dB (a
factor of 8). Also shown are analytic calculations of the
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FIG. 16. (a) Observed bunch oscillation frequency as a func-

tion of &, for active Landau-cavity operation with the LF20
lattice and a ring current of 1.5 mA. Analytic modeling of the
coupled-dipole Robinson freguency is also shown. (b) Bunch
oscillation frequencies observed for active Landau-cavity opera-
tion with the LF20 lattice at aring current of 155 mA. Instability
occurs when the frequencies converge for ¢ = 0.89. Analytic
results for the coupled-dipole and coupled-quadrupole mode fre-
guencies are shown for 8, = 40, 80, and 160.

coupled-dipole and coupled-quadrupole mode frequencies
for B, equaling 40, 80, and 160. Comparison with the
analytic calculations suggests that the value of B, in the
experiment is less than 160. This data supports our in-
terpretation of instability resulting from dipole-quadrupole
mode coupling.

For active harmonic cavity operation with single-hump
bunches in the LF20 lattice, the anaytic modeling of
dipole-quadrupole mode coupling, simulations, and ex-
periment are in approximate agreement. For double-hump
bunches, instabilities are more prevalent in simulations
than in the analytic model.

VIl. DISCUSSION

Using analytic modeling, simulations, and experiments,
we have studied Robinson instabilities when a Landau
cavity is utilized with the standard Aladdin lattice and the
low-emittance L F20 lattice, whose momentum compaction
is much smaller. Passive and active operation of the
Landau cavity were considered. In our analytic model, we
estimate the frequency of collective dipole oscillations by
approximating the dipole motion as rigid. Instabilities are
modeled by substituting the estimated collective frequency
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for the synchrotron frequency in formulas applicable to a
quadratic synchrotron potential. This model is expected
to predict dipole and quadrupole mode frequencies and
growth rates within ~10% for single-hump bunches.

For single-hump bunches and passive operation with
double-hump bunches, analytic modeling, simulations, and
experiments are in approximate agreement, provided that
dipole-quadrupole mode coupling is included in the an-
alytic modeling. For active operation with double-hump
bunches, instabilities are more prevalent in simulations
than in the analytic model.

With the Aladdin lattice and a 90 kV rf voltage,
passive operation of the Landau cavity gives stable opti-
mally lengthened bunches for currents of 120—300 mA,
while active operation succeeds for currents of 0—300 mA.
Landau-cavity operation with the LF20 lattice and a 50 kV
rf voltage suffers from increased instability resulting from
coupling of the dipole and quadrupole Robinson modes.
Studies of LF20 with a 90 kV rf voltage confirm that the
increased instability results from the small momentum
compaction of the LF20 lattice rather than the lower rf
voltage [29].

The mode-coupling Robinson instabilities limit the util-
ity of the Landau cavity for active operation with the LF20
lattice. According to analytic modeling and simulations,
several options exist for improving this situation. Increas-
ing the effective rf-coupling coefficient of the Landau cav-
ity is predicted to increase stability; this may be accom-
plished by a modification of the feedback circuitry and/or

rf cavity. Modeling and simulations show dightly better
stability with the higher rf voltages we intend to use if the
momentum aperture of the LF20 lattice is successfully in-
creased. Stability may also be improved by using a lattice
which has a larger momentum compaction, in which case
the emittance may also be increased, since emittance is
roughly proportional to momentum compaction. In addi-
tion, our analytic modeling and simulation techniques may
be used to find rf-cavity parameters that are more con-
ducive to stahility.
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APPENDIX A: SINGLE-MODE ROBINSON
INSTABILITIESIN A QUARTIC SYNCHROTRON
POTENTIAL

According to Eq. (9.11) of Ref. [15], coherent Robinson
oscillations in a quartic synchrotron potential obey p,, =
> Tmnpn, Where m and n take on the values Mj (j =
—oo, ..., ) and M isthe number of rf buckets. For |ag| <«

| 1Ql, T,,,, may be written in our notation as

2 * o0 4 —x*
aew:Csl 4 xte  J (nrox)J (mrox
Tm’” _ —inZ,,[ ) 52:| - Z [ d ,u( [§ ) ,u( o )
2rEAw? | (nro) = Jo

"2 (@ - ianl (phe P (AD)

where Cs = 4.686, r, = 1.720w,0;,and Z, = Z(nw, + Q). Here, u denotesthe mode number, equaling 1 for adipole
mode, 2 for a quadrupole mode, etc. The synchrotron frequency spread is parametrized by Aw? = (aewg /2.825ET,) X
(v?> — 1)a?Vy sing;. The rms synchrotron frequency spread obeys o,, = Aw,/1.720. A comparison with Eq. (11)
indicates that the rigid dipole model predicts a Robinson frequency of wg = 1.19A w;.

When mode coupling is negligible, there are oscillations for which only one value of w, denoted w,, contributes to
Tpp. In this case, T, = Tr(nff,;), where

xte _"4JM0 (nrox)J y, (mrox)

2 o
Csl 4
Tl — —; z,,[“ew" } f d . A2
i = T Erw? LGP Jo T2 — ian) (b, (A2)
Just above the threshold of instability, ag = 07; in this case the Plemelj formula [30] gives
Tl) — _inzn[aewngl} 4 P[” ir x* exp(—x*)J ,, (nrox)J u, (mrox)
: 2mEAw? | (nr,)? 0 x2 — 0%/ (noAwy)?
iwxio eXp(—foo)JMO (nroxu ) u,(mrox,,) A3)
20/(M0Aws) Xpuo =0/ poAw, ’
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For a sufficiently short bunch length, we utilize the fact that J,,(x) o« x* for small x to obtain
aew§C5I:| 4
2mEAw? | (nr,)?

" |:Pf°° i x4 200 exp(—x*) [x Mo, (nrox)][x " Ho T, (mrex)]
0

m,n

T = —inzn[

x2 = Qz/(MOAws)Z
4

imxy, exp(—xio)JMO (nroxpu ) u,(mrox,,)
20 /(oA wy) Xpo =0/ o Aw,
. aew?Csl 4 PN
~ —in "|:27TEOAwSZ} (i X o gy (nrox ), (mrox,,)
. 4+,
x| P f o eyt T exp(—xy,) (A%)
x
0 x2 — Q2/(noAwy)? 20 /(noAwy) =0 oA,

Note that 7<) may be written as A'%) B (i.e., T is of rank = 1 [15]) so that p,, = 3., Tn.np» hes solution when
STk = 1.

We how consider areal impedance Z. In the case of aquadratic synchrotron potential, such an impedance causes growth
or damping without shifting the real Robinson frequency. In order that 3", T\#<) = 1, we must have Im(}_, T'#)) = 0,
which is satisfied when the real oscillation frequency Q) obeys ’ ’

% 442, _ 4 % 4+2u, 4
P[ dy &P Pf gy R (A5)
0 0

2 = 0%/ (uohw? oy

Evauating Eq. (A5) yields x; = 1.076, x, = 1.164, x3 = 1.236, x4 = 1.298, etc. Thus, at the threshold of dipole
Robinson instahility, the oscillation frequency obeys () = 1.076Aw,; = 0.90wg, Where wr (=1.19Awy) is the dipole
Robinson frequency calculated in Eq. (11) by assuming a rigid-bunch oscillation. For the quadrupole mode (u, = 2),
Q) = 1.1642Aw,) = 0.98Q2wyg). For the sextupole mode, ) = 1.236(3Aw,) = 1.04(3wg), While, for the octupole
mode, 2 = 1.298(4Aw,) = 1.09(4wg). For the dipole, quadrupole, sextupole, and octupole modes, the Robinson oscil-
lation frequencies at threshold in a quartic potential are within 10% of the value u,wg, Where wy isthe dipole oscillation
frequency obtained in Sec. Il by assuming a rigid dipole oscillation.
The beam current / at the instability threshold for the s,th mode follows from Re(3., 7)) = 1:

20 ] 4 mxt exp(—xt )J? (nrox,,)
- [ seeic] 4 [rid ew it o, | -
n 27TEA(1)3 (nr‘))z zxﬂo X#<)=Q’/ILOA‘U.\-
Far above the instability threshold, we have
T — i n[aewf,Csl} 4 [f“ 4 x40 exp(—xt) [x T#oJ , (nrex)] [x““J#O(mrox)]}
" 2mEAw? | (nro)* Lo x* = (Q —iag)?/(poAwy)?
aew’Csl 4 x;sz (nrox W, (mrox,.) *
~ Zn 0 :| o Mo Mo/ Ko Mo |:[ d 4+2,u,0ex _ .4 i| A7
in [%Emz (roP 2, — (© — iagP/(uodw,)? L)y PP (A7)

In the absence of mode coupling, 7,,, = T\, where T is of rank =<1, o that instability requires 3", T\%) = 1.
According to Eq. (A7), this gives

2 o
SN2 2 2N ; aew;Csl 4 2y 72 4424, _ 4
(Q —iag)” = (xp molAws)™ + ,u,ogmzn[ 27:E }(nro)z X0y, (nroxy,) . dxx* e exp(—x*)
= (xp, ol w;)* + 180, . (A8)
For areal impedance, our assumption that the instability threshold is exceeded requires that the RHS of Eq. (A6) exceed

1. Because both the real and the imaginary components of a complex frequency shift are effective in overcoming Landau
damping [15,23], we generalize this criterion for an arbitrary impedance by requiring that the RHS of Eg. (A6) have
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magnitude exceeding 1, which is equivalent to

2pot (A9)

2 [ dxx*2Ho exp(—x*) }
e exp(—xi, ) '

16021 > (nodo?|
For the dipole mode, this criterion for overcoming Landau damping becomes
16022 > 0.622Aw, . (A10)

Equation (A10) was obtained in a different manner in Eq. (9.28) of Ref. [15]. For the quadrupole, sextupole, or octupole
modes, Landau damping is overcome, according to Eq. (A9), when

16032 > 0.6252Aw,),  [603'? > 0.626B3Aw,),  [6Q2]"% > 0.627(4Aw;). (A11)
For the dipole Robinson mode, we expand the Bessel function in Eq. (A8) using
1 NroXy, )Mc[ 1 (nroxm )2}
J =~ 1 - Al12
o (10%0) = T < 2 o + 1\ 2 (AL2)
to obtain
. icew?l
Q — iag)? = (1.076Aw,)* + S (1076) Z NZnF o3ne, » (A13)

where, to order o2, Fy93,,, iSthe bunch form factor evaluated at angular frequency 0.93nwy. In contrast, the assumption
of arigid dipole oscillation gives the u, = 1 term of Eq. (12),

2
1
(Q —iag)’* = wj + faew,l Z nZ,F?, . (A14)

The low-current dipole Robinson frequency in a quartic potentlal, 1.076A wy, is given within 10% by the rigid-dipole
value of wg = 1.19Aw,, while the coefficient of the coherent frequency shift term differs by 8%, in addition to a 7%
changein the frequencies where the form factors are evaluated. This confirmsthat Eq. (12) provides agood approximation
for the dipole mode (frequency and growth rate given within ~10%) when the synchrotron potentia is quartic.

For Q) > 0, let us define the coherent frequency shift AQ) = Q — iag — 1.076Aw; as the change in the complex
Robinson frequency resulting from the beam current. The criterion for overcoming Landau damping given by Eg. (A10)
may then be written as

507
2(1.076A wy)
For the quadrupole mode, expanding the Bessel function in Eq. (A8) yields

A0 =‘

> 0.18Aw, = 0310, . (A15)

(Q — iag)? = (1164 - 2Aw,)* + %(0 982) Z nZn(nwoo;)? F\/—SM : (A16)

In contrast, the u, = 2 term of Eq. (12) gives

2 _ ) daewl 252
(@ = iar)’ = Qur)® + — > nZ,(nwoa,)*F2, .
The low-current quadrupole Robinson frequency in a quartic potential, 1.164(2A wy), is given within 2% by Eq. (12),
while the coherent frequency shift coefficient differs by 2%, in addition to an 18% change in the frequencies where the
form factors are evaluated. This confirms that Eq. (12) provides a good approximation for the quadrupole mode when
the synchrotron potential is quartic.

Letting AQ) denote the change in the complex quadrupole Robinson frequency resulting from the beam current (AQ) =

QO — iag — 1.164 - 2Awy), the criterion for overcoming Landau damping given by Eqg. (A11) may be written as

503
2(1.164 - 2Awy)
For the sextupole mode, expanding the Bessel function in Eq. (A8) yields

(A17)

n

AQ| =

> 0.34Aw; = 0580, . (A18)

2
(Q — iag)® = (1236 - 3Aw,)* + “;& (0.258) Z NZn (@00 Firsne. - (A19)
TE
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In contrast, the u, = 3 term of Eq. (12) gives

iaew?l

(Q — iag)’ = Bwg)* + Fy

(0.375) Z nZy(nwoo,)* F? (A20)

The low-current sextupole Robinson frequency in aquartic potentia, 1.236(3A wy), is given within 4% by Eq. (12), while
the coherent frequency shift coefficient differs by 31%, in addition to a 25% change in the frequencies where the form
factors are evaluated. Thisindicates that Eqg. (12) overestimates the real and imaginary frequency shifts of the sextupole
mode when the synchrotron potentia is quartic.

Letting AQ) denote the change in the complex sextupole Robinson frequency resulting from the beam current, the
criterion for overcoming Landau damping given by Eq. (A1l) may be written as

503

1AQ] = 2(1.236 - 3Aw,)

> 0.48Aw; = 0.820,,, . (A21)

For the octupole mode, expanding the Bessel function in Eqg. (A8) yields

2]
(Q — iag)? = (1298 - 4Aw,)* + ﬂ (0.0335) Z nZy (1@ Fl e, - (A22)
In contrast, the u, = 4 term of Eq. (12) gives
iae
(Q — iag)? = (4wg)* + o E E (0 0833) Z nZ,(nwoo,)°F?, (A23)

The low-current octupole Robinson frequency in a quartic potential, 1.298(4A wy), is given within 9% by Eq. (12), while
the coherent frequency shift coefficient differs by 60%, in addition to a 29% change in the frequencies where the form
factors are evaluated. Thisindicates that Eq. (12) substantially overestimates the real and imaginary frequency shifts for
the octupole mode when the synchrotron potential is quartic.

Letting AQ denote the change in the complex octupole Robinson frequency resulting from the beam current, the
criterion for overcoming Landau damping given by Eq. (A11) may be written as

507

AQ| = | ——4
A0 2(1.298 - 4Aw,)

> 0.61Aw; = 1.040,,, . (A24)

In summary, a single-mode analysis of the Robinson instability in a quartic potential indicates that Eq. (12) provides
a good approximation for the dipole and quadrupole modes, while overestimating the coherent frequency shift for the
sextupole and octupole modes.

APPENDIX B: DIPOLE-QUADRUPOLE MODE COUPLING

Let us include mode coupling between dipole and quadrupole Robinson modes by retaining the u = 1 (dipole) and
n = 2 (quadrupole) terms of T,,, = Zizl Tr(,{*g For a quadratic synchrotron potential, Robinson oscillations with
lar| < |Q]| obey [15,22]

T — é[ aew?l } meoFiwo m“n“(a-)oa-l)zﬂ—Z | &
mr o L2mEel ) pt2ent 1= (Q - iap)?/ (po,)
Thus, we have
Tr(n;fyz - (m/n)’u(me“/F”w()Tn/fz . (BZ)

For T, = Tr(n‘)n + Tﬁ)n, Eq. (B2) impliesthat p,, = >, T)n..p, has anontrivia solution when

(zre 1) (e 1) = (S (Sasmre). &)
When the RHS (which is « I?) is negligible, Eq. (B3) reduces to the dipole and quadrupole single-mode formulas. To
include radiation damping, we make the substitution ag — ag — ,uTL‘ in T(”) where 7, isthe longitudinal radiation
damping time. Consequently, ag becomes the Robinson damping rate incl udmg the effect of radiation damping. Includ-
ing the effect of radiation damping, Egs. (B1) and (B3) yield
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~ 2
) . —1v , laewdl 5
|:(Q —iag+it] ') — w? — 27TE0 ; nZnan0i|
. L iaew?l
X [(Q —iag + 2it; ') — Quw,)* - Z nZ,(nweo,)* ,%wo}

—iaew?l idew? 27
B [W Z n°Z,F 3%“ Z z (nwocr,)zFﬁwn] (B4)

In a quartic synchrotron potential, Egs. (B2) and (B3) are approximately obeyed. Above the Landau-damping thresh-
old, we substitute Eq. (A7) for Tfnff’g into Eqg. (B3) to obtain, including the effects of radiation damping,

[(Q —iag + it ")’ = (1L076Aw,)* — %(1'076) Z ”ZnF&%Wj

icvew} 27

[(Q —iag + 20" — (1164 - 2Aw,)? — T(O .982) Z nZ,(nw,o,) F\/m”wj

iaew?l

: 2
—laewsl 2 2 - 0 252
[—sz (1.076) Z n an093”%“ S (0.982) ZZn(nwoa,) F e | (B9

Substituting the natural frequency of collective oscillations wg for the synchrotron frequency w, in Eq. (B1) yields a
result which reduces to Eq. (B4) for a quadratic potential, while approximating Eq. (B5) for a quartic potential

21
|:(Q —iag + it ") — wi — facw Z nZz,F? }

2nE &

—iaew?l iaewsl
- Tomn || T atewern., ) @

21
X |:(Q —iag + 2it; ') — Qwg)? — faewol Z nZ,(nweo;)? an }

For |agl, 7' < |Q|, Eq. (B6) becomes, for a double-rf system

I
{QZ —2iQag +2iQr — w2 + O;’Z‘;g [RIFASM2¢ - + SM2¢1s) + vRIFAEN s + SM2¢has)]
(0]

+ ia;;)gl [RiFi(cos’p - — COS'h1+) + VRyF3(COS pr— — c052¢2+)]}

X {QZ —2iQag + 4iQ7; " — Qwg)?

aew,l . . . .
+ 2ETg (w2 [RIFHSIN2¢ - + SM2¢14) + v’ RyF3(SM2y— + Sn2eys)]

# O g IR 00— 008 h) + 1 RaF3 (008 s — 005 ]|

aew
= (wg(ft)z{ 2ETg [RIFF(SIN2¢1— — Sin2¢1+) + V2 RIFF(SM2¢pr— — SiN2¢ho)]

2
+ la};;) - [RiF}(coS’ - + COS’hp1+) + V> RyF5(coS by + cosz¢2+)]} - (8D

Defining the real quantities
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A _ aewg
- 2FET,

[R1F2(3n2d)1_ + Sn2d)1+) + I/R2F (§n2¢2_ + S'n2¢2+)],

~ aew . . . .
B = ZET”’ (g0 ) [RIFF(SiN2¢py— + SiN2¢p14) + v’ RoF3(SiN2¢pa— + Sin2epay )],
(0]

- aewgl , . . .
D = (wga,)#[RlF%(SIMQSl_ - S|n2¢1+) + V2R2F22(Sn2d)2_ - Sn2¢)2+)],

o

(B8)
a= a;;)g [RiF3(coS ¢ - — coSpi+) + vRyF3(COS dhy— — COS hot)] + 2Q7; !,
b= a;;)g (wgo ) [RiF}(coS’p - — COS p1+) + v RyF3(COS o — COS*hp1)] + 4Q7)
d= (wga,) o [R1F2(cosz¢1_ + coSP1+) + V2R F3(COS hy— + COS oy )],
Eqg. (B7) becomes
[Q% — w2 + A — 2iQag + id][Q% — Qwg)* + B — 2iQay + ib] =[D + id]. (B9)
The real part of Eg. (B9) yields
[Q% — wi + A][Q% — Qwg)* + B] = D> — d* + (a — 2Qazg) (b — 2Qag), (B10)

while its imaginary part yields the Robinson damping rate (including radiation damping)

a[Q? — Qwg)? + B] + b[Q? — wi + A] — 2Dd
ag = (B11)
20[202% - 503 + A + B]

A zero-frequency instability threshold is predicted when Eqg. (B10) is obeyed for Q2 — 0, inwhich case ¢+ — ¢
and ¢+ — ¢, while D,a, b — 0. Thisyields

0= [(wl% - A) (40)12{ - B) + az]ltbw:rﬁl—:'ﬁl . (812)

$2+=d2-=¢2

This threshold cannot be reached without first crossing the threshold of the equilibrium phaseinstability (w3 — A = 0)
or zero-frequency quadrupole Robinson instability (4w — B = 0). These thresholds occur when there is no restoring
force for dow perturbations of the bunch position or length, in which case fast instabilities may result that involve
many synchrotron modes [15]. Because of the contribution of many synchrotron modes to fast instabilities, the coupled
dipole-quadrupole model (which includes only the dipole and quadrupole modes) may no longer be applicable when the
equilibrium phase instability or zero-frequency quadrupole instability thresholds are reached.

Application of the quadratic formula to Eq. (B10) yields

5w,%—A—B+[(3wR+A—B)2

02 =
2 4

1/2
+D*—ad*+ (@a—2Qag) (b — ZQaR)i| . (B13)

When the minus sign is taken for =, we refer to the solution as the “coupled-dipole” mode, while the plus sign gives
the “ coupled-quadrupole’ mode. In the absence of coupling (D = d = 0), Egs. (B11)—(B13) reproduce the uncoupled
dipole and quadrupole mode results of Egs. (13)—(16). The coupling term D resulting from the imaginary part of the
impedance pulls the coupled-dipole and coupled-quadrupole mode frequencies apart, while the coupling term d result-
ing from the real part of the impedance pushes the coupled-dipole and coupled-quadrupole mode frequencies together.
Consequently, the mode-coupling behavior with a passive Landau cavity (where the impedance is mostly imaginary) may
differ from that of an active Landau cavity (where the effective impedance, including feedback, is mostly real).

When d issufficiently large, the argument of the square root goesto zero in Eq. (B13); for larger values of 4 areal value
of Q2 isinconsistent with Eq. (B13). In this case, slowly growing or damping Robinson oscillations do not exist because
of strong mode coupling, indicating a fast mode-coupling instability [15,22]. At the fast mode-coupling threshold, the
coupled-dipole and coupled-quadrupole frequencies are equal. When a fast instability occurs, many synchrotron modes
may contribute to the unstable motion [15].
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