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Modeling the fields of magneto-optical devices, including fringe field effects and higher order
multipole contributions, with application to charged particle optics
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A new method for the calculation of the magnetic field of beam guiding elements is presented. The
method relates the calculation to measurement data of the magnetic field in a direct way. It can be applied
to single beam guiding elements as well as to clusters of elements. The presented description of the
magnetic field differs from the classical approach in that it does not rely on power series approximations.
It is also both divergence free and curl free, and takes fringe field effects up to any desired order into
account. In the field description, pseudodifferential operators described by Bessel functions are used
to obtain the various multipole contributions. Magnetic field data on a two-dimensional surface, e.g., a
cylindrical surface or median plane, serve as input for the calculation of the three-dimensional magnetic
field. A boundary element method is presented to fit the fields to a discrete set of field data, obtained, for
instance, from field measurements, on the two-dimensional surface. Relative errors in the field approxi-
mation do not exceed the maximal relative errors in the input data. Methods for incorporating the obtained
field in both analytical and numerical computation of transfer functions are outlined. Applications in-
clude easy calculation of the transfer functions of clusters of beam guiding elements and of generalized
field gradients for any multipole contribution up to any order.
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I. INTRODUCTION

The transport of charged particle beams through par-
ticle optical devices, such as beam-transport lines, par-
ticle accelerators, and spectrometer equipment, depends
strongly on the shape of their electric and magnetic fields.
For this reason, much effort has been put into the deriva-
tion of analytical expressions for both these fields and
the trajectories of charged particles that pass through said
fields. A thorough study on axisymmetric electrostatic
and magnetostatic lenses has been performed by El-Kareh
and El-Kareh [1]. Analytical studies on the trajectory
equations for magnetic quadrupole lenses and their so-
lutions have been performed by, among others, Smith
[2] (with corrections by Lee-Whiting [3]), Lee-Whiting
[4], Matsuda and Wollnik [5], and Nakabushi and Mat-
suo [6]. A derivation of these equations using Hamilto-
nian theory has been given by Hagedoorn et al.[ 7] and
de Leeuw et al. [8].

The solution to the trajectory equations for a beam guid-
ing element is generally presented as a function, called the
transfer map of the element, that maps the initial location
of a charged particle in phase space on its final location.
Three different methods for the calculation of such maps
can be distinguished. First, the map can be calculated us-
ing aberration coefficients (see Grime et al. [9] or Grime
and Watt [10] for their definition). This method has been
employed in most of the analytical work mentioned above,
and has also been used in various computer codes, e.g.,
1098-4402�01�4(6)�062401(11)$15.00
TRANSPORT [11] and TURTLE [12]. Second, the map can be
calculated using differential algebra, a tool developed by
Berz [13], who implemented it in his code COSY INFINITY

[14]. Finally, Lie methods can be used to calculate the
map in such a way that it is always symplectic (i.e., pre-
serving the volume occupied in phase space), regardless of
the way it is truncated. These methods have been devel-
oped by Dragt et al. [15,16], who also implemented them
in their code MARYLIE [16,17].

For the calculation of the transfer map of a magneto-
optical element, an accurate description of the magnetic
field of the element is essential. This is often done by ex-
panding the scalar potential of the field in a Taylor-Fourier
series, as given by, among others, Szilagyi [18], for straight
elements having their design orbit along the z axis. The
accuracy of this description depends critically on the ac-
curacy at which the z-dependent Taylor coefficients in the
expansion, the generalized gradients, can be provided, es-
pecially for the so-called fringe fields near the ends of the
element, where the z dependence of the generalized gradi-
ents is the most obvious. Direct calculation of these gradi-
ents using the Biot-Savart law or on-axis field gradients is
possible but not very accurate; a more accurate analytical
method has been derived by Venturini and Dragt [19].

There are several disadvantages to the Taylor-Fourier
expansion mentioned above. First, it leads to a culmi-
nation of power series terms in the transfer map calcu-
lations, which proves difficult to handle. Moreover, the
divergence-free and curl-free nature of the magnetic field
© 2001 The American Physical Society 062401-1
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is not preserved once the power series is truncated [20].
Transfer map computation using series expansions in the
magnetic field description usually means a tradeoff be-
tween accuracy of the result and a reasonable number of
terms in the expressions.

In this paper, we formulate a different approach to the
description of the fields of particle optical devices. A more
detailed treatment of the work presented here can be found
in [21]. Parts of it were presented in [22] and [23]. The
aim of this approach is to overcome the above-mentioned
difficulties by using a magnetic field description that is
not based on power series expansions. In this way, we
do not have to deal with an explosively growing number
of higher order terms, which is usually the case in higher
order perturbative methods.

It should be noted that this paper is intended to give a
detailed description of the new method of field descrip-
tion and does not elaborate on its applications, i.e., on the
practical implementation to real-life examples of multipole
devices.

As a first step, we give a general description of the mag-
netic field inside a beam guiding element and its harmonic
scalar and vector potentials. This description treats each
multipole contribution to the field separately, and gives the
total field as a superposition of multipole contributions.

With this done, we assume the magnetic field to be
known on a cylindrical surface that has the same axis as the
element. We apply the above-mentioned field description
to this case, in order to express the magnetic field and
its potentials within the cylinder entirely in terms of the
boundary values of the field on the surface. As we do
not use power series approximations here, and are able
to take multipole contributions of any order into account,
the accuracy of the field description is limited only by the
accuracy of the boundary values. This is true for both the
central field and the fringe field region of the device, since
this method does not discriminate between z-dependent
and z-independent fields.

Since the boundary conditions will usually arise from
measurements, the next step is to give expressions for the
field, given a series of measurements on either a cylindri-
cal surface, or a median plane, taking the discrete nature
of these measurements into account. The resulting field
description will be shown to be insensitive to statistical
noise in the measurements. Moreover, the field will be a
superposition of divergence-free and curl-free terms, so it
is always divergence free and curl free, regardless of trun-
cation. As an example, the magnetic field of an existing
quadrupole will be reconstructed from magnetic field data.
It will be shown that only a fraction of the available data
is needed to calculate all of the field.

This method of expressing a magnetic field in terms of
measurements knows a wide range of possible applica-
tions. One example is the reconstruction of the field of
beam guiding elements (application to an existing mag-
netic quadrupole is presented in Sec. III C). Our method
062401-2
can also be used on clusters of elements with overlapping
fringe fields, which are, in fact, to be treated as single ele-
ments, and can even be extended to obtain the transfer
functions for a complete beam line setup or storage ring.
There are also numerous applications in low-energy elec-
tron optics.

Once the magnetic vector potential has been described
in terms of field measurements, we can use it in particle
optics. For this reason, we insert this vector potential in
the Hamiltonian equations of motion for a charged particle
in a magnetic field, and use a finite difference method to
solve the system of equations numerically, in such a way
that the steps in the finite difference method match the
steps between the measurements. As a consequence, we
developed a tool to express the transfer function entirely
in terms of these measurements.

The methods presented in this paper are equally suitable
for the calculation of generalized gradients of any order,
directly from field measurements. This provides an elegant
way to combine the results of this paper with existing
analytical results.

It should be noted that, although all methods have been
devised to describe the fields of magneto-optical devices,
they are equally applicable to electrostatic optical devices,
since, in the absence of free charges or currents in the in-
terior of the device, the electrostatic potential can be ex-
pressed in the same mathematical form as the scalar po-
tential of a magneto-optical device. Once the electrostatic
scalar potential has been obtained, it can be introduced into
the description of the transfer function of the device, much
in the same way as the magnetic vector potential.

II. GENERAL FIELD DESCRIPTION

A. Basic equations

From Maxwell’s equations for the static electromagnetic
field, a scalar potential u and a vector potential �A exist
for a magnetic field �B in a region without free charges or
currents, satisfying

=u � �B � = 3 �A , (1)

Du � 0 , (2)

= 3 �= 3 �A� � �0 . (3)

The vector potential �A will be chosen such that = ? �A � 0
(Coulomb gauge). Then �A is harmonic: D �A � �0.

These equations are applied to the magnetic field of a
magnetic multipole device, within a cylindrical surface.
Cylindrical coordinates �r , w, z� are chosen in such a way
that the z axis coincides with the central axis of the de-
vice. We assume the scalar potential u to be known at
the cylindrical surface r � R, and introduce dimension-
less coordinates r� � r�R, z� � z�R. Then the potential
problem for the scalar potential u reads (we drop the stars
for convenience)
062401-2



PRST-AB 4 MODELING THE FIELDS OF MAGNETO-OPTICAL … 062401 (2001)

062401-3
8>>>><
>>>>:

≠2u
≠r2 1

1
r

≠u
≠r

1
1
r2

≠2u
≠w2 1

≠2u
≠z2 � 0,

u�1, w, z� � U�w, z�, 2p , w # p , z [ � ,
limz!6` u�r, w, z� � C6, 0 # r # 1, 2p , w # p ,
limjzj!`

≠u
≠z �r , w, z� � 0, 0 # r # 1, 2p , w # p .

(4)
Here, C1 and C2 are constants and U�w, z� satisfies both
limz!6` U�w, z� � C6 and limz!6` Uz�w, z� � 0 for all
w. If the Fourier series expansion with respect to w

of the potential is known to contain no solenoidal (w-
independent) term, we set C6 � 0. The above potential
problem has a unique solution for u [24]; from this solu-
tion we can derive general expressions for both �B and �A.
These expressions can be used to compute �B and �A directly
from magnetic field measurements, without the need to
derive u first.

B. Harmonic potentials.

Since we use cylindrical coordinates, we can expand a
solution u�r , w, z� of (4) into a Fourier series:

u�r , w, z� � a0�r, z� 1
X̀
m�1

�am�r , z� cos�mw�

1 bm�r, z� sin�mw�� .

The terms corresponding to a certain value of m represent
the 2m-pole contribution to u: m � 0 corresponds to a
solenoid, m � 1 to a dipole, m � 2 to a quadrupole, etc.
For convenience, we adopt the following notation for this
Fourier series:

u�r , w, z� � ���am�r, z�, bm�r , z����`
m�0 ,

using the dummy coefficient b0�r, z� � 0.
Having inserted this expansion into the Laplace equation

for u, we find second-order partial differential equations
for the coefficients am�r , z� and bm�r , z�. Their formal
solutions are given by

am�r , z� � Jm

µ
r
d
dz

∂
Am�z�, m � 0, 1, 2, . . . ,

bm�r , z� � Jm

µ
r
d
dz

∂
Bm�z�, m � 1, 2, . . . .

The pseudodifferential operator Jm�r d
dz � is defined as [25]

Jm

µ
r
d
dz

∂
Am�z� :� F 21�Jm�ivr� 3 �F Am� �v�� �z� ,

where Jm denotes the Bessel function of the first kind
of order m and F denotes the classical Fourier integral
transformation with respect to z:

�F f� �v� :�
Z `

2`
f�z�e2ivz dz .

Note that the solutions for am�r , z� and bm�r, z� can be
expressed in this form because of the boundary conditions
for jzj ! ` in (4).
In the next section, the smooth (i.e., arbitrarily often
differentiable) functions Am�z� and Bm�z� will be deter-
mined from the boundary condition u�1, w, z� � U�w, z�.
For convenience, we write Jm for Jm�r d

dz � and introduce
the dummy coefficient B0 � 0. Then the general solution
for u�r, w, z� reads

u � �JmAm,JmBm�`
m�0 . (5)

As follows from Fourier integral theory, this general solu-
tion will automatically obey the boundary conditions for
jzj ! `.

Next, we determine a harmonic vector potential �A for
the magnetic field �B using (1). This vector potential will
be expressed solely in terms of the coefficients Am and
Bm that fix the scalar potential u for �B. The vector po-
tential is not unique: adding the gradient of any harmonic
scalar field to a harmonic vector potential for �B yields an-
other harmonic vector potential. As long as = 3 �A � �B
there is no physical reason to prefer one choice for �A over
another. For convenience, we choose (expressed in cylin-
drical coordinates)

Ar � �Jm11Bm, 2Jm11Am�`
m�1 ,

Aw � �Jm11Am,Jm11Bm�`
m�0 ,

Az � �2JmBm,JmAm�`
m�1 .

From the expressions for the scalar and vector poten-
tials, we find that both u and �A are completely determined
by the functions Am and Bm, which are in turn uniquely
determined by the boundary conditions at r � 1.

One should note that we used the gauge freedom to de-
rive a harmonic vector potential. In some cases, however,
a different (nonharmonic) vector potential is more conve-
nient. For example, the Hamiltonian equations of motion
for a charged particle in a magnetic field contain, when
expressed in cylindrical coordinates, a large number of
terms containing Aw . A vector potential �A with Aw � 0
is usually employed here to get rid of these terms. Al-
though this vector potential is not harmonic, its Fourier
coefficients can nevertheless be expressed in terms of the
coefficients JmAm and JmBm (see Ref. [19]).

C. Introducing boundary conditions

In this section, we will show how to calculate the Fourier
coefficients of u, �B, and �A, for which we derived formal
expressions in the previous section, and their various
derivatives directly from given boundary values at the
cylindrical surface r � 1. Such boundary values result,
062401-3
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e.g., from direct magnetic field measurements, calculations
using the Biot-Savart law, or spinning coil measurements.

The function U�w, z�, from the remaining boundary
condition u�1, w, z� � U�w, z�, can be expanded into a
Fourier series:

U�w, z� � ���Vm�z�,Wm�z����`
m�0 .

Since limz!6`u�r, w, z� � C6, we find that
limz!6`V0�z� � C6, while limz!6`Vm�z� �
limz!6`Wm�z� � 0 for m . 0. Inserting the general so-
lution (5) into this boundary condition yields the equations

�JmAm� �1, z� � Vm�z�, �JmBm� �1, z� � Wm�z� .

This allows one to express the coefficient �JmAm� �r , z� in
terms of Vm:

�JmAm� �r , z� � F 21

µ
Im�vr�
Im�v�

�F Vm�
∂

�z� . (6)

Note that Jm�ivr� � imIm�vr� with Im the modified
Bessel function of the first kind of order m.

The right-hand side of (6) is a convolution product

�JmAm� �r , z� � ���gm�r, ?� � Vm��� �z�

�
Z `

2`
gm�r , z 2 z �Vm�z �dz , (7)

where the basic function gm�r , z� is given by

gm�r , z� �
1
p

Z `

0

Im�vr�
Im�v�

cos�vz� dv .

The notation gm�r , ?� indicates that evaluation of gm for
some value of z is postponed until after the convolu-
tion product is taken. Results similar to (7) hold for
�JmBm� �1, z�.

For fixed z , the function gm�r, z 2 z � is the solution to
(6) in the case that Vm�z� � d�z 2 z �, and, in this sense,
062401-4
it is a fundamental solution. This fundamental property of
gm�r , z� will be used to the full extent in the next section.

The basic result (7) is also obtained in Ref. [19], through
slightly different methods, and used in a different context.
An expansion of (7) into powers of r is derived in this
paper in order to obtain power series expansions of the
coefficients am�r , z� and bm�r , z�. Expressions similar to
(7) describing the field of axisymmetric lenses �m � 0�
can also be found in Ref. [1].

It can be shown that gm�r , z� is strictly positive [21,26],
so Z `

2`
jgm�r, z�j dz �

Z `

2`
gm�r , z� dz

�
Im�vr�
Im�v�

Ç
v�0

� rm. (8)

Since JmAm depends linearly on Vm, this allows one to
calculate the effect of errors in Vm on the calculation of
JmAm. We find, using (8),

jd�JmAm� �r, ?�j # rmjdVmj , (9)

where d�JmAm� �r , ?� and dVm denote the maximum errors
in JmAm�r , ?� (as a function of r) and Vm, respectively, on
the interval 2` , z , ` (see also Ref. [21]). This result
will prove useful in the next section, where we show how
to obtain Vm from measurements.

The coefficients JkAm and JkBm with k different from
m, that occur in the transverse components of �A, and their
partial derivatives with respect to r and w can be calcu-
lated in the same way as JmAm and JmBm. This will prove
useful in Sec. IV B, where the components of �A and their
derivatives will occur in the Hamiltonian equations of mo-
tion for a charged particle in a magnetic field. In general,
we write for k $ m 2 1,

�JkAm� �r , z� � ���gkm�r , ?� � Vm��� �z� , (10)

where
gkm�r , z� �

8>>><
>>>:

�21�l

2p

R`

2`

Ik�vr�
Im�v�

cos�vz� dv, k 2 m � 2l ,

�21�l11

2p

R`

2`

Ik�vr�
Im�v�

sin�vz� dv, k 2 m � 2l 1 1 .
It should be noted that the definition of gkm contains no
physical parameters, since the input of magnetic field data
is performed completely via the boundary values Vm and
Wm. Therefore, the values of gkm can be calculated in
advance, which greatly simplifies the calculation of JkAm

for a given Vm.
As has been done for gm, it can be shown thatR

`
2` jgkm�r , z�jdz , ` for 0 # r , 1 and k . m. Analo-

gous to (9), we find that

jd�JkAm� �r , ?�j # Ck�r� jdVmj , (11)

thus relating the accuracy of JkAm, k . m, to that of Vm.
There are indications that Ck�r� � O�rk�, although this
has not yet been proven. For k � m 2 1, however, it can
be shown that gkm is not integrable on 2` , z , `, so
Eq. (11) does not apply to this case.

In the case that the field description given in this sec-
tion is used in charged particle optics, knowledge of both
the partial derivatives (occurring in the trajectory equa-
tions) and the integrals (occurring in the solutions to these
equations) of JkAm is vital (see also Sec. IV C). Their cal-
culation is rather straightforward. The partial derivatives
of JkAm are given by the convolution product of the cor-
responding derivative of gkm�r , ?� with Vm. Integration of
JkAm with respect to z can also be done by integrating
either gkm or Vm with respect to z. Moreover, since for
062401-4
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m . 0, Vm�z� tends to zero for jzj ! `, integration by parts of the right-hand side of (10) yields

�JkAm� �r , z� � ���Gk
m�r , ?� � V 0

m��� �z� , (12)

where

Gk
m�r , z� �

8>>><
>>>:

�21�l

2p

R`
2`

Ik�vr�
Im�v�

sin�vz�
v

dv, k 2 m � 2l ,

�21�l11

2p

R`
2`

Ik�vr�
Im�v�

1 2 cos�vz�
v

dv, k 2 m � 2l 1 1 .
Using the basic functions gmm and gm11
m , one can calcu-

late the components of �A and their derivatives directly from
the boundary values Vm and Wm, without need to calcu-
late the magnetic field �B or the scalar potential u first. In
fact, since the functions Am and Bm are fully determined
by Vm and Wm, any quantity related to u can be calculated
directly from the boundary values, if the appropriate basic
function is used.

In practice, boundary values originate either from the
potential u (e.g., when produced by a three-dimensional
code) or from quantities such as the magnetic field �B (e.g.,
when obtained from measurements). Determining Vm and
Wm in the second case takes a little extra work as compared
to the first. As an example, we show how to determine the
functions Vm and Wm from measured values of (a compo-
nent of) �B. We have

Br jr�1 �
1
R

≠u
≠r

Ç
r�1

�

µ
1
R

≠gm
≠r

�1, ?� � Vm,
1
R

≠gm
≠r

�1, ?� � Wm

∂`

m�0
,

(13)

Bwjr�1 �
1
R

≠u
≠w

Ç
r�1

�

µ
m
R
Wm, 2

m
R
Vm

∂`

m�1
, (14)

Bzjr�1 �
1
R

≠u
≠z

Ç
r�1

�

µ
1
R
V 0
m,

1
R
W 0

m

∂`

m�0
, (15)

where the components of �B are given in dimensional
(unscaled) form. Using the boundary condition

Ba�1, w, z� � ���Bc
a,m�z�,Bs

a,m�z����`
m�0 ,

where a � r , w, z, we find for m � 0, 1, 2, . . .

F �Vm,Wm� � R
Im�v�

vI 0m�v�
F �Bc

r ,m,Bs
r ,m� ,

�Vm,Wm� �
R
m

�2Bs
w,m,Bc

w,m� ,

�V 0
m,W 0

m� � R�Bc
z,m,Bs

z,m� .

These relations, combined with (10), allow one to calculate
JkAm and JkBm for 0 # r , 1 and all z if one compo-
nent of �B is known at r � 1. Note that, in the case of
Bz being known, one needs to replace gkm by its primitive
Gk
m, as in (12), while in the case of Br being known, we

obtain the correct basic function using (6), where the de-
062401-5
nominator Im�v� has to be replaced by vI 0m�v�, resulting
in a different basic function.

In general, many field-related quantities can be calcu-
lated directly by taking the convolution product of (the
Fourier coefficients of) the boundary values at r � 1 with
an appropriate basic function. This will prove to be a pow-
erful tool. In the next section, we will treat the case of
discrete boundary values at r � 1 and we will show how
to reconstruct these boundary values if the available mag-
netic field data originate from a surface other than r � 1,
e.g., a median plane.

III. CALCULATING THE FIELD FROM
MEASUREMENTS

A. Using measurements at the boundary

In practice, we can measure (the components of)
�B at r � 1 for a discrete set of w and z values and
approximate them by interpolating the measurements.
Measurements of Bw and Bz are more convenient than
measurements of Br , since the former provide direct
approximations of �Vm,Wm� and �V 0

m,W 0
m�, respectively,

while the latter do not. Since piecewise constant or piece-
wise linear interpolations are almost always employed,
the special cases of Vm being piecewise constant or linear
will be considered. As the measured values for �B will
be negligible for sufficiently large z, we assume that, for
m . 0, Vm�z� � 0 for z sufficiently large. On the other
hand, since limz!6` V0�z� � C6, a solenoidal contribu-
tion to u should be treated by fitting Bz �

≠u
≠z rather than

by fitting u. By using (15), Bz can be calculated from V 0
0,

which is considered to be zero for sufficiently large z.
If we assume that Vm is piecewise constant, there

are pairs �li , zi�, with
P

i li � 0, such that V 0
m�z� �P

i lid�z 2 zi�. By using (12), we find

�JkAm� �r, z� �
X
i

liG
k
m�r , z 2 zi� , (16)

where Gk
m�r , z� is defined in the previous section.

If, on the other hand, we assume that Vm is piece-
wise linear, then V 0

m is piecewise constant, and V 00
m �P

i lid�z 2 zi�, where both
P

i li � 0 and
P

i lizi � 0.
In this case we have

�JkAm� �r, z� �
X
i

liG̃
k
m�r , z 2 zi� , (17)

where G̃k
m�r , z� �

Rz
0 G

k
m�r , z �dz .
062401-5
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Following from the conditions for the li in the above
cases, we find that the terms on the right-hand side of both
(16) and (17) cancel each other for jzj ! `, so JkAm tends
to zero for jzj ! ` in both cases.

Since expressions such as (16) and (17) are derived in
a straightforward fashion from Eq. (10) for specific in-
stances of Vm, the accuracy of JkAm is completely deter-
mined by that of Vm through Eq. (11), and convergence of
JkAm with increasing number of z subdivisions is directly
related to that of Vm.

From the integral expressions in the previous section,
we find that related quantities can be derived by replacing
the functions Gm and G̃m by basic functions corresponding
to these quantities, while retaining the pairs �li , zi�. In
fact, these pairs determine the corresponding multipole
contribution completely.

At this point, we show how to determine the various
multipole contributions to the magnetic field from the val-
ues of Bz at r � 1, as given by (15). Assume Bzjr�1
has been measured at the points with coordinates �w, z� �
�wj ,wi�. Since V 0

m is the Fourier coefficient of cos�mw� in
the Fourier series representation of Bz , V 0

m�wi� is obtained
from (“�” denotes a numerical approximation)

V 0
m�wi� �

1
p

Z p

2p
Bz�1, w,wi� cos�mw�dw

�
1
2

X
j

Bz

°
1, wj ,wi

¢
�wj11 2 wj21� cos�mwj� ,

where
P

j�wj11 2 wj� � 2p. (Note that the simple mid-
point scheme used in this example can always be re-
placed by a more sophisticated scheme, if so desired.) We
choose the piecewise constant approximation for V 0

m�z�,
i.e., V 00

m �
P

i lid�z 2 zi�, with zi �
1
2 �wi 1 wi11� and

li � V 0
m�wi11� 2 V 0

m�wi�. Then �JkAm� �r , z� is deter-
mined by (17). Since Bz�z� � 0 for jzj sufficiently large,
so is V 0

m�z�.
Since G̃m�r, z� is a known function, we see that

�JkAm� �r , z� can directly be related to the field measure-
ments at r � 1. This provides a convenient and flexible
way to calculate the magnetic field and related quantities
from the field measurements of any desired particle
optical device. The nature of the methods outlined in this
section also allows the calculation of the field of a cluster
of devices, i.e., multipoles, which can in fact be treated
as a single device.

It should be noted that one needs measurements per-
formed at 2m different angles wi at least in order to deter-
mine the 2m-pole contribution. In other words, the number
of different angles at which measurements are taken deter-
mines the highest order multipole contributions that can be
approximated from a given set of measurements.
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B. Using measurements not at the boundary

In the previous sections, the multipole coefficients
JkAm were calculated under the assumption that the values
of the magnetic field or the magnetic scalar potential at
the surface r � 1 were available. In many cases, however,
the measurements have not been performed at the surface
r � 1, but at a plane containing the z axis or on the z axis
itself instead. We will show that it is possible to obtain
the various multipole contributions to the magnetic field
in such cases by means of a least squares method, which
will be outlined below.

We will treat the case that measurements of Bw�r , w, z�
were taken in P �P $ 2� planes containing the z axis, i.e.,
at the points �rk , wi ,wj�, k � 1, . . . ,M, i � 1, . . . ,P, j �
1, . . . ,N . In this case, we are able to fit at most M different
multipole contributions; in most cases, the 2m-pole contri-
butions corresponding to m � 1, . . . ,M will be fitted. If
less than M multipole coefficients are fitted, the remaining
data can be used to improve the statistical properties of
the fit.

We assume that 0 , rk , 1, k � 1, . . . ,M; if this is
not the case, then the values rk and zj should be suitably
scaled.

As an example, we assume that Bw originates from
the field of a realistic magnetic quadrupole, where the
quadrupole and sextupole contributions are dominant, and
other contributions are negligible. In this case, Bw is ap-
proximated by

Bw�r , w, z� � 2
2
Rr

a2�r , z� sin�2w�

2
3
Rr

a3�r , z� sin�3w� .

The coefficients a2 and a3 are then approximated by

a2�r , z; l� �

NX
l�1

l1G2�r, z 2 zl� ,

a3�r , z; m� �

NX
l�1

mlG3�r , z 2 zl� ,

where zl �
1
2 �wl 1 wl11�. This corresponds to a piece-

wise constant approximation of the multipole coefficients
of Bw at r � 1. We denote the measured value of Bw at
�rk , wl ,wj� by fkij , and define the quantity M�l, m� by

M�l, m� �
MX
k�1

PX
i�1

NX
j�1

�fkij 2 Bw�rk , wi ,wj��2.

In order for Bw�r , w, z� to vanish for jzj ! `, l, m must
satisfy

NX
l�1

ll �
NX
l�1

ml � 0 . (18)

The optimal values for l, m are then obtained by minimiz-
ing M�l, m� under the conditions (18).
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There are a few remarks to be made concerning this
example.

(i) In the above example, the assumption was made that
the multipole contributions were all normal oriented, i.e.,
Bw did not contain any cos�mw� terms. In this case,
it is sufficient to have measurements for one angle w1.
In general, the orientation of the multipole contributions
will be unknown, so Bw should contain both sin�mw� and
cos�mw� terms, and we need at least two different angles
w1 and w2, which are such that mjw0 2 w1j��2p� is not
an integer for any 2m-pole contribution that is assumed to
occur in the magnetic field.

(ii) In the case that the ll and ml are obtained directly
from boundary values, as in the previous section, the re-
sulting solution automatically satisfies the boundary con-
ditions for jzj ! ` in (4). However, this is not true for the
least squares method presented in this section; for this rea-
son, the condition (18) has to be imposed explicitly. More
generally, if a piecewise nth degree polynomial approxi-
mation is employed at the boundary, the conditions

NX
l�1

llz
k
l �

NX
l�1

mlz
k
l � 0, k � 0, . . . , n ,

have to be imposed.
(iii) In theory, one can determine the various multipole

contributions from measurements taken at only two differ-
ent angles, but in practice one can use measurements at
more angles in order to reduce the influence of random
errors. The same can be said about the number of differ-
ent values rk , if there are M different values r1, . . . , rM
available, and one wishes to fit the coefficients of less
than M multipole contributions. As for the different z
values, one could use a smaller number of pairs �li , zi� for
the fitting process than the number of available values wj ,
but this reduces the z range where Bw�1, w, z� is assumed
to be nonzero. For this reason, one should use all pairs
�li , zi� corresponding to the values zi where Bw�1, w, z� is
assumed to be nonzero, and use the remaining data (at the
z values where statistical noise is assumed to be dominant)
to improve on statistics.

(iv) Further improvement on the statistics can be ob-
tained by using a weighted average for the sum of squares
in the definition of M�l, m� instead of the unweighted
arithmetic mean used in the example. The inverse square
of the relative error in the measurement fkij can be used
as the weight for the term �fkij 2 Bw�rk , wi ,wj��2.

As shown in the previous section, the pairs �ll , zl�
fully determine the corresponding Fourier coefficient of
any field-related quantity, e.g., u or Bw . Knowledge of
these pairs allows one therefore to fit the corresponding
multipole contribution to any field-related quantity, using
the corresponding basic function. The method presented in
this section allows one to obtain these pairs from measure-
ments on the z axis or in the plane w � w1 instead of on
the surface r � 1. This will be very useful in cases where
it is not possible to measure on a cylindrical surface.
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Comparing the methods developed in this and the
previous section, we find that the method of the previous
section gives better approximations for the individual
multipole coefficients, while the method of this section
gives a better overall approximation for the total magnetic
field. This effect is caused by the way these methods deal
with higher order multipole contributions that are assumed
to be zero but, in fact, are not. The method of the previous
section yields accurate approximations of the lower order
multipole coefficients and completely neglects any higher
order multipole contributions that might exist in the field;
the method of this section, however, “distributes” the total
contribution of higher order terms among the lower order
coefficients. Although this decreases the accuracy of the
approximation of the lower order coefficients, it improves
the accuracy of the overall approximation of the magnetic
field. For this reason, the latter method for field ap-
proximation might be preferred when using this approxi-
mation for calculating a transfer function numerically,
as described in Sec. IV B.

C. Experimental test of the presented theory

The theory developed in the previous sections has been
verified using actual field measurements for a magnetic
quadrupole, performed by Brooijmans [27]. Part of the
measurements have been used as input for the calculation
of the complete quadrupole field, and the outcome has been
compared to the remaining measurements.

The quadrupole used for the measurements was normal
orientated (i.e., antisymmetric with respect to the planes
x � 0 and y � 0), and the component By on the plane
y � 0 was measured, for a number of equidistant x and z
values. Since in the center of the quadrupole, By turned out
to depend linearly on x, it has been assumed at first that any
higher order multipole contributions could be neglected
with respect to the quadrupole field. Therefore, By has
been fitted using basic functions for m � 2 only. Since
By � Bw for x . 0 and By � 2Bw for x , 0, the basic
function

Ĝ2�r, z� �
1
r
G2�r, z�

�
1

pr

Z `

0

I2�vr�
I2�v�

sin�vz�
v

dv

has been employed. Furthermore, the method of Sec. III A
(measurements at the boundary) has been used to fit By ;
the outermost row of measurements provided a piecewise
constant approximation of V2�z�. This resulted in the fol-
lowing expression for By at y � 0 and 2R , x , R:

By�x, z� �
X
k

�Bk11 2 Bk�Ĝ2�x, z 2 zk11�2� ,

where Bk denotes the measured value for By at �x, z� �
�x1, zk� and zk11�2 � �zk 1 zk11��2. Finally, By has been
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FIG. 1. (Color) Comparison of the measured and calculated By as a function of z for various values of x. The black dots represent
the measurements, the red curves indicate the calculated field. The top row of measurements served as input for the calculations.
calculated for all x values at which measurements have
been taken, except for the outermost x value. The results
are shown in Fig. 1.

From this figure, we find that there is a good agreement
between measured and calculated values of By . The
small differences between calculations and measure-
ments, most obvious around the physical ends of the
quadrupole at z � 155 and z � 455, arise either from
parasitic dipole and/or sextupole contributions to the
magnetic field or from misalignment of the device’s
design orbit with respect to the grid followed by the Hall
probe. A more thorough field calculation, in which these
effects are included from the beginning, will take care
of this.

In short, the above example shows that the methods
developed here can be used to calculate the complete
magnetic field of a multipole device, while only a limited
amount of measurements is needed as input. By the
same methods, other field-related quantities, such as the
vector potential �A, can be calculated easily from the same
measurements.
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IV. APPLICATION TO CHARGED PARTICLE
OPTICS

In this section, we derive the Hamiltonian for the mo-
tion of a charged particle in a magnetic field, with z as the
independent coordinate instead of the time t, and insert the
expressions for �A obtained in Sec. II C. We outline a nu-
merical method for solving the resulting system of first or-
der nonlinear ordinary differential equations. This method
will take both the Hamiltonian nature of the equations and
the special nature of the components of �A, which are super-
positions of shifted basic functions, into account. We will
use this method to show that the total transfer function
of the beam guiding device under consideration can be
expressed completely in terms of the field measurements
at r � R.

Finally, we show how to incorporate the given field de-
scription in existing analytical methods that express the
transfer function in terms of aberration coefficients. We
outline how these coefficients can be obtained, up to any
desired degree, directly from field measurements.
062401-8



PRST-AB 4 MODELING THE FIELDS OF MAGNETO-OPTICAL … 062401 (2001)
A. Charged particle Hamiltonian

The motion of a particle with mass m0 and charge Q in the field of a magnetic multipole is governed by the following
Hamiltonian:

H �
q
m2

0c4 1 c2��pr 2 QAr �2 1 �pw�r 2 QAw�2 1 �pz 2 QAz�2� .

Since the location of the particle in the z direction is well defined, while the location in the t direction is not, it is often
desirable to make z the independent variable instead of t. This is possible for all parts of the particle trajectory where
dz�dt fi 0. To obtain a Hamiltonian system for which z is the independent variable, a new canonical momentum pt is
introduced, and the Hamiltonian K for this system is chosen such that the action integral remains invariant:Z

�pkdqk 1 pzdz 2 Hdt� �
Z

�pkdqk 1 ptdt 2 Kdz� .

This way, the canonical form of the equations of motion is preserved. K�qk ,pk , t,pt , z� is then obtained by solving the
equation pt 1 H � 0 for pz:

K � 2pz � 2QAz 2

q
p2
t �c2 2 m2

0c2 2 �pr 2 QAr�2 2 �pw�r 2 QAw�2 , (19)
where the sign of the square root has been chosen such
that dt�dz . 0. Note that in the case that ≠H�≠t � 0,
the order of the system has decreased by 2 as a result of
the exchange. A complete treatise on this method can be
found in, among others, Refs. [15,28].

From the Hamiltonian K , the equations of motion for a
charged particle in a magnetic field can be derived, with z
as the independent variable. The magnetic field description
presented in this paper enters the equations through the
vector potential �A. Methods for solving these equations
will be presented below.

B. Calculating transfer functions

In this section, we show how to obtain the transfer func-
tion from numerical integration of the equations of motion.
The system of equations derived from the Hamiltonian (19)
will take the following form:

�q0,p0� �z� � f

µµµ
q,p, �A�z, q�,

≠ �A
≠ �x

�z, q�
∂∂∂

. (20)
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Here, q � �r , w, t�, p � �pr ,pw ,pz�, �x � �r , w, z�, and
f is a given function. The prime (9) denotes total differen-
tiation with respect to z.

Note that if �A does not explicitly depend on t, pt
is a constant of motion, and the particle trajectories
can be calculated without solving the equations for t
and pt .

As derived in Sec. II C, the components of �A and their
partial derivatives all take the form

X
i

lig
k
m�r , z 2 zi� 3

Ω
cos�mw�
sin�mw� .

The li originate from measurements at the points z � wi .
The zi were defined by zi �

1
2 �wi 1 wi11�. This provides

good approximations for �A and its derivatives in the region
0 # r , 1, 2p , w , p , w0 , z , wn.

Now we proceed to solving the system (20) by means
of a finite difference method. The discrete version of (20)
is given by
�q,p� �wi11� � �q,p� �wi21� 1 �wi11 2 wi21�f
µµµ
q�wi�,p�wi�, �A���wi , q�wi����,

≠ �A
≠ �x

���wi , q�wi����
∂∂∂

. (21)

We apply the initial condition �q,p� �w0� � �q
0
,p

0
�, and calculate �q,p� �w1� from

�q,p� �w1� � �q,p� �w0� 1 �w1 2 w0� f
µµµ
q

0
,p

0
, �A�w0,q

0
�,

≠ �A
≠ �x

�w0, q
0
�
∂∂∂

.

We then find �q
f
,p

f
� � �q,p� �wn� by repeated appli-

cation of (21). Through repeating this procedure for a
number of initial locations, and interpolating between the
corresponding final locations, the complete transfer func-
tion can be obtained.

It should be noted that the description for �A used in the
differential equations is accurate for all r # 1, and not
only for small r , as in the case of a Taylor expansion.
Therefore, a transfer function obtained using the above
method is accurate for all r # 1, and its use is not limited
to the paraxial region.

Since the steps of the finite difference method are
located precisely at the points z � wi , where the field
measurements were performed, we find that there are no
interpolation errors in the values for �A used in the calcu-
lations. By optimizing the interpolation of the boundary
062401-9
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values at r � 1, such that not only the boundary values but
also their z derivatives are matched at the points z � wi ,
we can also remove interpolation errors from the values of
the partial derivatives of �A for better results.

A comparison between the method presented in this sec-
tion and common perturbative methods reveals the follow-
ing. For small to moderate values of r , a perturbative
method produces an accurate result with less effort than
is needed when using our method. It is in situations where
nonlinear terms dominate the field description where the
present method is most useful, e.g., for large values of r ,
or close to the edge of a multipole device, or in a cluster of
devices, where there may be nonlinear coupling of overlap-
ping fields. In such cases, the number of terms needed in
a perturbative method, and hence its complexity, increases
considerably, while our method can be applied just as eas-
ily as to a paraxial case. Also, our method does not have
any restrictions on the size of the radius r , where a pertur-
bative method of a given order is usually only applicable
at radii smaller than a well-defined maximum.

However, even in cases where a perturbative method is
the most logical choice, the field description presented in
this paper can be used to obtain the coefficients of the
power series terms. This will be demonstrated in the next
section.
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C. Incorporating the field description into existing
results

As mentioned in Sec. I, many methods have been devel-
oped to obtain analytical expressions for the transfer func-
tion of a given magneto-optical device. They usually start
from the Hamiltonian for the motion for a charged particle
in the magnetic field of the device; then both the magnetic
vector potential and the Hamiltonian are approximated by a
truncated power series. The truncated Hamiltonian is then
used to derive approximated, but still Hamiltonian, equa-
tions of motion, for which solutions are obtained using
successive substitution. These solutions are mostly given
in the form of power series approximations with respect
to the transverse coordinates x and y, and the coefficients
of the various terms, the so-called aberration coefficients,
are expressed in terms of the generalized gradients of the
vector potential.

These generalized gradients are in fact the on-axis radial
derivatives of �A, which can hardly be obtained from direct
measurements, but can, on the other hand, easily be ob-
tained by expanding the basic functions in the description
of �A into powers of r (see also Ref. [19]):

gkm�r , z� �
X̀
l�0

gkml�z�rk12l ,
gkml�z� �

8>>><
>>>:

�21�n

2k12ll!�k 1 l�!2p

R`

2`

vk12l

Im�v�
cos�vz� dv, k 2 m � 2n ,

�21�n11

2k12ll!�k 1 l�!2p

R`
2`

vk12l

Im�v�
sin�vz�dv, k 2 m � 2n 1 1 .
The expansion of gkm into powers of r is then inserted
into (10) in order to obtain expansions of JkAm, and fi-
nally of �A, into powers of r . From (16), we find that the
z-dependent coefficients in this expansion, i.e., the gen-
eralized gradients, are obtained in the same way as the
coefficients JkAm. In other words, we can easily derive
accurate approximations for the desired generalized gradi-
ents, in term of measurements far from the axis, up to any
desired order. This provides a very convenient way to in-
corporate the field descriptions outlined in this paper into
existing analytical work.

V. CONCLUSIONS

The magnetic field inside a magneto-optical device, and
its harmonic scalar and vector potentials, has been explored
in the area 0 # r , R, 2` , z , `. The various multi-
pole contributions to these quantities have been fitted using
field measurements at the boundary r � R and shifted ba-
sic functions. The same set of measurements and shifts
can be used to fit various field-related quantities.

All the approximations of the field and its scalar and
vector potentials satisfy Maxwell’s equations; the approxi-
mated potentials are harmonic, which allows one to apply
harmonic potential theory whenever necessary.

As the definitions of the basic functions corresponding
to the quantities to be fitted do not contain any physical
parameters, these functions can be calculated in advance
to the desired accuracy, which greatly simplifies the fitting
procedure.

The developed procedure is independent of the exact
form of the boundary conditions and can be used to fit
the field of one device or a cluster of various consecutive
devices.

The procedure works for any order multipole con-
tribution, but will be the most useful for lower order
multipole contributions, since higher order multipole
contributions are more difficult to obtain from measure-
ments, while their effect on particle trajectories will often
be small.

Once the vector potential �A for the field of a multipole
device has been calculated, it can be inserted in the Ham-
iltonian equations of motion for a charged particle pass-
ing through the device. The description of �A in terms of
z shifts of basic functions can conveniently be combined
with the numerical integration of these equations.
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By expanding �A into powers of r , descriptions of the
z-dependent generalized gradients in terms of z shifts of
basic functions are obtained. These descriptions are much
more accurate than descriptions in terms of on-axis field
derivative measurements, and are an excellent way of com-
bining the methods outlined in this paper with much of ex-
isting analytical work on particle optics.

The methods developed in this paper can also be used
for the calculation of the fields and transfer functions of
static electro-optical devices, since the electric field of such
a device can be written in the same form that was used
for the field of a magneto-optical device, and the calcu-
lation of the transfer function is similar to the magneto-
optical case.
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