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Hybrid fast multipole method applied to beam-beam collisions in the strong-strong regime
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The strong-strong interactions of two colliding beams are simulated by tracking the motion of a set
of macroparticles. The field generated by each distribution is evaluated using the fast multipole method
together with some elements of particle-mesh methods. This technique allows us to check the exact
frequencies of the coherent modes and the frequencies of oscillations of individual particles in the beam.
The agreement between the simulations and analytical calculations is largely improved. Furthermore, it
is an efficient method to study the coherent modes in the case of separated beams.
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I. INTRODUCTION

Two colliding beams exert a force on each other which is
defocusing for beams of equal polarity as in the case of the
Large Hadron Collider (LHC). Solutions of the linearized
Vlasov equation show that for round beams and in the case
of one bunch per beam with equal parameters (intensity,
beam size, betatron tune) two coherent dipole modes of
oscillations appear: the s mode, whose frequency is equal
to the unperturbed betatron tune, and the p mode with a
tune shift of Y � 1.21, where Y is the Yokoya factor [1],
times the beam-beam parameter j.

In this paper the transverse coherent motion of two
colliding proton beams is studied by multiparticle track-
ing. In a self-consistent model of the coherent interaction,
the distributions of both beams evolve as a consequence
of the mutual interaction and are used at the interaction
points (IP) to calculate the force on the individual par-
ticles. A number of studies have been done for LHC using
the so-called “soft Gaussian model” [2]. This model as-
sumes the force experienced by a particle when traversing
the counterrotating beam as originating from a Gaussian
beam distribution with variable barycenters and rms beam
sizes. This allows the use of an analytical expression for
the forces. This Gaussian model cannot take into account
the non-Gaussian deformations of the distribution and as a
result underestimates the force and yields a Yokoya factor
that is slightly smaller (Y � 1.1 in our case). This symp-
tom has also been recently discussed by Yokoya [3]. In the
worst case, this simplification can inhibit the appearance of
coherent effects. Nonetheless, the use of the analytical ex-
pression of the force generated by a Gaussian beam allows
simulations in a reasonable computing time and it is there-
fore more convenient for studies with multiple bunches.

*Present address: BULL, Paseo Doce Estrellas 2, 28042
Madrid, Spain.
1098-4402�01�4(5)�054402(9)$15.00
It was predicted [4,5] that the coherent p mode may
not be Landau damped for certain strong-strong conditions
and therefore an accurate knowledge of the Yokoya factor
is highly desirable.

II. SIMULATIONS BEYOND THE SOFT GAUSSIAN
MODEL

To avoid this problem and to increase the accuracy of
the simulations, we have to introduce a field solver for an
arbitrary distribution of charges in space. The choice of
the solver is constrained by the problems under investiga-
tion: (i) large number of particles in simulation (104) and
(ii) separated beams (separation 10 times the beam size or
more).

A direct integration of forces (particle-particle methods)
is ruled out since the necessary time grows with the square
of the number of particles �O�N2

p��. For the number of par-
ticles used in our simulation this is impossible. Other pos-
sible solvers employ so-called particle-mesh methods and
have been shown to give good results [6]. Their advantage
is speed since the number of computations is smaller and
depends on the number of grid points Ng: �O�Ng lnNg��.
A strong disadvantage is that particle-mesh methods have
problems handling nonuniform distributions. For the case
of separated beams (as in our case with the important ef-
fect of long-range collisions), most of the space is basically
empty. Moving or adaptive grids may be used for that pur-
pose, but may lead to a rather complicated structure.

Another possibility is to use fast multipole methods
(FMM). In this algorithm the potential or force acting
on a particle is divided into two components. The compo-
nent of close particles is computed directly, and between
distant particles the potential is approximated by multipole
expansion [7,8]. This method is therefore well adapted to
handle problems such as separated beams. Problems with
FMM are close encounters and “charge overloading,” i.e.,
© 2001 The American Physical Society 054402-1
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for the LHC bunches, 1011 particles are represented by 104

macroparticles.

III. BASIC HFMM ALGORITHM

For our problem we studied a modified version of FMM,
a hybrid FMM (HFMM) [9]. It resembles a particle-mesh
method for the handling of charges and superparticles;
however, the forces on the superparticles are evaluated us-
ing the FMM. Smoothing can help to avoid charge over-
loading. The HFMM is a robust implementation of a FMM
field solver, which is designed to solve the field for an arbi-
trary collection of discrete charges. It divides the solution
domain into a grid and a halo area. The grid area is subdi-
vided into a hierarchical tree of square regions. In the first
step of the calculation, the macroparticles inside the grid
are assigned to grid points. All macroparticles outside the
grid are treated as discrete, independent superparticles and
form the halo. The charge assignment can be done with a
“nearest-grid-point” method; i.e., the charge is assigned to
the nearest grid point. This is the simplest method; how-
ever, the field values are not continuous and the results are
more noisy. Alternatively one can use the cloud-in-cell
(CIC) charge assignment where the charge is shared be-
tween the neighboring grid points. This method gives
continuous field values but requires more bookkeeping.

Finally, multipole expansions of the field are computed
for every point, i.e., for each grid point as well as for every
halo particle, and the program derives the resulting forces
on the particles of the counterrotating beam. In the case
of a CIC charge assignment, appropriate interpolation be-
tween the fields calculated for the grid points have to be
applied. The grid size and shape do not have to follow any
special geometry and can be chosen freely to achieve the
desired speed and precision, depending on the problems
under investigation. Unlike other Poisson solvers, the grid
054402-2
points with no charges assigned are left out of the com-
putation and the number of computations scales roughly
with the number of particles. More details of the method
used in this report are found in [9]. This method is already
implemented in the ACCSIM program [10] to study space
charge problems.

In this work we implemented the HFMM in our beam-
beam simulation program to evaluate the force on a test
particle generated by an arbitrary charge distribution. This
will be applied to study the strong-strong collision of two
bunches colliding at one IP. We will study the coher-
ent modes that are excited in the collision of two equal
round bunches similar to those of LHC, when colliding
head-on or separated by a constant offset at one interac-
tion point (long-range interactions). This will enable us to
obtain the correct Yokoya factor by multiparticle tracking
and, in a later stage, to study in detail the modes excited
by long-range interactions. Finally, it should allow us to
study the possible emittance growth of collisions of par-
tially overlapping bunches [11].

IV. TRACKING WITH HFMM

We simulate the collision of two strong proton beams.
Our variables are horizontal position x, vertical position y,
horizontal angle yx � x0, and vertical angle yy � y0. The
prime denotes the derivative with respect to longitudinal
position s; e.g., x0 is the slope of the horizontal trajectory.

Each of the beams has one bunch that is represented by
a set of Np macroparticles, whose trajectories are followed
over n turns, assuming linear betatron motion without cou-
pling and a beam-beam collision at one IP. At the IP every
particle in the bunch experiences a deflection by the field
of the counterrotating beam that depends on its position.

The deflection applied to a single particle in one of the
beams is calculated using the HFMM.

The linear map from one IP to the next is
µ
x�n 1 1�
yx�n 1 1�

∂
�

µ
cos�2pQx� sin�2pQx�

2 sin�2pQx� cos�2pQx�

∂ µ
x�n�

yx�n� 1 Dyx�n�

∂
. (1)
An equivalent map is applied in the vertical plane �y, yy�.
The horizontal deflection experienced at the interaction

point is

Dyx�n� �
rpN�

g
Ex�x, y� , (2)

where Ex�x, y� is the horizontal force evaluated with the
HFMM technique at the particle position �x, y�. The num-
ber of particles in the opposing beam is N�.

For the simulation of parasitic (long-range) collisions,
the same model is employed. The two beams collide with
a horizontal separation Lx (in units of sx). For low b

insertions we have about 90± phase advance between the
IP and the long-range collision region. Since in the LHC
the betatron phase advance between long-range collisions
on one side of the interaction region is very small, we can
lump all npar parasitic collisions into a single collision to
reduce the computing time. This overestimates the effect
slightly because the bunches oscillate with different phases
with respect to each other.

Because a static dipole kick would change the closed
orbit of the bunch, the static kick from the long-range
collision must be subtracted [12]. The beam-beam long-
range kick used in our simulation code is then

Dyx�n� � npar

2rpN�
p

g

3 �Ex�x 1 Lxsx , y� 2 Dx�Lxsx , 0�� , (3)

where Dx�Lxsx , 0� � 21�Lxsx�1.0 2 exp�2 L2
x

2.0 �� is
the (constant) dipole kick generated by a Gaussian
054402-2
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FIG. 1. (Color) Beam-beam kick as calculated with HFMM (points) and from analytical expression (solid line) for round beams
with Gaussian distribution. Left: 0.25s grid (81 3 81) and nearest-grid-point assignment. Right: CIC assignment.
distribution at a distance x � Lxsx . This assumes that a
closed orbit exists [11] and the bunches oscillate coherently
around this orbit. At the LHC, there are about npar � 16
parasitic encounters on each side of an IP, with a mini-
mum transverse separation of Lx � 7.5 (in units of sx).
The fractional parts of the horizontal and vertical tunes
are 0.31 and 0.32, and, unlike the Large Electron Positron
Collider (LEP) [13], the results are not strongly affected
by dynamic beta effects. In Figs. 1 and 2 we show com-
parisons between the beam-beam kicks calculated with the
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FIG. 2. (Color) Beam-beam kick as calculated with HFMM (points) and from analytical expression (solid line) for round beams
with Gaussian distribution. Left: 0.10s grid (201 3 201) and nearest-grid-point assignment. Right: CIC assignment.
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HFMM and those obtained from an analytical expression,
both for the case of round, exactly Gaussian beams. In
Fig. 1 we test the different methods for the charge assign-
ment for a grid spacing of 0.25s with a grid of 81 3 81,
where 81 is the number of grid points in each plane. Thus
the grid for the head-on collisions covers the amplitudes
between 210s and 110s. While the nearest-grid-point
assignment gives visibly discontinuous values, the force
evaluated with the CIC assignment is continuous and there-
fore preferable.
054402-3
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In Fig. 2 we used a different grid spacing of 0.10s with
a grid of 201 3 201 to test the obtained accuracy. The
effect of the discontinuous values in the nearest-grid-point
assignment is now smaller and barely visible, as one could
expect. The grid size for the simulation is a compromise
between precision and computing speed. A grid spacing of
0.1s or below gives good results. For most simulations we
have therefore chosen such a spacing and the CIC charge
assignment.

V. SIMULATION RESULTS

In this section we give quantitative results on the coher-
ent modes for head-on as well as some first results with
long-range interactions. Since the symmetry of beam pa-
rameters plays an important role for the coherent motion,
we study the relevance of intensity differences as well as
tune and beam size asymmetries. They are expected to
make it more difficult to maintain a coherent motion and
will eventually help to avoid it.

A. Head-on collisions with equal betatron tunes and
intensity

First, let us consider the strong-strong case and head-on
collisions of two round bunches, using the previous maps.
The statistical variation in the initial distribution of par-
ticles is sufficiently large to excite the coherent modes. We
start with equally strong beams; i.e., the intensity ratio RI

between the weaker and stronger beam is 1.0. If we per-
form a harmonic analysis of the motion of the barycenter
of one bunch, we find two coherent modes. One is located
at the unperturbed tune Q, the other has a lower frequency.
In Fig. 3 we plot the amplitude frequency spectrum. The
horizontal axis gives the tune shift from the unperturbed
tune Q in units of j (i.e., w �

n2Q
j , for the round

beam case jx � jy � j � 0.0034, Qx � 0.31, Qy �
0.32). For the other beam and the other plane a similar
picture is obtained. Analyzing the spectra of the distance
between the centroids, i.e., the expressions �x�1�� 2 �x�2��
and �y�1�� 2 �y�2��, the coherent mode at the unperturbed
frequency disappears. On the other hand, when we analyze
the sum of the centroids (�x�1�� 1 �x�2��, �y�1�� 1 �y�2��)
the lower mode frequency disappears. We can thus
identify the mode at the unperturbed frequency as the
so-called s mode for which the centroids of the bunches
oscillate in phase with equal frequencies and amplitudes.
The lower frequency mode is called p mode, and in this
mode the centroids oscillate also with equal frequencies
and amplitudes but in opposite phase. The motion of the
bunch centroids is a superposition of these two modes.

Between the p and the s mode in Fig. 3 we find the
incoherent continuum. A single particle crossing the op-
posing beam at a distance from its axis feels a defocusing
force (or focusing force in the case of oppositely charged
beams such as LEP), which leads to a change in its tune.
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FIG. 3. (Color) Frequency spectrum of the bunch centroid mo-
tion (for 217 turns, N � 104 macroparticles) for round beams.
The grid covers from 210s to 10s, the rest of the particles be-
ing treated as halo particles. The horizontal axis gives the tune
shift from the unperturbed tune Q in units of j, i.e., w �

n2Q
j .

The vertical axis is the corresponding amplitude. The p and s
oscillation modes are clearly visible.

For particles near the center of the counterrotating beam
this tune shift is equal to 2j. For particles farther away,
the defocusing force is smaller (due to the nonlinearity of
the beam-beam force) and vanishes asymptotically. This
creates an incoherent tune spread which extends from 0
to 2j.

In our simulations we find the p mode at a tune shift of
exactly 1.21 6 0.005 in units of j (and j � 0.0034). The
p mode is thus shifted outside of the continuum. The shift
calculated with HFMM is therefore in excellent agreement
with the theoretical prediction [1,4].

B. Head-on collisions with equal betatron tunes and
different intensity

It was predicted [4] that for intensity ratios of 0.6 or
lower, the p mode merges with the continuum. In the
soft Gaussian model this prediction cannot be tested ex-
actly since the p mode tune shift is underestimated [2,3].
In this section we can now make a more precise quantita-
tive comparison. Figure 4 clearly confirms this prediction:
the p mode merges into the incoherent spectrum at Alex-
ahin’s ratio of 0.6 and is Landau damped. In the LHC the
expected bunch-to-bunch intensity difference may be as
large as 620%. Although this alone will not be sufficient
to recover Landau damping, together with other uncertain-
ties (see, e.g., Sec. V D) and suggested remedies (see next
section) it should simplify the damping of the modes.
054402-4
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FIG. 4. (Color) Frequency spectrum of the bunch centroid motion (over 217 turns, N � 104 macroparticles) for round beams and
intensity ratio RI � 0.65 (left) and 0.55 (right).
C. Head-on collisions with different betatron tunes

The first proposed remedy to avoid coherent beam-beam
modes was to decouple the two beams by using different
fractional tunes for their tunes [14]. This is possible in
the LHC since we have two separate rings. Possible un-
wanted side effects of such a scheme were discussed in
[15]. The sensitivity to the expected small tune differences
is demonstrated here quantitatively. While the fractional
054402-5
part of beam one is kept at 0.310, the tune of the second
beam is slightly varied. For a tune difference between the
two beams of more than �0.7j, the p mode disappears
into the continuum, as shown in Fig. 5.

D. Head-on collisions with different beam sizes

Similar to an intensity imbalance, different beam sizes
of the two beams can lead to loss of coherence and damped
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FIG. 5. (Color) Frequency spectrum of the bunch centroid motion (for 217 turns, N � 104 macroparticles) for round beams and
different fractional tunes of the second beam: 0.312 (left) and 0.313 (right). The tune of the first beam is kept at 0.310.
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FIG. 6. (Color) Frequency spectrum of the bunch centroid motion (for 217 turns, N � 104 macroparticles) for round beams and size
ratios s�2��s�1� of 0.90 (left) and 0.70 (right).
coherent modes. In Fig. 6 we show the spectra for beam
size ratios of 0.90 and 0.70. Since the beam size (of the
second beam) is now smaller, the tune shift is slightly
larger than in the original case. While for a ratio of 0.90 the
p mode is still very visible, it has merged with the incoher-
ent spectrum for 0.70. The mechanism is the same as for
a beam intensity imbalance. At this point one can specu-
late whether the size imbalance can be compensated by an

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-3 -2 -1 0 1 2

FIG. 7. (Color) Frequency spectrum of the bunch centroid mo-
tion (for 217 turns, N � 104 macroparticles) for round beams
and size ratios s�2��s�1� � 0.70 and intensity ratio RI � 0.5.
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intensity imbalance, adjusted to give the same beam-beam
tune shift parameter j. The result of such a simulation is
shown in Fig. 7 with the beam radius of the second beam
reduced to 0.7, but with a smaller beam intensity (50%).
The beam-beam parameter is therefore the same. We ob-
serve a clear coherent mode again. This observation, how-
ever, is nontrivial. When the beams have different sizes
and geometrical distributions, the fields seen by the two
beams are rather different, although the tune shift parame-
ter for the small amplitude particles is the same. The rea-
son is that the larger beam experiences a very nonlinear
force for particles at much smaller amplitudes than the
smaller beam. Particles at larger amplitudes must there-
fore behave rather differently. For the single particle be-
havior, i.e., population of beam tails and lifetime, this is
known to be of extreme importance [16,17]. For a coher-
ent oscillation it is mainly the oscillation frequency that
must be the same, and it is known that, for the head-on
collisions studied in this example, it is mainly the core of
the beam contributing to the coherent oscillation and the
tune shift. The core particles always experience an almost
linear force proportional to the beam-beam parameter, and
this explains the observation.

Similar observations have been made in simulations of
asymmetric colliders such as PEP-II [18] where the energy
transparency condition was studied, i.e., where the energy
asymmetry was compensated by an asymmetry of the beam
currents.

E. Coherent modes from long-range collisions

Since the transverse distance between two bunches at
the parasitic collision is larger than the rms beam size, the
054402-6
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effects will be similar to the coherent interaction of rigid,
pointlike bunches. In that case the contribution of parasitic
crossings to the tune shift of coherent oscillation modes
would be

Dnp � 2 3 �incoherent long-range tune shift� ~ 1�L2
x ,
(4)

Dns � 0 . (5)

Moreover, the incoherent long-range tune shifts for beam
separations larger than �1.5s have different signs for the
two planes. Both the coherent and incoherent tune shifts
depend on the separation, and for sufficiently large separa-
tion they scale with the inverse of the separation squared.

Most important, however, the width of the incoherent
spectrum (tune spread) of long-range collisions alone de-
pends on the separation and in the LHC is smaller than
the tune spread from head-on collisions [19,20]. The dis-
tance of the p mode from the edge of the incoherent spec-
trum is therefore rather different from the head-on case
and one must expect a different behavior. In particular, the
necessary measures to merge the coherent modes with the
incoherent spectrum must be at least quantitatively differ-
ent. In this report we have a first look at the dynamics
of long-range collisions separately to demonstrate the dif-
ferences. For an evaluation of the necessary operational
parameters, both head-on as well as long-range collisions
must be considered together as was done with the Gauss-
ian approximation [2]. A more complete study should also
include multiple bunches and interaction points and will
be treated at a later stage [21].
054402-7
F. Simulation of long-range collisions

The simulation of coherent modes from separated beams
is a good example where the HFMM can be used to great
advantage. In a conventional particle-mesh method, most
grid points between and around the beams are empty, and
with a typical separation around 10s the necessary com-
puting time becomes unacceptable. With the HFMM we
have the option to either treat the opposing beam as a halo
or to choose the grid large enough to cover both beams.
Although at first sight the second option looks like a con-
ventional grid method, the advantage is clear: the fields are
calculated with the FMM field solver only at the grid points
with charges and the saving in computing time is large.
Treating the opposing beam as a real halo object usually
requires more time than covering the whole area. In Fig. 8
we show the horizontal spectrum for long-range collisions
with a horizontal separation Lx � 10.0 (in units of sx).
We plot it again as a function of the distance to the unper-
turbed tune, normalized to the head-on beam-beam tune
shift j, to allow a quantitative comparison to the head-on
modes. For one of the figures (left side) the particles in the
opposing beam were treated as halo particles, i.e., were not
covered by the grid. In the right-hand figure the grid was
extended to 15s, i.e., included both beams. Both methods
give the same results; however, the computing speed is
very different. The treatment as real halo is very time con-
suming. The real difference to a particle-mesh code then
comes from the fact that only grid points with particles are
treated, thus the number of computations scales as O�Np�.
The computing speed difference is about a factor of 2.5
between the two options; therefore, in all simulations we
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FIG. 8. (Color) Spectrum of the horizontal centroid motion for long-range collisions with horizontal separation Lx � 10.0 (in units
of sx) and no head-on collision (215 turns, N � 104 macroparticles). For the left figure the grid did not cover both separated beams;
i.e., the particles in the second beam were treated as halo particles. In the right figure the grid covered both beams.
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choose the procedure to cover the whole area with a grid,
including both beams.

As in the case of head-on coherent modes, we iden-
tify the s and p modes easily by analyzing the sum and
the difference of the barycenters separately. The peaked
structure between the two modes again represents the in-
coherent continuum, this time arising from the long-range
054402-8
interaction. As expected, the coherent shift is 2 times
larger than the shift of the incoherent spectrum.

G. Long range collisions with equal tunes

Figure 9 shows the horizontal and vertical spectra of
centroid oscillations of a bunch subject to long-range
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FIG. 9. (Color) Spectrum of the vertical (left) and horizontal (right) centroid motion for long-range collisions with horizontal sepa-
ration Lx � 10.0 (in units of sx) and no head-on collision (215 turns, N � 104 macroparticles). The tune shifts due to long-range
collisions have opposite signs in the two transverse planes. The coherent p mode is at twice the incoherent tune shift.
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FIG. 10. (Color) Spectrum of the vertical (left) and horizontal (right) centroid motion for long-range collision with horizontal sepa-
ration Lx � 6.0 (in units of sx) and no head-on collision (215 turns, N � 104 macroparticles). The tune shifts due to long-range
collisions have opposite signs in the two transverse planes.
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collisions with a horizontal separation of Lx � 10.0sx .
To obtain realistic tune shifts, we have lumped all 32
long-range interactions of a LHC interaction region into a
single collision. The optics and geometry of the interaction
regions permit this simplification [2,12]. The horizontal
axis gives the tune shift relative to the unperturbed tune
Q in units of the head-on beam-beam parameter j: w �
n2Q

j . In the horizontal plane, the tune shifts are positive,
and the coherent dipole p mode has twice the incoherent
tune shift. In the vertical plane, the tune shifts are
negative. The normalized tune shifts of the p modes are
�wx , wy� � �0.645 6 0.005, 20.644 6 0.005�. In Fig. 10
we show the results for a separation of 6.0sx and find
values of �wx , wy� � �1.828 6 0.005, 21.762 6 0.005�.
Comparing Figs. 9 and 10, the larger tune shift for
the smaller separation is clearly visible as well as the
increased tune spread of the incoherent spectrum. Both
scale with 1�L2

x as expected.

VI. CONCLUSIONS

We implemented the HFMM technique to describe the
beam-beam collision of two beams in the strong-strong
regime. This allows us to study, by means of multiparticle
tracking and with no approximation in the evaluation of the
electromagnetic force, the coherent modes of oscillations
of two colliding beams. Future improvements will extend
this work to several bunches per beam and, in particular,
will allow us for the first time to study details of the modes
excited by long-range interactions.
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