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Saturation of the coherent beam-beam instability
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The nonlinear regime of the beam-beam instability for flat beams is considered. Excitation of coherent
modes and mode interaction is studied above the threshold of instability. It is shown that the exponential
growth of the linear approximation may saturate, leading to a finite growth of transverse emittance.
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I. INTRODUCTION

The beam blowup due to the beam-beam interaction is
one of the main factors limiting luminosity and lifetime in
circular colliders. This effect is well known and has been
studied theoretically, numerically, and experimentally. In
particular, the coherent beam-beam instability was stud-
ied and its importance was emphasized; see, for example,
[1–5].

This paper considers two mechanisms of beam-beam
blowup: one is due to harmonics of periodic beam-beam
kicks generated by a rigid bunch of the opposite beam, and
the second mechanism is due to saturation of the linearly
unstable beam-beam coherent modes. The latter is similar
to the microwave instability. This mechanism can be de-
scribed as excitation of unstable modes which, in their turn,
modify the bunch distribution to a new steady-state equilib-
rium. We hope these mechanisms may explain emittance
blowup in the flip-flop regime. A flat beam is assumed
with parameters of the PEP-II B Factory [6]. For the sake
of completeness, the basic formulas are rederived.

This paper is organized as follows: In the next section,
the notations are introduced and the explicit form of the
beam-beam potential and tune shift are given for a flat
beam. Emittance growth due to beam-beam resonances
for rigid bunches is estimated in Sec. III. In Sec. IV, we
consider a nonlinear resonance, which selects two coupled
resonance azimuthal modes. The Vlasov equations for the
selected azimuthal modes are derived and solved in Sec. V
in the linear approximation. The solution describes the ra-
dial modes and allows analysis of their stability. The radial
modes, independent in the linear approximation, interact
due to coupling between modes. The mode interaction
is considered in Sec. VI in quasilinear theory. Saturation
of a single linearly unstable radial mode is described in
Sec. VII. Interaction of two radial modes is analyzed in
Sec. VIII. The results are summarized in Sec. IX.

II. BASIC KINEMATICS AND NOTATIONS

Beam-beam interaction of flat beams can be described
by 1D model averaging the Coulomb interaction (doubled
to take into account the magnetic field force) over Gaussian
1098-4402�01�4(4)�044401(8)$15.00
distribution in the horizontal plane. The steady state can
be described by the Hamiltonian averaged over the revolu-
tion period. Below the threshold of coherent instability,
action-angle variables I,a can be chosen to make the
steady-state (Haissinski) Hamiltonian HH�I� independent
of a. In the lowest order in the beam-beam parameter,
we can neglect all anharmonic terms of particle motion.
In this approximation, the vertical position of a particle
y � Dy0 1 w

p
2Iey cosa, where e � s2�b is vertical

beam emittance, 2Dy0 is distance between beam centroids
(vertical beam offset), w �

p
by , and by is vertical beta

function.
The steady-state normalized distribution function rH�I�

of a beam also depends only on I , rH�I� � 1
2p e

2I . Dis-
tribution rH is normalized, 2p

R
dIrH�I� � 1.

The full distribution function r�I ,a,f� is the sum of
azimuthal harmonics. For the first bunch,

r1�I,a,f� � r
�1�
H �I� 1

X̀
n�2`

r�1�
n �I,f�eina,

r2n � rc.c.
n . (1)

Here df � ds�R, where s is the particle position along
the ring and 2pR is the ring circumference. The aver-
age effect of the beam-beam interaction depends on the
beam-beam parameter jBB which is usually small, jBB ,

0.05. Hence, the steady-state effect of the beam-beam
force leads only to small transverse potential well distor-
tion and cannot explain the beam blowup. This also allows
us to use Gaussian distribution as the zero-order bunch dis-
tribution function.

The Hamiltonian of the system is the sum of the Hamil-
tonians of two beams

H � H1�I1,a1,f� 1 H2�I2,a2,f� . (2)

Each one of them depends on the distribution function
of another bunch. The Hamiltonian in the angle-action
variables takes into account all azimuthal harmonics of the
distribution function rk , H1�I ,a,f� � H

�1�
H 1 DH1,
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DH1�I ,a,f� � 2pL1

X
n,mfi0

ei�na2mf�
Z
dI 0�Sn0�I , I 0,Dy�r�2�

H �I 0�

1
X
k

Sn,kr
�2�
k �I 0�� 1 2pL1

X
n
eina

X
k

Z
dI 0Sn,k�I , I 0,Dy�r�2�

k �I 0,f� . (3)
Here,

L1 �
2N

�2�
b r0

2pg1e
�1�
y

. (4)

Function Sn,k is obtained directly from the kick due to
Coulomb interaction between bunches averaged over the
Gaussian distribution in the x plane. The numeric fac-
tor in Sn,k for the first beam is slightly different (1�

p
2

or
p
p�2) depending on whether the averaging is carried

out for both beams or only over the x distribution of the
fist beam. This difference does not affect the following
consideration. Assuming equal horizontal rms dimensions
sx of two beams at the interaction point (IP) and neglect-
ing anharmonic corrections to the particle trajectories, we
write the function Sn,l for a flat beam as
Sn,l�I , I 0,Dy0� � 2
Z `

0

dx
x

erfc

∑
x
p

2
sx

s2,y

∏ Ω
cos

∑
�n 2 l�

p

2
1

Dy0
p

2
s2,y

x

∏
Jn

µ
2s1,y

s2,y

p
I x

∂
Jl�2

p
I 0 x� 2 1

æ
, (5)

where erfc�j� � ej
2 �1 2 erf�j��, erf�j� is the error function. Here we dropped the factor e2x

2�4s2
x � 1 for typical

jxj , sx .
For a flat beam, the main contribution is given by j � xsx�sy ¿ 1. In this case, erfc�j� � 1��j

p
p �. For more

details, see [7].
The steady-state Hamiltonian H

�1�
H �I� � Q1I 2 DH

�1�
H , where Q1 is the zero-current tune. The second term, DHH�I�,

takes into account the average part of the beam-beam potential defined by the contribution of rH , which is not included
in Eq. (3),

DH
�1�
H �I� � 2

L1s2y
p

2psx

Z `

0

d
x2

Ω
J0

µ
2s1,y

p
I

s2,y
x

∂
cos

∑
Dy0

p
2

s2,y
x

∏
e2x

2

2 1

æ
. (6)
Equation (6) defines frequency v1�I� � dH
�1�
H �dI �

Q1 1 DQ1�I�, where the beam-beam tune shift for the first
beam (averaged over distribution in the x plane) is

DQ1�I� �
L1s1,y

sx
p

2pI

3
Z `

0

dx
x
J1

µ
2s1,y

p
I

s2,y
x

∂
cos

µ
Dy0

p
2

s2,y
x

∂
e2x

2

.

(7)

For small amplitudes I and Dy0 � 0, dQ�I� is propor-
tional to the beam-beam parameter jBB. The extra factor
1�
p

2 comes from averaging over the x distribution.
Hamiltonian H2 for the second beam can be obtained

by interchanging indices 1 and 2, and substituting
Sk,n�I 0, I ,Dy� for Sn,k�I, I 0,Dy�.

III. EFFECT OF THE NONLINEAR RESONANCES

If nonzero components rk can be neglected, the simpli-
fied Hamiltonian is

H1�I,a,f� � H
�1�
H 1

X
n

X
mfi0

Un�I�ei�na2mf�, (8)

where the functions

Un�I� � 2pL1

Z
dI 0 Sn0�I, I 0,Dy�r�2�

H �I 0� (9)

are
Un�I� � 2
L1sy

sx
p

2p

3
Z `

0

dx
x2 e

2x2

Jn

∑
2x

s1,y

s2,y

p
I

∏
cos�cn�x�� .

(10)

Here, cn�x� � np�2 1 �Dy0�s2y�
p

2x. For zero offsets
Un fi 0 only for even n � 2k. In this case, U2k is given
in terms of the degenerate hypergeometric function,

U2k � �21�k11 L1s2y

2sx
p

2p

G�k 2 1�2�
G�2k 1 1�

µ
sy1

sy2

∂2kµ I
e1

∂k

3 F

∑
k 2 1�2, 2k 1 1,2

µ
sy1

sy2

∂2 I
e1

∏
. (11)

Hamiltonian Eq. (8) is the Hamiltonian of a nonlinear
oscillator with frequency v1�I� � dHH�I��dI in the ex-
ternal periodic potential.

The perturbation due to beam-beam kicks is small,
of the order of jBB, except for I near the resonances
v1�IR� � m�n. Particles with amplitudes I � IR are
trapped in a separatrix and the modulation of their ampli-
tudes is of the order of the size of the separatrix, DI �

2
q

2Unm�IR��v0
1�IR�, where v

0
1�I� � d2H1�I��dI2. Usu-

ally, v0 due to lattice nonlinearities is small. In this
case, both terms Un,m and v0 are proportional to L and
dependence of the width DI on current arises only through
the dependence of the shape rH on current. For DI of the
044401-2
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FIG. 1. Distortion of the beam emittance DI due to
n � 2k-order resonance vs detuning from the resonance.

order of 1, the rms sy defining Un,m has to be understood
as a self-consistent parameter.

For small I and zero offsets, the width of an even reso-
nance n � 2k is

�DI�2k �
4
p

2

p1�42k
p

�k 2 1�2�k!
I
k�2
R

µ
sy1

sy2

∂k22

. (12)

The width is small for higher order k ¿ 1 resonances.
Particles trapped in the resonance separatrix change the

distribution function [8]. For small separatrices

r�I� �
1
Z
e2�1�T � �H�I�7v�IR�DIC�0��, (13)

where H�I� � QyI, T � Qyey , C�0� � 0.69, and the
plus (minus) sign corresponds to amplitudes above (be-
low) resonance amplitude IR .

Resonance changes unperturbed rms �I� � 1 to

�I� � 1 1 2�DI�2kC�0�IRe2IR , (14)

for small �DI�n.
Emittance distortion is small for higher order reso-

nances; see Fig. 1.
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IV. THE FOKKER-PLANCK EQUATION

In this section we assume that the weak-strong reso-
nances v � n�m considered in the previous section are
avoided by a proper choice of the working point in the tune
diagram. This allows us to drop the term proportional to
rH . Perturbation in this case is produced by the azimuthal
harmonics of the distribution function, H1�I ,a,f� �
H

�1�
H 1 DH1,

DH
�1�
1 � 2pL1

X̀
n,m�2`

ei�na2mf�

3
Z
dI 0

X̀
k�2`

Sn,kr
�2�
k �I 0,f� . (15)

Term k � 0 describes dynamic variation of the distribu-
tion function and plays a crucial role in the following
considerations.

Let us start with the Fokker-Planck equation in y, q �
dy�ds, and f variables:

≠r

≠f
1 	H,r
q,y � g0

≠

≠q

∑
D
g0

≠r

≠q
1 qr

∏
. (16)

Here the diffusion D is due to fluctuations of the synchro-
tron radiation (SR) in the horizontal plane and �x y�
coupling, g0 is damping in the vertical plane. Damping
gives �q� ~ e2g0s�R , diffusion causes rms growth �q2� �
2Ds�R, and their ratio defines equilibrium temperature
T � �q2� � D�g0 � ey�by and the vertical emit-
tance ey .

The right-hand side (RHS) of Eq. (16) averaged over a
can be written in I ,a variables as

R
�1�
k � g0

≠

≠I

Ω
I
≠r

�1�
k

≠I
1 Ir

�1�
k

æ
2 g0

k2

4I
r

�1�
k . (17)

Here we have neglected betatron resonances Qy � n�m
considered above, replaced Qyby by its average value
over one turn

R
�df�2p�Qyby � R, and introduced di-

mensionless g0 � 1��v0tSR�, where v0��2p� is revolu-
tion frequency and tSR is radiation damping time.

The Fokker-Planck equation for azimuthal harmonics
rk�I,f� takes the form
≠r
�1�
k

≠f
1 ikv1�I�r�1�

k 1 iL1

X
m,n,l

�k 2 l�r�1�
k2le

imf
Z
dI 0 da0 r�2�

n �I 0�
≠Sln�I, I 0�

≠I
2

iL1

X
m,n,l

l
≠�rHdk,l 1 r

�1�
k2l�

dI
eimf

Z
dI 0 da0 r�2�

n �I 0�Sln � R
�1�
k . (18)

Harmonics r0 satisfy the following equation:

≠r
�1�
0

≠f
2 iL1

≠

≠I

X
m,n,l

l�r�1�
l �c.c.eimf

Z
dI 0 da0 r�2�

m �I 0�Slm�I, I 0,Dy0� � R
�1�
0 . (19)

The equation for the second beam can be obtained by replacing index 1 ! 2 and Snl�I , I,Dy0� by Sl,n�I 0, I ,Dy0�
because Sln�I, I 0,2Dy0� � Snl�I 0, I ,Dy0�.

For small coherent tune shifts DQ ø 1, dependence on f of azimuthal harmonics is given mainly by the factor
e2ikQyf.
044401-3
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Generally, there is a dense net of resonances in the plane
Qy1,Qy2. The width of the resonance line is of the order
of the beam-beam parameter and increases with the bunch
current. Eventually, resonances overlap and the motion
becomes stochastic.

Let us consider bunch current slightly above the thresh-
old of the coherent beam-beam instability. In this case,
the tune spread with amplitude within the bunch distri-
bution can be smaller than the distance to the low or-
der resonances. Higher order resonances are suppressed
by the synchrotron damping. For electron machines it is
sufficient to consider resonances of the order of jn0j 1
jm0j ,� 4. In this case, we can consider isolated reso-
044401-4
nances and assume that beam dynamics is defined by
the resonance �n0, l0� with the smallest detuning Dm �
n0Q1,y 2 l0Q2,y 2 m0.

This allows us to average fast oscillating terms and retain

only equations for harmonics r
�1�
n0 and r

�2�
l0 .

Let us introduce slow functions f
�1�
n0 and f

�2�
l0 ,

r
�1�
n0 � f1e

2in0Q1f1iDm�2f,

r
�2�
l0 � f2e

2il0Q2f2iDm�2f.
(20)

In the linear approximation, these functions satisfy the
coupled system of equations
≠f1

≠f
1 i

∑
n0�v1�I� 2 Q1� 1

Dm
2

∏
f1 2 iL1n0

≠r
�1�
H

≠I

Z
dI 0 da0 f2�I 0�Sn0,l0�I , I 0� � 0 , (21)

≠f2

≠f
1 i

∑
l0�v2�I� 2 Q2� 2

Dm
2

∏
f2 2 iL2l0

≠r
�2�
H

≠I

Z
dI 0 da0 f1�I 0�Sn0,l0�I 0, I� � 0 . (22)

The system has a solution in the form

f1�I ,f� �

vuut Ç
L1n0

≠r
�1�
H

≠I

Ç
Xe2inf, f2�I,f� �

vuut Ç
L2l0

≠r
�2�
H

≠I

Ç
Ye2inf. (23)

The vectors �X,Y � are eigenvectors of the matrix√
�n0DQ1 1 Dm�2�d�I 2 I 0� 2sgn�n0�K�I , I 0�

2sgn�l0�KT �I, I 0� �l0DQ2 2 Dm�2�d�I 2 I 0�

!
.

Here K�I, I 0� � 2p
q
jL1L2n0l0

≠r�1�

≠I
≠r�2�

≠I j, and KT is the
transposed matrix KT �I , I 0� � K�I 0, I�. Because this ma-
trix is real and symmetric, the eigenvalues n are real and
the system is stable provided n0l0 . 0. Hence, instability
is possible only if n0l0 , 0, i.e., for the sum resonances.

It should be mentioned though that this conclusion is
derived from the explicit form of Sn,l�I, I 0� which was cal-
culated by neglecting all anharmonic terms in the trajec-
tory Y �I,a,f�. It is well known that, for the microwave
instability, exactly these terms are responsible for the on-
set of instability. However, for the beam-beam interaction
at the sum resonances these terms give only small correc-
tions although they may be important for the difference
resonances.

It is worth noting that if n 2 l � odd, Snl fi 0 only for
nonzero offsets Dy0.

The effect of a resonance on beam dynamics depends
on the resonance order jn0j 1 jl0j and the detuning Dm �
n0Q1,y 2 l0Q2y . For the sum resonances n0l0 , 0, which
are above and to the right of the working point, the tune
is shifted toward the resonance due to finite amplitudes of
betatron oscillations.

V. THE LINEAR APPROXIMATION

In the linear approximation, let us expand slow functions
in Eqs. (21) and (22) over eigenvectors Vn � 	Yn ,Xn
,

f1�I,f� �
≠r

�1�
H

≠I

X
n

AnYne
2inf,

f2�I,f� �
≠r

�2�
H

≠I

X
n

AnXne
2inf.

(24)

Vectors Vn�I� � �Xn ,Yn� are the eigenvectors (radial
modes) of the matrix M,

R
M�I, I 0�Vn�I 0� dI 0 � 2nVn�I�,
M �

√
�2l0DQ2 1 Dm�2�dII0 M2

M1 �2n0DQ1 2 Dm�2�dII 0

!
, (25)
044401-4
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FIG. 2. (Color) The fastest growth rate of the radial modes
for the resonance n � 2, l � 21 vs beam currents. Bunch
population �N�N0�LER � 1 1 0.2�i 2 1�, �N�N0�HER � 1 1
0.2�j 2 1�, �i, j� � 1, . . . , 10; Qy LER � 34.64; Qy HER �
23.64.

where dII 0 � d�I 2 I 0�,

M1�I, I 0� � 2pL1n0
dr

�2�
H �I 0�
dI 0

Sn0,l0�I, I 0� , (26)

M2�I , I 0� � 2pL2l0
dr

�1�
H �I 0�
dI 0

Sn0,l0�I 0, I� . (27)

The norm
R
dI V̂mVn � dn,m, where V̂m are eigenvec-

tors of the transposed matrix MT .
The nominal parameters of the B Factory are [LER/HER

stand for the low energy (positron) and high energy (elec-
tron) rings, respectively] N0

HER � 1.74 3 1010, N0
LER �

5.617 3 1010, sx � 145.4 mm, sy,LER � sY ,HER �
3.79 mm, �v0td�21 � 2.92 3 1025, and the values
L1 � 1.988, L2 � 1.782 have been used for numerical
calculations unless specified otherwise.

At low bunch currents all eigenvalues are real. At a
threshold current, one of the modes becomes linearly un-
stable; see Fig. 2.
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8582A3

  1
05

 x
 G

ro
w

th
 R

at
e

8

4

0
0 0.4 0.8 1.2 1.6

1.0
0.5

1.5

(N/N0)HER

FIG. 3. The maximum growth rate of radial modes for the
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units of sy .
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FIG. 4. Eigenvectors V �I� and V̂ �I�, I � 0.05�k 2 1�, of the
most unstable radial mode vs k � 1, . . . , 100. The left part of
the curves k � 1, . . . , 50 corresponds to vector X, the right part
to Y .

The threshold current depends on the detuning from the
closest resonance and the beam offset Dy. Figure 3 shows
the maximum growth rate of radial modes for the reso-
nance n0 � 2, l0 � 23 vs �N�N0�HER for the three off-
set Dy0. The latter is given in units of the vertical rms
Dy0�s2 � 0.1 1 0.2�j 2 1�, j � 1, . . . , 10.

At the nominal bunch current there is only one linearly
unstable radial mode. The matrix M�I , I 0�, eigenvectors
Vn�I�, and the functions f1,2 were discretized on the mesh
i, j � 100 3 100. It is worth noting that the number of
radial modes depends on the rank of the matrix M, i.e.,
on the discretization step DI , and does not have physical
meaning. However, only a few of the modes are real
coherent modes while others can be considered as single-
particle modes. The first can be defined as modes whose
widths are larger than DI . Such modes have the lowest
maximum magnitude of the normalized eigenvector jV j2.

Figure 4 gives an example of the mode structure, i.e.,
jV j2 and jV̂ j2 of the most unstable mode. The eigen-
vectors of the most linearly stable mode (the mode with
eigenvalue which is complex conjugated to the eigenvalue
of the unstable mode) has the same structure. Nomi-
nal currents were used in calculations, QyHER � 23.64;
QyLER � 34.61. The resonance n0 � 2, l0 � 21 de-
tuned by DQ � 20.03 was used as an example. Maxi-
mum linear growth rate in this case is for the mode 62,
n � 0.00479 1 0.0011i, mode 61 is the most stable mode
(m � n�). The SR decrements were set to be equal to g0.

VI. INTERACTION OF RADIAL MODES

Consider a resonance with azimuthal numbers n0, l0
neglecting all other azimuthal modes. At the threshold of
instability, one of the radial modes Vn becomes unstable.
Time evolution of the mode depends on the interaction of
this mode with linearly stable radial modes of the same
azimuthal mode. This is true if the coherent tune shift of
the radial modes is small compared to the distance to other
044401-5
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linear resonances. The validity of this assumption depends
on the choice of the working point in the tune diagram
but usually appears naturally for the moderate beam-beam
parameters.

It is convenient to describe mode interaction expanding
azimuthal harmonics of the distribution function in radial
eigenmodes of the linear approximation,

r
�1�
n0 �

≠r
�1�
H

dI
e2in0Q1f1iDm�2f

X
m

AmY
m,

r
�2�
n0 �

≠r
�2�
H

dI
e2il0Q2f2i�Dm�2�f

X
m

AmX
m,

(28)

where Xm and Ym are components of the vector Vm �
�Xm,Ym� of the matrix M, Eq. (25), with the eigenvalue m.
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We assume that Vm are normalized,
R
dI V̂mVn � dn,m,

where V̂m are eigenvectors of the transposed matrix MT

with the same eigenvalue as vector Vm.
Let us neglect all azimuthal modes rk�I ,f� except

modes in the resonance pair �n0, l0�, and take into account
only two radial modes: the linearly unstable mode Vn

and a linearly stable mode Vm. The choice of Vm will
be specified later. To simplify notation, we denote their
amplitudes as Ak , k � 1 for unstable mode n, and k � 2
for stable mode with eigenvalue m. The amplitudes satisfy
the system of two coupled equations

≠Ak
≠f

1 �ilk 1 gk�Ak � i
2X
l�1

dk,lAl , (29)

where l1 � n, l2 � m. The SR decrement gk is given by
gkAk �
Z
dI

"
X̂kR

�2�
l0

�r�2�
h �0

ei�l0Q21Dm�2�f 1
ŶkR

�1�
n0

�r�1�
h �0

ei�n0Q12Dm�2�f

#
, (30)

where R�1,2� are given by Eq. (17). Here we used notation �r�0 � dr�dI. The RHS is of the order of SR decrement g0
and small. This allows us to neglect mode coupling due to the effect of the SR. In this case, Eq. (30) defines SR mode
decrements. It is interesting to notice that the SR decrement for the unstable mode is minimal.

The coefficients dk,l describe mode coupling due to perturbation of the zero harmonics r0 of the distribution function,

dk,l �
Z
dI X̂k�I�

Ωµ
2ll 1 l0DQ2 2

Dm
2

∂
Xl

�r�2�
0 �0

�r�2�
H �0

2 2pL2l0Xl
Z
dI r

�1�
0 �I�

dS00�I , I�
dI

æ

1
Z
dI Ŷk�I�

Ωµ
2ll 1 n0DQ1 1

Dm
2

∂
Yl

�r�1��0

�r�1�
H �0

2 2pL1n0Yl
Z
dI r

�2�
0 �I�

dS00�I , I�
dI

æ
. (31)

Time variation of these coefficients can be obtained from Eq. (19),

≠dkl
≠f

1 g0dkl � i
X
k0,l0

P
k,l
k0,l0�Ak0�c.c.Al0 , (32)

where parameters Pklk0l0 are

P
k,l
k0l0 � 2

Z
dI

d
dI

∑µ
2ll 1 l0DQ2 2

Dm
2

∂
X̂k�I�Xl
�r�2�

H �0

∏
d
dI

��lc.c.
k0 2 ll0�Xc.c.

k0 Xl0�r
�2�
H �0�

2
Z
dI

d
dI

∑µ
2ll 1 n0DQ1 1

Dm
2

∂
Ŷk�I�Yl
�r�1�

H �0

∏
d
dI

��lc.c.
k0 2 ll0�Yc.c.

k0 Yl0�r
�1�
H �0� . (33)
Terms containing S00 are not written here. Their contribu-
tion is small.

VII. SINGLE MODE IN THE NONLINEAR
REGIME

The dynamics of the unstable mode is defined by per-
turbation of the distribution function r0 by the growing
mode. This perturbation changes the growth rate and may
lead to the mode saturation. This concept corresponds to
the quasilinear theory [9].

Let us consider first a simple case of a single unstable
mode. In this case, there is only one amplitude A � A1,
d � d11, P � P

1,1
1,1 , g � g1 and the system Eqs. (29) and

(31) is reduced to
dA
df

1 �in 1 g�A � idA,
≠d�f�
≠f

1 g0d � iPjAj2.

(34)

There is always a trivial solution A � 0 corresponding to
the linearly stable beam.

A nontrivial solution �d � 0, d � d0, A � A0e2iVf,
Im�V� � 0 corresponds to an unstable mode which
saturates at some amplitude A0 constant in time. The
momentum d of r0 is constant, which corresponds to a
steady-state beam distortion. Such a distortion may con-
tribute to the well-known flip-flop phenomenon when at
least one of the beams is blown up. Equation (34) defines
amplitudes A0, d0 and the coherent frequency shift V,
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jA0j
2 � g0

�Im�n� 2 g�
Re�P�

, d0 � i
P
g0

A2
0 ,

V � Re�n� 1
Im�P�
Re�P�

�Im�n� 2 g� .

(35)

For a mode to be unstable, Im�n� 2 g has to be positive.
Hence, solution Eq. (35) exists if Re�P� . 0. This con-
dition is easily satisfied because P is given by the second
derivative of a function at the maximum; see Eq. (33).

The condition of stability of the nontrivial solution can
be obtained by linearizing Eq. (34) A � �A0 1 a�e2iVf,
d � d0 1 c:

da
df

1 �in 1 g 2 iV�a � i�d0a 1 A0c� ,

dc�f�
df

1 g0c � iPA0�a 1 ac.c.� .

(36)

By definition of the fixed point (FP) [cf. Eq. (34)], in 1

g 2 iV � id0. Define phase j, P � jPjeij , and intro-
duce g, b, and c � igeij , a � beij . Then,

dg
df

1 g0g � 2jA0jRe�P�b,
db
df

1 jA0jg � 0 .

(37)

The eigenvalue g,b ~ eizf is

z �
ig0

2
6

s
2g0�Imn 2 g� 2

µ
g0

2

∂2

. (38)

Hence, the nontrivial solution is stable if Im�n� . g,
whereas the linear solution becomes unstable. Figure 5
shows amplitude A vs time for three initial values near the
FP Eq. (35).

Harmonics r
�1�
n0 and r

�2�
l0 of the beam distribution os-

cillate and produce coherent signals at the frequencies

0.05

0.07

0.03

A

0 2 4 6

γ∆t  12-2000
8582A5

(b)

(a)

(c)

FIG. 5. Beam dynamics in the vicinity of the single mode
FP. Resonance n0 � 1, l0 � 22, linear growth rate Im�n� �
0.0025, SR damping rate gd � 2.92 3 1025. Initial condition
d � d0 is given by Eq. (35). Three curves correspond to initial
amplitudes (a) A � A0, (b) A � 1.5A0, and (c) A � 0.5A0.
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v1 � n0Q1y 2 Dm0�2 1 V and v2 � l0Q2y 1 Dm0�2 2

V, correspondingly.
The nontrivial solution changes transverse beam emit-

tance by DI �
R
Id Id ar0�I,a�. DI can be found from

Eq. (19) where we approximate the RHS R0 � 2g0r0.
This gives for the first beam

≠

≠f
DI1 1 g0DI1 � 22 Im�n� jAnj

2

3
Z
dI da

≠r
�1�
H

≠I
jYnj

2. (39)

The blowup in the steady state is proportional to the
increment Im�n� . 0 of the unstable mode

DI1 �
2 Im�n�

g0
jA0j

2
Z
dI e2I jYnj

2. (40)

A0 is defined in Eq. (35) and, hence, DI1 is independent
of g0. The result for the second beam can be obtained by
interchanging indices �1, 2� and replacing Yn by Xn .

In this section we have neglected the coupling of the
unstable mode to other radial modes. In the next section
we show that such an interaction can lead to excitation of
the linearly stable modes and periodic oscillations of the
amplitudes.

VIII. TWO RADIAL MODES

Next, we consider two interacting modes where only one
of them is linearly unstable with the eigenvalue n, Im�n� .

0. Initially, the dynamics of the system is dominated
by the exponentially growing mode An . Equation (32)
shows that dik is driven by the term �di,k � iPikn,njAnj

2.
Let us neglect amplitudes of linearly stable modes and
consider dik as constant. Then amplitude An of the un-
stable mode grows in time with dynamic increment Gn �
Im�n� 2 gn 2 Im�dnn�. If Re�Pn,n

n,n � . 0, the dynamic
increment goes at certain time to zero. The amplitude An

saturates at

jAsat
n j2 � g0

Im�n� 2 gn

Re�Pnn
nn �

. (41)

From the equation for the linearly stable mode Am, m fi n,
follows in the same way that Am varies in time with the
dynamic increment Gm � Im�m� 2 gm 2 Im�dm,m�. At
saturation, dm,m � �i�g0�Pm,m

n,n jAsat
n j2 and

Gsat
m � Im�m� 2 gm 2 �Im�n� 2 gn�

Re�Pmm
nn �

Re�Pnn
nn �

. (42)

If Gsat
m . 0, the linearly stable mode m becomes unstable

while linearly unstable mode n saturates. This allows us
to choose the most important stable mode as a mode with
maximum positive Gsat

m . Such a mode becomes unstable
first and the amplitude Am may start to grow when the
linearly unstable mode goes to saturation.

The criterion formulated for selection of the linearly
stable mode shows that such a mode is the most stable
mode in the linear approximation. Indeed, for such a mode
044401-7
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P
mm
nn � 2�Pnn

nn �c.c. and the ratio Re�Pmm
nn ��Re�Pnn

nn � is
negative and maximal.

In this case, analysis of the FP of the system is simpli-
fied. To simplify the notations, we change n ! 1, m ! 2.
If mode 2 is the most stable mode in the linear approxima-
tion, then the eigenvectors V1 and V2 have the same pattern
and coefficients Piklm have symmetries:

P
1,1
1,1 � 2P

1,1
2,2 � 2�P2,2

1,1�c.c. � �P2,2
2,2�c.c., (43)
044401-8
P
1,2
1,1 � 2P

1,2
2,2 � 2�P2,1

1,1�c.c. � �P2,1
2,2 �c.c.. (44)

That leaves only two parameters p � P
1,1
1,1�g0 and q �

P
1,2
1,1�g0. The FP solution ≠dik�≠f � 0, Ak ~ e2iVf with

real V is given by

d1,1 � ipx, d1,2 � iqx ,

d2,1 � dc.c.
1,2 , d2,2 � dc.c.

1,1 ,
(45)
jA1j
2 �

xjqxj2

jqxj2 2 �Im�n� 2 x Re�p� 2 g�2 ,
A2

A1
�

Im�n� 2 x Re�p� 2 g

qx
. (46)

The frequency shift V � Re�n� 1 x Im�p�, and the parameter x � jA1j
2 2 jA2j

2 is defined by

x �
1

�Re�p��2 2 jqj2
	Im�n� Re�p� 6

q
�Imn�2jqj2 1 g2�Re�p��2 2 jqj2 
 . (47)
A solution exists if x is real. Stability of the solution can
be analyzed linearizing Eqs. (29) and (32).

Depending on parameters, interaction of two radial
modes may lead to different beam behavior. If the am-
plitude at which a single linearly unstable mode saturates
leaves the dynamic increment of linearly stable mode
negative, the system goes to the single mode saturation
regime described in the previous section. Otherwise, the
linearly unstable mode excites the linearly stable mode
before saturation and dynamics is defined by interaction
of these two modes.

If in the system of two modes there are one or more
fixed points then, again, there are two possibilities. In the
first, both modes go to saturation with some, generally,
nonequal amplitudes. Such a regime means that after a
transient period a new line appears in the spectrum while
the line corresponding to the initially unstable mode dis-
appears. Another possibility is that the growing amplitude
of linearly stable mode Am may change the dynamic incre-
ment of the mode An and this mode starts to decay while,
if Re�Pmm

mm� . 0, the amplitude Am saturates. The process
can repeat itself and there will be periodic oscillations with
energy exchange between modes. Such a mechanism is re-
sponsible for the onset of the sawtooth instability [10].

IX. CONCLUSION

The effect of the coherent beam-beam instability on the
transverse emittance is considered for flat beams. Beam-
beam coherent modes can be excited by periodic beam-
beam kicks. Two types of resonances are considered. The
first type, Q1,2�I� � m�n, is due to resonance harmonics
of the kicks produced by the opposite rigid bunch in the
steady state. This type leads to resonances of nonlinear os-
cillator under external periodic excitation. In this case, the
rms emittance changes due to finite size of the separatrix of
the resonance. Another type is due to the sum resonances
nQ1 2 lQ2 � m, �nl� , 0, in the system of two coupled
beams. In this case, there are linearly unstable modes for
bunch currents above threshold which saturate due to dis-
tortion of the bunch distribution by the unstable mode. The
saturation may occur either for a single mode or due to in-
teraction of unstable radial mode with linearly stable radial
mode. The result depends crucially on the SR damping of
the radial modes. Results are illustrated numerically. For
the parameters of the PEP-II B Factory, saturation occurs
already at amplitudes equal to a small fraction of the rms
s. This is, probably, why coherent modes are so difficult
to observe in experiments.
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