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Transverse stability with nonlinear space charge

M. Blaskiewicz*
Collider Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973

(Received 5 January 2001; published 13 April 2001)

Transverse stability with nonlinear space charge is studied within the context of coasting beams. For
bare tune spreads originating from chromaticity or frequency slip, the space charge tune spread has a
fairly small effect and the incoherent space charge force is well modeled by a transverse capacitance. For
tune spreads due to octupoles or fringe fields, beams are more stable when the bare tune increases with
betatron amplitude.
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I. INTRODUCTION

Early work on transverse coasting beam instability usu-
ally treated the direct space charge force as a source of
transverse capacitance [1,2]. Somewhat later, attempts to
incorporate the (betatron) amplitude dependent nature of
the space charge tune shift were made [3,4]. These works
generally started with the dispersion relation derived for
coasting beams in the presence of a dipolar transverse field
[1,2,5–7]. The dispersion relation was then phenomeno-
logically modified to incorporate the nonlinearity in the
space charge force.

The present work begins with equations of motion which
include nonlinear, interparticle forces [8]. Only one di-
mension is considered. This simplifies both the notation
and the complexities of coupling between the transverse
degrees of freedom. Since the intended application is syn-
chrotrons, it is assumed that the magnitude of the tune
shift is small compared to the average tune. This allows
the equations to be heterodyned. Finally, first-order per-
turbation theory on the Vlasov equation is used to obtain
the dispersion relation. Throughout, the momentum and
energy conserving properties of the interparticle forces are
retained.

II. THE MODEL

Consider a one-dimensional model with coordinate x.
For N interacting particles the equation of motion for par-
ticle j is

d2xj
du2 1 Q2

j xj �
1
N

NX
k�1

f�xj 2 xk� 1 2Q0Wxk

1 2a
dxk
du

. (1)

*Email address: blaskiewicz@bnl.gov
1098-4402�01�4(4)�044202(9)$15.00
In Eq. (1), particle j has bare tune Qj , and the average bare
tune is Q0. The space charge force is characterized by the
antisymmetric, nonlinear function f�x�. For Qj � Q0 one
can average Eq. (1) over j:

d2x
du2 1 Q2

0x 2 2Q0Wx 2 2a
dx
du

�
1
N2

X
j,k

f�xj 2 xk� � 0 . (2)

The double sum over the space charge force vanishes due
to the antisymmetry of f�x�. Assuming x ~ exp�2iQu�
and jW 1 iaj ø Q0, Q � 6�Q0 2 W� 1 ia. The wall
induced tune shift and growth rate are 2W and a, respec-
tively. With no bare tune spread, space charge has no effect
on the coherent frequency [3,4,9]. The problem at hand is
to determine the behavior of the system when bare tune
spread is present. Define the functions Aj�u� and Bj�u�
via

xj�u� � Aj�u� cos�Q0u� 1 Bj�u� sin�Q0u� . (3)

Since the tune shift is small compared to the tune, the
functions Aj and Bj vary slowly compared to the sinusoids.
In Eq. (1) make the substitutions

d2xj
du2 °! 2Q2

0xj 1 2Q0�B0
j cos�Q0u� 2 A0

j sin�Q0u��

and

dxk
du

°! Q0�Bk cos�Q0u� 2 Ak sin�Q0u�� ,

where the 9 denotes differentiation with respect to u. De-
fine Dj � �Q2

j 2 Q2
0��2Q0 � Qj 2 Q0 and x � Q0u.

Equation (1) becomes
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B0
j cosx 2 A0

j sinx � 2Dj�Aj cosx 1 Bj sinx� 1 W�A cosx 1 B sinx� 1 a�B cosx 2 A sinx�

1
1
N

NX
k�1

f��Aj 2 Ak� cosx 1 �Bj 2 Bk� sinx� , (4)

where

A �
1
N

NX
k�1

Ak�u� ,

and similarly for B. To proceed we multiply Eq. (4) by cosx and average over the fast variable, x . This gives

B0
j � 2DjAj 1 WA 1 aB 1

1
N

NX
k�1

Z 2p

0

dx

p
cosxf��Aj 2 Ak� cosx 1 �Bj 2 Bk� sinx� . (5)

By Newton’s third law f�2x� � 2f�x�. Defining �Bj 2 Bk� 1 i�Aj 2 Ak� � R exp�ix0� the integral in Eq. (5)
satisfies

Z 2p

0

dx

p
cosxf��Aj 2 Ak� cosx 1 �Bj 2 Bk� sinx� �

Z 2p

0

dx

p
cosxf���R sin�x 1 x0����

�
Z p

2p

dx

p
cos�x 2 x0�f�R sinx�

� R sinx0

Z p

2p

dx

p

sinx

R
f�R sinx�

� �Aj 2 Ak�G��Aj 2 Ak�2 1 �Bj 2 Bk�2� ,

which defines the function G�x2�. After this substitution one obtains

B0
j � 2DjAj 1 WA 1 aB 1

1
N

NX
k�1

�Aj 2 Ak�G��Aj 2 Ak�2 1 �Bj 2 Bk�2� . (6)

Multiplying Eq. (4) by sinx and averaging gives

A0
j � 1DjBj 2 WB 1 aA 2

1
N

NX
k�1

�Bj 2 Bk�G��Aj 2 Ak�2 1 �Bj 2 Bk�2� . (7)

If A and B in Eqs. (6) and (7) are treated as functions of u alone then these equations can be derived from the Hamil-
tonian

K�A, B, u� �
NX

j�1

Dj

2
�A2

j 1 B2
j � 2 W���AjA�u� 1 BjB�u���� 1 a���BjA�u� 2 AjB�u����

1

NX
j�1

NX
k�1

1
2N

U��Aj 2 Ak�2 1 �Bj 2 Bk�2� , (8)
where

A0
j �

≠K
≠Bj

, B0
j � 2

≠K
≠Aj

,

and the potential U�x2� satisfies dU�x2��dx � 2xG�x2�.
If a � 0, substituting W ! W�2 allows the equations of
motion to be derived from this Hamiltonian when the co-
ordinate dependence of A and B is included. Only the
presence of a precludes a full Hamiltonian treatment. This
is reasonable given the nonsymplectic motion of a damped
oscillator.
044202-2
Now go to the continuum limit and introduce the
distribution function F�A,B, D, u� where F�A,B, D, u� 3

dAdBdD gives the fraction of particles in phase space
volume dAdBdD so the distribution is normalized to one,

Z `

2`
dA

Z `

2`
dB

Z `

2`
dDF�A,B, D, u� � 1 .

Consider a particle with phase space coordinates A,B, D.
This particle’s coordinates evolve according to the contin-
uum versions of Eqs. (6) and (7)
044202-2
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B0 � 2DA 1
Z

dA1 dB1 dD1�1WA1 1 aB1�F�A1,B1, D1, u�

1
Z

dA1 dB1 dD1�A 2 A1�G��A 2 A1�2 1 �B 2 B1�2�F�A1,B1, D1, u� , (9)

A0 � 1DB 1
Z

dA1 dB1 dD1�2WB1 1 aA1�F�A1,B1, D1, u�

2
Z

dA1 dB1 dD1�B 2 B1�G��A 2 A1�2 1 �B 2 B1�2�F�A1,B1, D1, u� , (10)

D0 � 0 , (11)

where the equation for D has been added for completeness. If A is taken as a position variable with B as its conjugate
momentum, and D is a position variable with conjugate momentum PD, these equations of motion can be obtained from
the Hamiltonian

H�A,B, D, u� �
D

2
�A2 1 B2� 2 W�AA 1 BB� 1 a�BA 2 AB�

1
Z

dA1 dB1 dD1 F�A1,B1, D1, u�U����A 2 A1�2 1 �B 2 B1�2��� , (12)
where

A�u� �
Z

dA1 dB1 dD1 A1F�A1,B1, D1, u� ,

and similarly for B. The equations of motion are

A0 � 1
≠H�A,B, D, u�

≠B
,

B0 � 2
≠H�A,B, D, u�

≠A
,

D0 �
≠H�A,B, D, u�

≠PD

� 0 .
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The Hamiltonian given by (12) is not the continuum
limit of Eq. (8), but it generates the equations of motion
(9)–(11). With Hamiltonian (12) the phase space distri-
bution evolves according to the Vlasov equation,

≠F
≠u

1
≠H
≠B

≠F
≠A

2
≠H
≠A

≠F
≠B

� 0 . (13)

Since PD is absent from the Hamiltonian, the tune distri-
bution is constant in time (u),

r�D, u� �
Z

dA1 dB1 F�A1,B1, D, u� � r�D� .

This is clear from the single particle picture and can be
verified by integrating Eq. (13) over A and B,
≠r�D, u�
≠u

� 2
Z

dAdB

∑
≠H
≠B

≠F
≠A

2
≠H
≠A

≠F
≠B

∏
� 2

Z
dAdB

∑
≠H
≠B

≠F
≠A

2
≠H
≠A

≠F
≠B

2 F
≠H

dB≠A
1 F

≠H
≠A≠B

∏

� 2
Z

dAdB

∑
≠

≠A

µ
≠H
≠B

F

∂
2

≠

≠B

µ
≠H
≠A

F

∂∏
� 0 .

As a final check of the physical equivalence of the Vlasov equation and Eqs. (6) and (7), consider the evolution of the
Klimontovich distribution [10]

F�A,B, D, u� �
1
N

NX
k�1

d����A 2 Ak�u����d���B 2 Bk�u����d���D 2 Dk�u���� ,
where the parameters Ak�u�, Bk�u�, and Dk�u� can de-
pend on u, but not on A, B, or D. With its sum of
delta functions, this is the distribution for N identical par-
ticles. Substituting this distribution into the Vlasov equa-
tion (13) with Hamiltonian (12) gives Eqs. (6) and (7) and
dDk�u��du � 0.

III. SOLUTIONS

To solve to the Vlasov equation, start by introducing the
action angle variables J and c defined implicitly by
A �
p

2J sinc , B �
p

2J cosc .

The coordinate change is canonical so dAdB � dJdc .
The threshold for instability is determined using first

order perturbation theory. Let F � F0 1 F1 where

F0�J, D� �
1

2p
F̂0�J�r�D� ,

with r and F̂0 each normalized to unity. The perturbation
is parametrized as
044202-3
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F1�J, c , D, u� �
1

2p
F̂1�J, D�eic2inu .

The c dependence of F1 was chosen to generate nonzero values of A and B. If one had chosen a dependence exp�ikc�
with jkj fi 1 then A � B � 0.

Substituting the expression for F in the Hamiltonian one gets H � H0 1 H1 where

H0 � DJ 1
Z `

0
dJ1 F̂0�J1�

Z 2p

0

dc1

2p
U�2J 1 2J1 2 4

p
JJ1 cosc1� � DJ 1 U0�J� (14)

and

H1 � n0

p
Jeic2inu

Z
dJ1 dD1

p
J1 F̂1�J1, D1�

1 eic2inu
Z

dD1 dJ1F̂1�J1, D1�
Z 2p

0

e2ic1dc1

2p
U�2J 1 2J1 2 4

p
JJ1 cosc1�

� �n0

p
J g1 1 U1�J��eic2inu , (15)
where n0 � 2W 1 ia is the tune shift for D � 0 and
g1 � g1�F1� does not vary with J or D:

g1 �
Z

dJ1 dD1

p
J1 F̂1�J1, D1� . (16)

Applying first order perturbation theory gives

2inF1 1
≠H0

≠J
≠F1

≠c
2

≠H1

≠c

≠F0

≠J
� 0 . (17)

With the simple c dependence the solution is straight-
forward giving

F̂1�J, D� �
n0
p
J g1 1 U1�J�

D 1
dU0

dJ 2 n

dF̂0

dJ
r�D� . (18)

Both g1 and U1�J� depend on F1 which in turn depends
on n.

First consider the case where r�D� is a Lorentzian,

r�D� �
e

p�e2 1 D2�
.

Integrating Eq. (18) over D yieldsZ `

2`
dD F̂1�J, D� � F̃1�J� �

n0
p
J g1 1 U1�J�

2ie 1
dU0

dJ 2 n

dF̂0

dJ
.

(19)

The right-hand side of Eq. (19) depends on F1 only
through F̃1. Multiplying both sides by the denominator on
the right and

p
J and integrating with respect to J yields

�n02ie 2 n�g1

�
Z `

0
dJ

p
J

∑
U1�J�

dF̂0

dJ
2 F̃1�J�

dU0

dJ

∏
� X .

(20)

In fact, X � 0, and is a statement of Newton’s third law.
To show this, consider the first term in brackets in the
integrand. Integrate this by parts, which yields

X � 2
Z `

0
dJ

∑
F̂0�J�

d
p
J U1�J�
dJ

1
p
J F̃1�J�

dU0

dJ

∏
.
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Insert the integral expressions for U0 and U1. In the double
integral interchange J and J1 in the second term in brack-
ets. The result is

X � 2
Z `

0
dJ dJ1 F̂0�J�F̃1�J1�

3
Z 2p

0

dc

2p

Ω
cosc

2
p
J

U 1 2
p
J1 sin2cU 0

æ
,

where the argument of U is �2J 1 2J1 2 4 cosc
p
JJ1 �

and U 0 denotes differentiation with respect to argument.
Now, Ω

cosc

2
p
J

U 1 2
p
J1 sin2cU 0

æ
�

≠

≠c

U sinc

2
p
J

,

and the integral is zero since U sinc has period 2p. There-
fore X � 0 and one concludes that the coherent frequency
with a Lorentzian distribution in D is given by

n � n0 2 ie . (21)

Notice that the nonlinearity in the space charge force
as well as the shape of the unperturbed distribution are
irrelevant in Eq. (21). Only r�D� was constrained, and
with this constraint the space charge force has no effect
on the coherent frequency.

Next consider the case where F̂0�J� is a step func-
tion which is constant for J , J0 and vanishes for
J . J0. The right-hand side of Eq. (18) is proportional to
d�J 2 J0�. This gives F̂1�J, D� � d�J 2 J0�r1�D�,
where r1�D� is unknown. Again, one is left with a
straightforward dispersion relation. Define the constant

Qe
sc � 2

µ
dU0

dJ

∂
J�J0

�
1
J0

Z 2p

0
dc

cosc
2p

U���4J0�1 2 cosc���� , (22)

where the equality of the two expressions is a special case
of the argument used to obtain X � 0. With this definition
Eq. (18) becomes
044202-4
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r1�D� �
n0 1 Qe

sc

n 1 Qe
sc 2 D

r�D�
Z `

2`
dD1 r1�D1� . (23)

Integrating Eq. (23) over D yields a slightly modified dis-
persion integral from the result with no space charge. Sup-
pose the space charge free dispersion relation is n0 �
D�n�. When space charge is included the dispersion rela-
tion is n0 1 Qe

sc � D�n 1 Qe
sc�. Generally, Qe

sc is posi-
tive. The peak of the threshold curve given by Im�n� � 0
shifts toward negative values of Re�n0�. Both this result
and the previous one using the Lorentzian distribution sup-
port the usual prescription of treating the space charge
force as a source of transverse capacitance. The final prob-
lem is to understand the effects of space charge tune spread
when the distributions r�D� and F0�J� are more realistic.

Solving the problem with more realistic distributions of
r�D� and F0�J� appears to require a model of the pairwise
space charge force. A simple model, in the raw position
variable, which includes nonlinearity is given by

f�x� � k

µ
2x 2

8x3

3s2

∂
. (24)

For real space charge both k and s are positive and the
coefficients are chosen to simplify later expressions. Af-
ter performing the averaging procedures the space charge
potentials are given by

U0�J� � 2k

µ
J 2

J2

s2 2
4J
s2

Z `

0
F̂0�J1�J1 dJ1

∂
,

(25)

U1�J� � k
Z `

0
dJ1

p
JJ1

∑
1 2

2�J 1 J1�
s2

∏

3
Z `

2`
dD1 F̂1�J1, D1�

� k

∑
g1

p
J 2

2
s2 �g1J

3�2 1 g2

p
J �

∏
. (26)

The parameter g1 is defined in Eq. (16) and

g2 �
Z

dJ1 dD1 J
3�2
1 F̂1�J1, D1� . (27)

Multiplying Eq. (18) by
p
J and integrating over J and D

gives g1, while multiplying by J3�2 and integrating yields
g2. The dependence on F1 is thus reduced to two numbers.
Define the general dispersion integral

Ik�n� �
Z `

0
dJ Jk dF̂0�J�

dJ

Z `

2`
dD

r�D�
n 2 D 2

dU0

dJ

.

(28)

The dispersion relation is equivalent to the two simultane-
ous equations,

g1

∑
1 1 �n0 1 k�I1�n� 2

2k

s2 I2�n�
∏

� g2
2k

s2 I1�n� ,

(29)
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and

g1

∑
�n0 1 k�I2�n� 2

2k

s2 I3�n�
∏

� g2

∑
2k

s2 I2�n� 2 1

∏
.

(30)

Taking the ratio of the right-hand and left-hand sides of
Eqs. (29) and (30) results in the final dispersion integral,

n0 � 2k 1

µ
2k

s2

∂2

I3�n� 2
�1 2

2k

s2 I2�n��2

I1�n�
. (31)

Given F0�J, D�, k, s, and n, Eq. (31) gives n0. When
combined with Eq. (29) or (30) one obtains g2�g1 which
via Eq. (26) gives U1�J��g1 and finally via Eq. (18) the
eigenfunction F̂1�J , D��g1. The constant g1 cancels and
the problem is, in principle, solved. Of course, one is
generally interested in the problem of finding n given n0
or, less ambitiously, whether a given value of n0, which
is proportional to the transverse impedance, corresponds
to an unstable system. This will be addressed later using
threshold curves.

The next problem is to find a suitable expression for
Eq. (28). In principle one could do the double dispersion
integral numerically for arbitrary r and F0 but, given the
cubic approximation to the space charge force, any reason-
able functions would be equally realistic. Toward this end,
expressions which yield a final result in terms of simple
functions will be obtained.

The bare tune distribution is approximated as

r�D� �
MX

m�1

Cm
em

p�e2
m 1 D2�

. (32)

Given a set e1 , e2 , · · · eM the Ck’s are chosen to keep
the integral over D equal to unity and to cancel the tails of
the distribution. The latter is done by demanding

lim
D!`

D2Nr�D� � 0 ,

for N � 1, 2, . . . ,M 2 1. The full set of constraint equa-
tions is given by

1 �
MX

m�1

Cm, 0 �
MX

m�1

Cme2N21
m ,

where N � 1, 2, . . . ,M 2 1. For large M the set of linear
equations is solved numerically. The resulting distribution
is

r�D� � r�0�
Y
m

1
�1 1 D2�e2

m�
. (33)

With r�D� given by Eq. (32) the integral with respect to
D in Eq. (28) is easily done and results in

Ik�n� �
MX

m�1

Cm

Z `

0
dJ Jk dF̂0�J�

dJ
1

n 1 iem 2
dU0

dJ

�
MX

m�1

CmI
m
k �n� , (34)
044202-5
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where Imk �n� is the integral over J for each value of m.
There are many possible choices for F̂0�J�. For definiteness take

F̂0�J� �
3
J0

Ω
�1 2 J�J0�2 if J , J0 ,
0 otherwise .

(35)

This representation of F̂0�J� is smooth enough to give bounded values of Imk �n� even if Im�n 1 em� � 0 [11]. The space
charge tune shift as a function of action is given by

2
dU0

dJ
� k

µ
1 2

2J 1 J0

s2

∂
. (36)

Define q � 2kJ0�s2 and let y � J�J0. The required dispersion integrals are

Imk �
6Jk21

0

q

Z 1

0

ykdy�1 2 y�
y 2

1
q �nR 1 k 2 q�2 1 i�nI 1 em��

, (37)

where the real and imaginary parts of n are explicit. The integral in Eq. (37) is along the real axis and only results with
nI 1 em $ 0 are meaningful. The integrals are elementary but tedious. An efficient representation involves the function

Gk�z� � 6
Z 1

0

ykdy�1 2 y�
y 2 z

,

where

z � u 1 iy �
1
q

�nR 1 k 2 q�2 1 i�nI 1 em��

and Imk � Jk21
0 Gk�z��q. With these definitions [12],

G1�u 1 iy� � 3 2 6z 1 6z�1 2 z�
Ω
i

∑
tan21

µ
1 2 u

y

∂
1 tan21

µ
u
y

∂∏
1

1
2

ln

µ
y2 1 �1 2 u�2

y2 1 u2

∂æ
. (38)
The remaining integrals are given by G2�z� � 1 1 zG1�z�
and G3�z� � 1�2 1 zG2�z�. The real and imaginary parts
of these functions for y � 01 are shown in Figs. 1 and
2, respectively. The functions are bounded and continu-
ous. Notice that Im�G1� � 6pu�1 2 u� for 0 , u , 1,
and that the discontinuity in its derivative at u � 0 would
be present for any F̂0�J� that had a nonzero derivative as
J ! 01. For instance, a thermal distribution would yield
a G1 with a discontinuous derivative at u � 0 [11]. There-
fore, the present choice of F̂0�J� � 3�1 2 J�J0�2�J0 has
no unrealistic singularities and should fairly represent real
beams.

-4

-3

-2

-1

0

1

2

3

4

-2 -1 0 1 2 3

 

u

R
e(

G
) k

1
2
3

FIG. 1. (Color) Re���Gk�u 1 i0���� for k � 1, 2, 3.
044202-6
In Fig. 3, distributions from the series

e2
j � 2s2

G���M 1
p
M �j 2 1���� ln�1 1

p
M ��

p
M

for j � 1, 2, . . . ,M with sG � 1 and M � 5, 10 are
shown. A Gaussian distribution with unit standard de-
viation is plotted for comparison. Using Eq. (33) one
may show that the density distributions rM�D� converge
uniformly to Gaussians with standard deviation sG as
M ! `. Figure 4 shows the dispersion diagrams at
threshold for the distributions in Fig. 3. These are plots
of n0 � 21�I1�n� with n varying over real values and I1

0

1

2

3

4

5

-2 -1 0 1 2 3

 

u

Im
(G

) k

1
2
3

FIG. 2. (Color) Im���Gk�u 1 i0���� for k � 1, 2, 3.
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∆)

∆
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Gauss

FIG. 3. (Color) The bare tune distributions for five- and ten-term
Gaussian series with sG � 1. A Gaussian distribution with unit
standard deviation is shown as well.

given by Eq. (28) with no space charge. For a given curve,
giving n a positive imaginary part always results in a value
of n0 which lies above the curve so those values of n0
which lie on and below the curve result in no exponential
growth. In fact, solutions corresponding to values of n0
below the curve are damped [13].

Adding space charge to the picture requires choosing
both k and q. To get the maximum effect in one dimen-
sion choose q�k so that particles at opposite edges of the
beam exert no force on each other. The difference in their
positions is x � 2

p
2J0, and setting Eq. (24) to zero gives

q�k � 3�16. Real beams have a two-dimensional cross
section. Take an unperturbed distribution F0�Jx , Jy� ~

�J0 2 Jx 2 Jy�. This yields a round beam with a one-
dimensional projection F0�Jx� ~ �J0 2 Jx�2 and similarly
for y. The x component of the space charge force is

Fx�x, y� � Kx

∑
1 2

x2 1 y2

R2 1
�x2 1 y2�2

3R4

∏
, (39)
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FIG. 4. (Color) Threshold diagrams for the distributions shown
in Fig 3.
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where R is the beam radius. Neglect the third term in
brackets yielding a force which vanishes at the edge of
the beam, and a soft upper limit for realistic distributions.
Using first-order perturbation theory the x tune shift is
given by

Qsc�Jx , Jy� � Q0
sc

µ
1 2

3
4

Jx
J0

2
1
2

Jy
J0

∂
, (40)

where Q0
sc is the x tune depression in the center of the

beam. The probability distribution of Qsc is

P�Q� �
Z J0

0
dJx

3
Z J02Jx

0
dJy F0�Jx , Jy�d���Q 2 Qsc�Jx , Jy���� ,

where
Z Q2

Q1

P�Q� dQ

� fraction of particles with �Q1 , Qsc , Q2	 .

With Eq. (40) the distribution of Qsc may be obtained
in closed form. Plots of this expression as well as the
distribution for a 1D case with the same average and
standard deviation are shown in Fig. 5. The effective non-
linearity is q�k � 3�5, just more than 3 times the one-
dimensional case.

Figure 6 shows the threshold curves for the ten-term
Gaussian distribution with k � 0, 5, 10 and q�k � 3�16.
Adding space charge shifts the curves to the left, which
is expected since space charge is capacitive. These curves
are shifted by k 2 q, which is slightly less than the space
charge tune shift averaged over F0, which is k 2 3q�4.
For fixed q, the width of the dispersion curve is indepen-
dent of k. Figure 7 shows similar curves for q�k � 3�5.
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FIG. 5. (Color) Probability distributions for 1D and 2D beams
with the same average and standard deviation. The peak value
of the tune shift for the 2D beam is 1 while the 1D beam has
k � 5�4 and q � 3�4.
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FIG. 6. (Color) Threshold diagrams for ten-term Gaussian series
for k � 0, 5, 10 with q�k � 3�16.

The center of the curve is shifted by half the peak value of
the space charge tune shift in the 2D beam. The shape
of the distribution changes noticeably as well, but for
jRe�n0�j & q the threshold value of the transverse resis-
tance is reduced.

For space charge dominated machines, reducing the ef-
fective space charge tune shift by half roughly doubles
the intensity threshold estimates for transverse instabilities.
An independent estimate of this effect can be obtained as
follows. Consider a beam composed of rigid cylinders in-
stead of points. The force per unit length of cylinder 1 on
cylinder 2 is given by

F1,2 �
Z

n2�x0�d2x0
Z

n1�x�
1

2pe0g2

x0 2 x
jx0 2 xj2

d2x ,

where n1�x� and n2�x0� are the two-dimensional charge
distributions of the generator and recipient of the
Coulomb force, respectively. Assume n1�x� � �3�p� 3

�1 2 jxj2�R2�2 with a total charge of 1. The horizontal

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

-10 -8 -6 -4 -2 0 2 4 6 8 10

 

 
Re(ν )0

Im
(ν

)
0

0
5

10

FIG. 7. (Color) Threshold diagrams for ten-term Gaussian series
for k � 0, 5, 10 with q�k � 3�5.
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electric field generated by n1 is proportional to the space
charge force given by Eq. (39). Make the same approxi-
mation as before, neglecting the term proportional to xjxj4.
Next, one calculates F1,2 for n2�x� � d�x 2 x2��x2 and
n2�x� � n1�x 2 x2��x2 where x2 is the offset . For
jx2j ø R the total force on the extended distribution is
exactly half the total force on the offset delta function.
This coincides with the shift observed using the dispersion
integrals and is easily extendable to other distributions.
For a Kapchinskij-Vladimirskij distribution which has
constant charge density within the beam, the force on the
appropriate extended distribution is equal to the force on
the delta distribution. This follows from Eq. (23) and is
found in [1,2,5,6]. For a Gaussian cross section the force
on the extended distribution is exactly half the force on a
delta distribution with the same dipole moment. This last
result is valid even if the beam is elliptical.

Finally, the effect of amplitude dependent tune spread
due to octupoles or other nonlinear elements is addressed.
These nonlinearities are with respect to the center of the
beam pipe and introduce tune spread which can damp
dipole modes. For one transverse dimension, nonlineari-
ties add a term to the Hamiltonian Uoct�J� � rJ2�2J0,
where r is proportional to the strength of the octupoles.
Factorizing F0 � F̂0�J�r�D��2p the calculation proceeds
as before and Eq. (14) becomes H0 � DJ 1 rJ2�2J0 1

U0�J�. The net effect is to make the substitution
dU0�dJ ! dU0�dJ 1 rJ�J0 in the dispersion integrals
for Ik�n� in Eq. (28). Equations (31) and (34) stand with
the substitutions Imk � Jk21

0 Gk�z���q 1 r� and

z � u 1 iy �
1

q 1 r
�nR 1 k 2 q�2 1 i�nI 1 em�� .

Figure 8 shows threshold curves with k � q and D � 0
for various values of r and q. In real beams the curves
would be shifted to the left by *5q�3 so that, with space
charge, the point n0 � 0 would be only marginally stable

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

 

 
Re(ν )0

Im
(ν

)
0

q=0, |r|=3
q=1,r=-3
q=1,r=3
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tupoles (r) with space charge tune spread (q). In a real beam
the curves would be shifted to the left by 
2q.
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for either sign of r . However, for r , 0, space charge
nonlinearity dramatically reduces the area of the stable re-
gion and r . 0 is the best choice. The octupoles should
cause the tune to increase with betatron amplitude, as
found previously [4].

In two dimensions, nonlinear elements add a term
dH � rxxJ2

x 1 ryyJ2
y 1 rxyJxJy to the Hamiltonian.

Making all three coefficients positive requires three
families of octupoles, and the benefits to stability need to
be weighed against any reductions in dynamic aperture.
This is especially important when space charge tune shifts
*0.1 are expected. Another possibility is to exploit the ef-
fect of quadrupole end fields. Equation (17) in [14] shows
that fringe field effects in quadrupoles almost always lead
to a betatron tune increase with amplitude. While that ref-
erence suggested lengthening magnets to reduce nonlinear
effects, introducing tune spread by using short, strong
quadrupoles may be an attractive alternative to strong
octupoles.

IV. CONCLUSIONS

A momentum and energy conserving model of the
direct space charge force has been used to predict the
effects of this force on transverse stability. It was found
that the nonlinearity in the space charge force can modify
dispersion diagrams even though it causes no Landau
damping on its own. Even using a soft upper limit for
the amount of space charge tune spread, it was found that
space charge reduces stability for a reasonable machine
impedance. When using traditional dispersion diagrams
with smooth beams and tune spreads created by momen-
tum spread, using half of the peak space charge tune shift
in the dispersion relations gives fairly good estimates.
Earlier work, showing that nonlinear elements should
cause the betatron tune to increase in amplitude, were
confirmed.
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