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Longitudinal holes in debunched particle beams in storage rings,
perpetuated by space-charge forces
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Stationary, self-consistent, and localized longitudinal density perturbations on an unbunched charged-
particle beam, which are solutions of the nonlinearized Vlasov-Poisson equation, have recently re-
ceived some attention. In particular, we address the case that space charge is the dominant longitudinal
impedance and the storage ring operates below transition energy so that the negative mass instability is not
an explanation for persistent beam structure. Under the customary assumption of a bell-shaped steady-
state distribution, about which the expansion is made, the usual wave theory of Keil and Schnell for
perturbations on unbunched beams predicts that self-sustaining perturbations are possible only (below
transition) if the impedance is inductive (or resistive) or if the bell shape is inverted. Space charge gives a
capacitive impedance. Nevertheless, we report numerous experimental measurements made at the CERN
Proton Synchrotron Booster that plainly show the longevity of holelike structures in coasting beams. We
shall also report on computer simulations of boosterlike beams that provide compelling evidence that it is
space-charge force which perpetuates the holes. We shall show that the localized solitonlike structures,
i.e., holes, decouple from the steady-state distribution and that they are simple solutions of the non-
linearized time-independent Vlasov equation. We have derived conditions for stationarity of holes that
satisfy the requirement of self-consistency; essentially, the relation between the momentum spread and
depth of the holes is given by the Hamiltonian —with the constraint that the phase-space density be high
enough to support the solitons. The stationarity conditions have scaling laws similar to the Keil-Schnell
criteria except that the charge and momentum spread of the hole replaces that of the beam.
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I. INTRODUCTION

Stationary, self-consistent, and localized longitudinal
density perturbations on an unbunched charged-particle
beam, which are solutions of the nonlinearized Vlasov-
Poisson equation, have recently received some attention in
the literature. In particular, we shall address the case that
“space charge” is the dominant longitudinal impedance and
the storage ring operates below transition energy so that the
negative mass instability is not an explanation for persis-
tent beam structure.

Colestock [1] and Spentzouris [2] have reported some
experimental observations, and we shall report on numer-
ous measurements [3–5] made at the CERN Proton Syn-
chrotron Booster (PSB). In particular, Ref. [1] reports the
observation of notches in beam transfer function [6] mea-
surements; such features were also observed by Sacherer
[7] many years ago in the PSB.

Some theoretical investigations have been made by
Schamel [8–11] who claims that the perturbations are
solitonlike and cannot be predicted by the linearized
Vlasov treatment used by Keil and Schnell [12]; we agree
with this claim, and explain why. Reference [9] studies a
pure resistive wake, while Ref. [11] considers a reactive
wake. The existence of solitary waves, wherein dispersion
1098-4402�01�4(4)�044201(22)$15.00
is balanced against nonlinearity, has also been proposed
by Bisognano [13] and was discussed by Tzenov [14].

The customary [15] space-charge impedance has no
“roll off” at higher frequency and is formally equivalent
to a pure capacitive impedance. The space-charge forces
within a local rarefaction of the particle density are focus-
ing toward the center of the perturbation, and so, intui-
tively, one might expect the possibility that holes in beams
below transition energy could be self-stabilized.

In terms of the usual wave theory [12,16,17] for pertur-
bations on unbunched beams, in order to construct a local-
ized, stationary distribution one must be able to superpose
a system of standing waves of the form ei�nx2vnt�. For the
impedance due to space charge and the induced charges in
a perfectly conducting wall, the constancy of impedance
divided by wave number Z�nvrev��n implies the eigen-
frequencies vn � nv1 and that all waves have the same
speed; consequently, one might expect to be able to con-
struct localized, stationary perturbations. This hypothesis
was put forward by Koscielniak [18]. However, under the
customary assumption of a bell-shaped steady-state distri-
bution, about which the expansion is made, the same wave
theory predicts that self-sustaining perturbations are pos-
sible only (below transition) if the impedance is inductive
or if the bell shape is inverted.
© 2001 The American Physical Society 044201-1
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In the following sections we describe measurements at
the PSB and computer simulations of boosterlike beams,
derive a Hamiltonian condition for stationarity, critique
the linearized Vlasov equation, and find (almost) exact
solutions of the nonlinear Vlasov-Poisson equation and
self-consistency conditions. The stationarity conditions
have scaling laws similar to the Keil-Schnell criteria, and
all reduce to essentially the same condition of a Hamilton-
ian with bound states in a potential well.

II. CERN PSB MEASUREMENTS

The PSB is a proton synchrotron cycling between
50 MeV and 1.4 GeV kinetic energy. The ring, of radius
25 m, has transition gamma gt � 4.15 and the slip factor
h � �1�g2

t 2 1�g2
s � is equal to 0.843 at 50 MeV. The

machine operates with a harmonic h � 1 fundamental rf
system and, in addition, there is an h � 2 rf system and
a high harmonic cavity capable of generating harmonics
from h � 12 to h � 26 at the injection energy. Beam
is injected over a few turns (from 0.1 to 12) from a
200 MHz linear accelerator (linac). The beam energy
spread varies with injected intensity from less than 400
to over 600 keV. The booster may also be operated in
storage ring mode at 50 MeV; the rf systems may be either
turned off, mechanically shorted at the gap, or operated
with direct rf feedback to reduce the cavity impedance
apparent to the beam. Despite these measures there is
enough spurious or residual impedance to cause a mild
coasting beam instability at intensities beyond 6 3 1012

protons per pulse.
A wide-band beam pickup and a fast digital oscillo-

scope with deep memory are available for recording bunch
shapes turn by turn, or once each n turns. This data may
be graphed as a waterfall display which may be considered
a “bird’s-eye” view of the more conventional mountain-
range display. A gray scale is used to give a visual de-
piction of the relative particle density; black corresponds
to the most dense and white to the most rarified. This
instrument and software are called the “tomoscope.” The
low-level rf signal is available for frame synchronization
purposes even when the cavities are turned off.

A. Linac bubbles

The tomoscope may be used to observe the debunched
beam after injection. Figure 1 shows a typical display.
Beam structure, which we refer to as “bubbles,” survives
for at least 50 ms. This longevity could be ascribed to
their having a very small momentum width, but this cannot
be the complete explanation. Based on phase slippage
alone, no appreciable debunching of the bubbles in 50 ms
would imply a kinetic energy spread less than 5 eV, but
this momentum width is so small that the bubbles would
have no detectable effect on the line density. The bubbles
become more prominent at higher intensity; see Fig. 2.
044201-2
FIG. 1. 2.4 3 1012 protons, one trace each 300 turns, vertical
span 50 ms; abscissa in nanoseconds (ns).

0 500 1000 1500 2000

2.5

5

7.5

10

12.5

15

17.5

20

@ ns D

@ kturns D

FIG. 2. 3.6 3 1012 protons, one trace each 200 turns, vertical
span 31.7 ms.

B. Refinement of observations

The on-line tomoscope software uses small circles as
a graphical primitive in forming the gray scale; this is a
dangerous artifact when trying to observe bubbles. In order
to give greater control over the visualization, the files were
imported into MATHEMATICA [19] and graphed with a true
gray scale. Figure 3 shows an example waterfall display
in MATHEMATICA.

The diagonal movement of the tracks arises because the
revolution frequency of the bubbles is not equal to the ref-
erence rf. This results in track wrap-around on the display
044201-2
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FIG. 3. 2.3 3 1012 protons, one trace each 30 turns, vertical
span 5 ms.

0 500 1000 1500 2000

2.5

5

7.5

10

12.5

15

17.5

20

@ ns D

@ kturns D

FIG. 4. 1.0 3 1012 protons, one trace each 200 turns, vertical
span 31.7 ms.

and can be confusing. Fine adjustment of the rf may slow
down the sideways drift, and this enables the time span to
be increased. Figure 4 shows an example display. It is
suspected that the bubbles emanate from perturbations in
the linac beam current. Zooms of the data have confirmed
that some holes are 10 ns long, consistent with 200 MHz
rf, but many are broadened.

C. Schottky scans

Further evidence for coasting beam bubbles comes from
Schottky scans. Though one anticipates a noisy but basi-
cally smooth bell-shaped momentum distribution, what is
044201-3
seen is numerous spikes superposed on a quasiparabolic
background; see Fig. 5. Whereas the true incoherent
Schottky signal is proportional to the square root of par-
ticle density per unit frequency interval, coherent signals
due to bubbles are directly proportional to the number of
particles involved; and so coherent spikes can dominate
the spectrum. Figure 6 shows a waterfall display taken
shortly after the Schottky scan.

The linac bubbles arrive without prescribed properties;
thus one can do little but observe their longevity and their
propensity to cross but not coalesce. In order to compare
quantitatively against some theoretical model, one needs
holes with predictable and controllable properties. Fortu-
nately, in the PSB we have at our disposal a high harmonic
cavity with which to introduce holes of our own making.

FIG. 5. 1.7 3 1012 protons, Schottky scan about h � 4.
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FIG. 6. 1.7 3 1012 protons, one trace each 200 turns, vertical
span 31.7 ms.
044201-3
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D. rf capture

The impetus to study holes in debunched beams at the
PSB arose from a desire to create bunches which are hol-
low in longitudinal phase space and whose projection over
momentum gives flat bunch shapes. Using a high har-
monic cavity with swept frequency, the technique [20,21]
is to deposit empty rf buckets into the core of a debunched
beam thereby creating a double-peaked momentum distri-
bution, capture this beam into a single bucket at the rf fun-
damental, and then accelerate. There were two surprises:
(i) the phase-space voids introduced by empty buckets do
not debunch and (ii) there are pulse-to-pulse variations in
the h � 1 bunch at the time of capture. The second ef-
fect has since been diagnosed as piratical disruption of the
nascent h � 1 bunches by linac bubbles. The first effect
is the subject of this paper. Figure 7, left side, shows a de-
bunched beam with linac bubbles captured into an h � 1 rf
bucket. Figure 7, right side, shows the introduction of high
harmonic empty buckets, which gives a periodic density
modulation, the pirate linac bubbles, and the rf capture.

E. Periodic high-harmonic holes

If the fundamental rf is turned off and the ring is oper-
ated in storage mode, the same high harmonic cavity can
be used to introduce periodic holes with known properties.
Actually, space charge will distort the empty rf buckets
making for some uncertainty, but this is a not too signifi-
cant effect. Figure 8 shows periodic holes introduced at
FIG. 7. Waterfall plots of rf capture with (right) and without (left) high-harmonic bucket deposition. 3.2 3 1012 protons, one trace
each 20 turns, vertical span 3.3 ms.
044201-4
h � 13 with a cavity voltage of 3 kV. The quasiparabolic
sweep of the tracks is due to variation in the rf program
which was set somewhat crudely.

In the absence of focusing forces, the h � 13 holes
should shear in longitudinal phase space; their kinetic en-
ergy spread (computed from rf bucket parameters) is some
190 keV. During an interval of 8.3 ms, the top and bottom
of the h � 13 empty rf buckets should shear by some 8.3
periods of rf phase at h � 1, but no such shearing can be
detected.

Space charge is the dominant longitudinal impedance in
the PSB and has been identified as the likely explanation
for the preceding phenomena.

F. Momentum steering of holes

Because the longitudinal space-charge force [15] is pro-
portional to the derivative of the line-current density, there
is no force of attraction or repulsion between holes un-
til they contact. However, if there are small differences
in their central momenta, then holes will move relative to
one another. If the differences are random, some holes will
move closer together while others will move farther apart.
Typically this is a slow process because the momentum
differences are small. But eventually two or more holes
will collide.

As a test of this idea, one can hope to impress a long
wavelength coherent energy modulation on the hole centers
so that the collision process is speeded up and not governed
044201-4
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FIG. 8. Waterfall plots of line density. Left: one trace each 20 turns, span 3.3 ms. Right: one trace each 50 turns, span 8.3 ms;
abscissa in nanoseconds. 3.0 3 1012 protons.
by randomness. Hence one is led to modulating the holes
at the revolution frequency with a small voltage of short
duration. Figure 9 shows typical waterfall displays. The
tracks of the holes converge in response to the modulation
and though some holes collide none coalesce.
FIG. 9. Periodic holes with 660 keV (left) and 6120 keV (right) energy modulation at h � 1. One trace each 20 turns, span
3.3 ms; abscissa in nanoseconds. 2.4 3 1012 protons.
044201-5
G. Momentum spread versus beam current

A simple theoretical model (see Sec. III) was devel-
oped in parallel with the later beam measurements at the
booster, and these experiments were adapted to test the
044201-5
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FIG. 10. 1.8 3 1012 protons, one trace each 100 turns, vertical
span 16.7 ms, Vrf � 0.3 keV.

theory which predicts a definite relation between the mo-
mentum spread of the holes and the beam current because
of a fine balance between shearing and focusing. In these
measurements, the harmonic cavity was run at h � 18.

In Fig. 10, the tendency for holes to shear due to their
momentum spread is well balanced against the focusing
provided by space-charge forces, and the tracks stay
sharply defined. It is also clear that although some holes
appear to collide they pass one another and do not coa-
lesce. In Fig. 11, the momentum spread of the holes has
been enlarged (cavity voltage doubled) and this enhances
the shearing effect.
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FIG. 11. 1.8 3 1012 protons, one trace each 100 turns, vertical
span 16.7 ms, Vrf � 0.6 kV.
044201-6
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FIG. 12. 2.4 3 1012 protons, one trace each 100 turns, vertical
span 16.7 ms, Vrf � 0.55 kV.

A comparison of Figs. 11–13, where the beam current is
progressively increased, shows that space-charge focusing
on holes can overcome the shearing due to momentum
spread, leading to narrower and more self-sustained holes.
The affect of phase-space displacement acceleration also
depends on intensity, because of bucket distortion, and so
the final central energy of the holes varies. And, since the
rf acquisition frequency was not adjusted to compensate,
this effect is responsible for the difference in the phase-slip
rates between the figures.
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FIG. 13. 3.2 3 1012 protons, one trace each 100 turns, vertical
span 16.7 ms, Vrf � 0.6 kV.
044201-6
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FIG. 14. Mountain-range plots of line density. Left: start at 162 ms, one trace each 25 turns, span 4.0 ms. Right: start at 202 ms,
one trace each 20 turns, span 3.1 ms. Abscissa in nanoseconds. 5.5 3 1012 protons. Dual harmonic with V2�V1 � 0.5.
H. Holes in bunched beams

There is some evidence that small phase-space voids sur-
vive capture and acceleration in the PSB. Typically there
is a spread in synchrotron oscillation frequencies which
will cause a beam perturbation to filament. Consequently,
one expects to find that holes must be small and that they
survive where the frequency spread is smallest. Single
holes at the very center of a single harmonic rf bucket
have been found [22] to survive right through to extraction
to the CERN PS. For the case of dual-harmonic accel-
eration, the synchrotron frequency vs first increases and
later decreases with amplitude r , and there is a particular
amplitude at which the derivative dvs�dr � 0. Holes per-
forming incoherent oscillations of this particular amplitude
have been found to survive for at least 200 ms; see Fig. 14.
Such motions can be used as a clock against which the pe-
riod of coherent bunch oscillations may be timed.

III. SIMPLE THEORETICAL MODEL

In support of the CERN PSB experiments and the com-
puter simulations at TRIUMF, a simple criterion for the
stationarity and self-consistency of a hole was developed
by consideration, in detail, of the phase-space trajecto-
ries about a rectangular void. Let us suppose that “space
charge” is the dominant longitudinal impedance, as is usu-
ally the case in low energy proton synchrotrons. For sim-
plicity, we shall suppose that the central momentum of the
void is equal to that of the beam, so that the perturba-
tion moves neither to the right nor to the left. Let p and
q be canonical momentum and azimuthal position coordi-
nates; their relation to world coordinates such as rf phase
f and energy deviation DE are given in the Appendix. The
044201-7
Hamiltonian is H � p2�2 1 Zl�q� where Z . 0 is a
coupling constant and l is the line density.

A. Physical picture

For the purpose of clarity we shall discuss a phase-space
hole that resembles a small, empty barrier bucket embed-
ded in a much larger background of charges. Consider
Fig. 15. We take the line density constant over the region
a1 # q # a2 and falling and rising, respectively, over the
transition regions b1 , q , a1 and a2 , q , b2 where
b1 , a1 , a2 , b2. The line density is constant else-
where. The variation in l gives rise to a potential function
with the same shape as l. In this case, below transition
energy, we have a potential well which captures the empty
phase space. The precise variation of l over the transi-
tion regions is unimportant, since the net change in p2

during crossing depends only on the potential differences
Dl1,2 � l�b1,2� 2 l�a1,2�. Particles receive equal and
opposite space-charge impulses as they cross the two tran-
sition regions, and it is these impulses which may maintain
the shape of the hole. The sequence of two impulses is
such that the modulus of the momentum excursion first in-
creases and then decreases. Particles which have initially
small momenta have their orbits distorted substantially by
these impulses and trace out paths that flow around the hole
and delineate its boundary. Particles with initially large
momenta �p0� receive the same impulses but have their

paths much less distorted because p �
q

p2
0 1 ZDl�f�.

Hence, if the beam momentum spread is sufficiently large,
the boundary of initially occupied phase space is hardly
distorted by the introduction of a hole. Particles which
are on the separatrix of the hole (and nonparticles inside
the hole) receive double impulses in each of the transition
044201-7
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FIG. 15. (Color) Phase space, line density, and space-charge voltage for single hole.
regions (and have their directions of motion reversed)
and so circulate about the hole center rather than flowing
around the hole. This discontinuous behavior is charac-
teristic of a separatrix.

B. Equilibrium condition

Let us suppose the empty bucket is cut away from an
overall background momentum distribution F�p� which is
independent of q and extends from 2Dp to 1Dp. The
momentum-deviation shape of the hole on upper and lower
contours is denoted 6p̂�q�; the implied symmetry occurs
because all forces acting are conservative. Hence, the line
density is l�q� � l0 1 l1�q�, where

l0 � 1r0

Z 1Dp

2Dp
F�p� dp

and l1�q� � 2r0

Z 1p̂�q�

2p̂�q�
F�p� dp .

(1)

The constant r0 is determined by the normalization
condition

R1p
2p l�q� dq � N , where N is the number of

particles.
At the ends of the empty barrier bucket, p � 0 and

l1�jbj� � 0 and so H � 0. Hence, the momentum
variation along the bounding contour of the hole is

p2�2 � 2Zl1�q� � 2Zr0

Z p̂�q�

0
F�p� dp . (2)

But since this contour is the perimeter of the hole, self-
consistency demands that p�q� � p̂�q�. Hence we have
an equation of the form p2�q� � G�p�q��, which has two
possible solutions: (i) G � p2 and F�p� ~ p, which is
unphysical, or (ii) a ! b and

� p̂�2 � 4Zr0

Z p̂

0
F�p� dp . (3)

Hence we conclude the self-consistent solution of the
product form c1 � P�p�Q�q� is a rectangular hole with
space-charge forces confined to positive and negative
Dirac impulse functions at either end and, moreover, that
the momentum spread of the hole be consistent with the
beam current according to Eq. (3), which expresses a
competition between a tendency for the hole to shear be-
cause of its momentum spread versus space charge which
attempts to focus the motion toward the hole’s center. For
4201-8
holes which are close to the rectangular shape, one still
expects the maximal momentum to satisfy condition (3).

C. Scaling laws

Equation (3) may be rewritten to explicitly show the
scaling laws for fundamental parameters. We consider a
particle beam of energy Es, synchronous momentum Ps,
and speed bsc moving in a storage ring of average radius
Rs and a hole of momentum width 2p̂ and length 2b rad.
Let g0 be the geometrical coupling parameter which de-
pends on the ratio of beam and vacuum pipe transverse
radii. The equilibrium half-height momentum spread of
the hole isµ

p̂
Ps

∂2

�
g0

2pe0

µ
e

bs

∂2 1
Es

N
Rs

1
��gs�gt�2 2 1�

3
fempty

ffilled

1
2b

, (4)

where fempty and ffilled are, respectively, the fractions of
empty and filled phase space.

fempty

ffilled
�

b
Rp̂

0 F�p� dp

p
R

Dp
0 F�p� dp 2 �b�h�

Rp̂
0 F�p� dp

. (5)

The scaling law is independent of harmonic number, as
may be anticipated for an unbunched beam. The de-
pendence on bs and Es implies the effect will be more
prominent at low energy. The rather complicated form for
fempty�ffilled derives from the fact that we insisted not to
change the total number of particles N when the hole was
“cut away” from the background of charges.

D. Simplifying approximations

We introduce two approximations into Eqs. (1)–(3) to
simplify the expressions.

(i) Sufficiently small hole that 2pr0

R1Dp
2Dp F�p�dp !

N .
(ii) F�p� slowly varying and p̂ ø Dp.
The half-height momentum spread of the hole is ap-

proximately

p̂ �
2Z
p

F�0�
¡ Z 1Dp

2Dp
F�p� dp . (6)

This stationarity condition in world coordinates and SI
units is
044201-8
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µ
p̂
Ps

∂
�

g0

2pe0
�e�2 1

bsc
N
Rs

1
��gs�gt�2 2 1�

3
F�0�

2p
RDp

0 F�p� dp
. (7)

The computer simulations of single holes (see Sec. IV B 1)
confirm this matching criterion. The PSB experiments with
periodic holes introduced by a high-harmonic rf (Sec. II G)
are also in agreement with this formula, though the depth
of the holes is not a precisely known quantity.

E. Away from equilibrium

From the above scaling law, one may speculate on the
behavior of holes away from equilibrium. If the momen-
tum spread is too large, the hole shears along the q direc-
tion, the width of the transition region increases, the space
charge forces diminish still further, and the shear rate in-
creases, and so the hole filaments and disappears. If the
momentum spread is too small, the two transition regions
shear along the p direction in such a way as to increase
their momentum spread. This in turn will create two cusps
in the line density, which generate positive and negative
space-charge impulses at either end of both transition re-
gions. This in turn redistributes particles so that the bunch
splits in two.

F. Collision of two holes

Two holes can only move relative to one another if their
central momenta are different. Further, they can only col-
lide in phase space if their momentum difference is less
than the sum of their half-width momentum spreads. We
shall consider two holes which are matched according to
condition (3) and are identical except for their initial loca-
tions and central momenta: a lower momentum hole on the
left (traveling rightward) and a higher momentum hole on
the right (traveling leftward); see Fig. 16. We take a ref-
erence frame in phase space in which the holes move with
equal and opposite speeds toward one another. One pos-
sible “picture” for the moving phase space trajectories at
the boundary of each hole is that of two caterpillar tracks,
with the key observation that “although different parts of
a track move in different directions, nevertheless the track
as a whole moves forward (or backward).” The higher
04
FIG. 16. (Color) Phase space, line density, and space-charge voltage for two holes.
4201-9
momentum hole has a right leading edge (A) and a left
trailing edge (B), whereas the lower momentum hole has a
left leading edge (C) and a right trailing edge (D). Asso-
ciated with these four edges are transition regions where l

varies and particles receive space-charge impulses. There
are positive impulses at edges B and C and negative im-
pulses at edges A and D, and these impart a counterclock-
wise sense of rotation to the nonparticles inside the holes.

The edges A and C are the first to encounter one an-
other. Whether the edges A and C collide in phase space
or merely pass by one another, the result is much the same.
When and where (in phase) the A and C transition re-
gions collide, the l variations cancel exactly, the space-
charge forces drop to zero, and (locally) particles are free
to drift —which leads to a slight shearing of the edges A
and C.

After the A and C transition regions have passed through
one another, the space-charge forces in the A transition re-
gion will continue to act on the lower momentum hole and,
likewise, forces at the C edge will act on the higher mo-
mentum hole and particles that surround it. The impulses,
which are half the values continuing to be applied at the
edges B and D, are repulsive and so the effect of these
shock waves is to distort the holes so that they avoid inti-
mate encounter. At the same time, occupied phase space
is introduced between the two holes to form a “boundary
layer.”

The two holes continue to move relative to one another;
eventually and inevitably the edges A and D will collide,
and at the same moment the edges B and C collide. The l

variations will superpose constructively so that the space-
charge forces at either end are (almost) doubled. If the ini-
tial momentum separation is small, this gives a situation
which is very similar to that of a single hole of twice the
height (and area) of our two initial holes. The space charge
has doubled, and the momentum width has at least doubled
compared with that of a single hole. This implies that the
self-consistency condition (3) is not fulfilled, but rather
the momentum spread is a factor

p
2 too great and that

the “new hole” will shear. Alternatively, we may say
that the two holes continue to slide past one another allow-
ing the edges B and D to generate impulses which (almost)
reverse all of the actions earlier performed by the edges A
and D.
044201-9
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In total, this series of events implies that, even if the
initial separation of hole centers is much less than their
width, they still do not actually collide or coalesce, but
rather flow around one another. This is comforting because
true collisions of phase-space trajectories are forbidden in
Liouvillian flows.

Note that these remarks on the collision of matched
holes are similar to those of Laclare [17] who states, in
the context of rf stacking, “the elementary stacks are po-
tentially more unstable than the final accumulated beams.”

IV. COMPUTER SIMULATIONS

In support of the experiments at the PSB, many com-
puter simulations were made using the LONG1D [23] macro-
particle tracking program. The simulation has several
benefits: conditions can be controlled precisely, more
views of the beam (such as phase space density and
momentum spectrum) are available, and the impedance
can be precisely defined. LONG1D, which uses a second-
order symplectic multistep algorithm for handling of the
space-charge dynamics, computes the space-charge [24]
electric field based on Fourier analysis of the line density
and includes the roll off at high frequency and dynamical
effects.

Two types of system were studied: (i) a periodic array
of holes as the result of depositing empty rf buckets and
(ii) the behavior of one or two rectangular holes. Examples
of gif animations for both types may be found on the World
Wide Web [25].

A. Periodic holes

A periodic array of holes was generated by simulating
the deposition of high harmonic empty buckets into a de-
bunched beam. The basic scenario is as follows: the cavity
is turned on with 2 kV voltage and with a frequency offset
of 40–45 kHz above the revolution harmonic; after 0.5 ms
the frequency offset is ramped down to zero during a fur-
ther 0.5 ms; after this time the cavity is turned off and the
beam evolution is tracked for a further 9.0 ms.

Studies were made using harmonic number h � 15 and
h � 20. Although the results were similar, the h � 15
case is reported here for several reasons. The resolution
of the plots is better at lower harmonic number, the sta-
tistics are better because there are more macroparticles
per wavelength, and because the Fourier expansion of the
space-charge wake is truncated to 50 harmonics there is
more “head room” when the beam structure has lower
periodicity.

Tests were also made on computational aspects. Re-
peated simulations were made with progressively more
(i) macroparticles from 105 to 106 and (ii) time steps per
turn from 1 to 3. Apart from the reduced noise there was
no qualitative change in the behavior of the simulated par-
ticle beam.
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1. Variation with intensity

The zero intensity case (Fig. 17) shows the holes to
debunch in less than 0.5 ms, and thereafter the beam is
completely uniform as indicated by the constant value of
the gray scale. The slip factor h � 0.843 in the booster at
50 MeV is comparatively large and this explains the rapid
debunching.

In the case of 2 3 1012 protons (Fig. 18, left side),
the holes leave obvious tracks though space charge is not
strong enough to prevent the holes from widening. Diago-
nal movement of some of the holes indicates that their
revolution frequency and central momentum differ from
the nominal. Some of the tracks converge and others di-
verge because of relative momentum differences between
the holes; these differences arise purely from statistics and
the movement tended to be faster when fewer macropar-
ticles were used. Figure 18, right side, is a waterfall dis-
play of the beam momentum spectrum during the empty
bucket deposition and subsequently. The dip in the central
density is due to the projection over all 15 holes.

In the case of 4 3 1012 protons (Fig. 19, left side), all
the holes have revolution frequency substantially different
from the nominal value. Space-charge forces distort the rf
bucket shapes during the deposit of empty phase space, and
this implies the final energy of the holes depends on beam
current. The higher space-charge forces, cf. the previous
case, also provide better focusing of the holes and so they
do not widen. Figure 19, right side, shows a spectrogram
of the frequency content versus turns. The gray scale is
proportional to the square root of the Fourier amplitude so
as to reveal the weaker Fourier components. The h � 15

FIG. 17. Waterfall plot of line density, 6000 turns, 0 protons,
106 macroparticles.
044201-10
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FIG. 18. Waterfall plots of line density (left) and energy spectrum (right) for 6000 and 2000 turns, respectively. 2 3 1012 protons,
8 3 105 macroparticles.

FIG. 19. Waterfall plots of line density (left) and Fourier content (right) for 6000 and 2000 turns, respectively. 4 3 1012 protons,
106 macroparticles.
044201-11 044201-11
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FIG. 20. Waterfall plot of line density, 2400 turns, 4 3 1012

protons. Beam has artificial initial 65% density modulation
which very quickly debunches.

content of the holes clearly survives for more than
2000 turns.

2. Effect of density modulation

To test the hypothesis that it is momentum differences
that steer the holes and not forces between them, a
special ensemble was prepared and the rf-bucket-deposit
simulations were repeated. An artificial one-dimensional
density modulation was added to the initial ensemble
according to c0 � �1 2 p2�2�1 2 a cos5x�, where the
azimuth jxj # p and a . 0 was varied from 1% to 10%.
In all cases there was no discernible correlation with
the hole trajectories, and, indeed, the initial modulation
typically debunched well before the bucket deposit was
completed, as in Fig. 20.

B. Simulation of rectangular holes

In order to test the simple theoretical model of Sec. III
and to gain an understanding of the phase-space dynamics
under simpler circumstances, computer simulations were
made with one or more bitrapezoidal holes in phase space.
To comply with the model, the holes were cut (down to
zero particle density) from a background quasiparabolic
distribution of substantially larger momentum width.
However, because the space-charge wake is truncated
to 50 harmonics and infinitely sharp edges cannot be
represented, the holes were made bitrapezoidal.
044201-12
1. Single hole

Figures 21 and 22 show the case of a single hole pre-
pared with parameters that should give a stationary pertur-
bation according to Eq. (7). There is a slight oscillation
of the hole’s length, which can be attributed to the Fourier
truncation of the wake, but it is basically matched in con-
firmation of the stationarity condition.

The striations appearing in the phase-space scatter plots
are due to the fact that the ensemble was initially prepared
in colored bands for the purpose of emphasizing and visu-
alizing the particle flows.

Simulations were repeated for the cases of beam current
one-half and double the value required for stationarity. In
the former case, the hole debunches because the shearing
due to momentum spread overcomes the space-charge fo-
cusing. In the latter case, Figs. 23–25, the hole quickly
breaks up into two smaller holes which thereafter appear
almost stationary. The momentum spread of the holes is
unaltered, but the charge in each is halved and so the con-
dition for stationarity is restored.

FIG. 21. (Color) Phase space scatter plots at 214.74 ms (top)
and 212.49 ms (bottom), 5 3 1012 protons.
044201-12
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FIG. 22. Waterfall plot of line density for single matched hole
(but offset in azimuth) for 3200 turns. Beam current set to give
stationary hole. 5 3 1012 protons, 2.4 3 105 macroparticles.

2. Collision of two holes

Phase-space distributions were prepared with two rec-
tangular holes of slightly different central momentum and
initially separated in azimuth. Trials were made in which
only the intensity varied. Because of the momentum dif-
ference the holes move toward one another and collide in
phase space.

The case of two initially matched holes is shown in
Figs. 26 and 27: the holes encounter and slide past one an-
other; afterward there is little deformation of their shapes.
FIG. 23. (Color) Phase space scatter plots (left to right) at 214.89, 214.74, and 214.59 ms, respectively. 1013 protons, 2.8 3 105

macroparticles.
044201-13
For one-half the matched beam current, Figs. 28–30
the holes begin to debunch, then collide and slide
past one another, and then continue to debunch indefi-
nitely; 2.2 3 105 macroparticles were employed in the
simulation.

For double the matched beam current, Figs. 31–33 each
hole begins to divide in two as they collide, the nascent
hole pairs slide past one another and continue to divide.
When the breakup is complete, the two pairs of holes have
become interleaved, being tagged by their different initial
momenta. The four holes are matched and persist the
length of the simulation.

V. SOLUTIONS OF THE VLASOV EQUATION

We now examine the question of whether stationarity
conditions such as (3) can be obtained from solution of the
time-independent Vlasov equation.

Let p and q be canonical momentum and position coor-
dinates, respectively, and H the Hamiltonian. We assume
coordinates in which the beam centroid appears at rest.
Let us employ the dot notation for time derivatives. The
evolution of the distribution function c for a collisionless
plasma is governed by the Vlasov equation,∑

≠

≠t
1 �p

≠

≠p
1 �q

≠

≠q

∏
c � 0

where �p � 2
≠H
≠q

, �q � 1
≠H
≠p

. (8)

To stipulate a stationary solution, one simply sets the par-
tial time derivative to zero.

A. With/without wakefield

In the wake-free case �q � p and �p � 0, c�p� an arbi-
trary function is a stationary solution.

In the wakefield case �p � f�c�, where f depends on
the nature of the wake, and H � p2�2 1

Rq �pd q then
044201-13
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FIG. 24. (Color) Phase space scatter plots (left to right) at 214.39, 214.09, and 213.79 ms, respectively. 1013 protons,
2.8 3 105 macroparticles.
c�H� is automatically a stationary solution provided that
“self-consistency” is satisfied.

B. Expansion about steady state

Let c0 be a steady-state density function and c1 some
perturbation. Substitution of c � c0�p� 1 c1�p, q, t�
into the Vlasov equation yields:

�p
≠

≠p
�c0 1 c1� 1

∑
p

≠

≠q
1

≠

≠t

∏
c1 � 0

where �p � f�c1� . (9)

FIG. 25. (Color) Scatter plot at 213.54 ms, 1013 protons.
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C. Keil-Schnell– type condition

A perturbation consisting of the superposition of plane
waves has the advantage that the net charge is zero, and so
there is no need to renormalize the steady-state function.
However, to form a localized perturbation a group of waves
is required, and the usual Keil-Schnell formalism which
deals with single waves and ignores mode coupling may
not be adequate. Fortunately, for the case of pure reactive
impedance it is possible, for an arbitrary shape perturba-
tion, to derive the dispersion relation for zero modulation
frequency more directly and avoid the “wave machinery.”

The Vlasov equation (9) is linearized and the time
derivative set to zero, leading to

�p�c1�
≠c0

≠p
1 p

≠c1

≠q
� 0 with

Z
c0dp dq � N .

(10)

Here N is the total number of particles in the beam. Let Z
represent the coupling between the wake-induced acceler-
ation and the particle number density per unit q, denoted
l1�q� �

R
c1 dp. Thus, for space charge,

dp
dt

� 2Z
≠

≠q

Z 1`

2`
c1�p, q� dp . (11)

Equation (11) is substituted in Eq. (10), one divides
throughout by p and then integrates over the momentum
coordinate. Then one may cancel �≠�≠q�

R
c1 dp as a

common factor, leading immediately to the dispersion
relation (for zero modulation frequency)

Z
Z 1`

2`

1
p

≠c0

≠p
dp � 11 . (12)

This direct approach could not be used for arbitrary
impedance. In general [26], the type of integral appearing
in (12) gives rise to a Cauchy principal value (PV) and an
imaginary residue. However, under the assumption that
dc0�dp � 0 at the beam center (p � 0) the residue term
is zero.
044201-14
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FIG. 26. (Color) Phase space scatter plots (left to right) at 214.62, 214.37, and 214.24 ms, respectively. 5 3 1012 protons,
2.2 3 105 macroparticles.

FIG. 27. (Color) Phase space scatter plots (left to right) at 213.87, 213.62, and 213.49 ms, respectively. 5 3 1012 protons,
2.2 3 105 macroparticles.
The PV integral is negative/positive if c0 is locally a
maximum/minimum at p � 0. Thus, as is well known,
for capacitive impedance (Z . 0), an inverted bell c0
is required to perpetuate a perturbation below transition
energy. Alternatively, if the impedance is pure induc-

FIG. 28. (Color) Scatter plot at 214.8 m, 2.5 3 1012 protons.
044201-15
tive (Z , 0) then perturbations may persist for the usual
bell-shaped steady-state distributions.

Despite this prediction, the experimentally observed
stable holes in the PSB debunched beam occur (below tran-
sition energy) for a capacitive impedance (space-charge

FIG. 29. (Color) Scatter plot at 213.8 ms, 2.5 3 1012 protons.
044201-15
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FIG. 30. Waterfall plot of line density, 3000 turns. Two holes
debunch, 2.5 3 1012 protons, 2.2 3 105 macroparticles.

and perfectly conducting wall) and a quasiparabolic
steady-state distribution with

R
�1�p� �≠c0�≠p� dp , 0.

There is another problem with this theory: the ability to
cancel the l1�q� �

R
c1 dp terms in the linearized Vlasov

equation implies that the perturbation shape l1�q� is an
arbitrary function, allowing either holes or spikes, while
only holes are seen experimentally in the PSB.

There is a simple corollary to the preceding results:

c1 �
Z
p

≠c0

≠p
l1�q� where

Z 1p

2p
l1 dq � n (13)

and n is the number of particles in the perturbation.
FIG. 31. (Color) Phase space scatter plots (left to right) at 214.62, 214.37, and 214.12 ms, respectively. 1013 protons,
2.2 3 105 macroparticles.
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D. Is c0���p��� 1 c1���p, q��� a stationary solution?

Substitution of c � c0�p� 1 c1�H� in (8) leaves the
residual

�p
≠c0

≠p
1

≠c1

≠t
� 0 , (14)

so this cannot be a stationary solution.
Substitution of c � c0�p� 1 P�p�Q�q� in (8) leads to

the conditions P � c0 � e2p2�2 and leaves the residual

�p�1 1 Q� �

µ
≠

≠q
1

≠

p≠t

∂
Q . (15)

Solutions with ≠Q�≠t � 0 will be rare, if any.
Note that the trial form c0�p� 1 c1�p, q� is a poor

starting point from which to find stationary solutions of
the Vlasov equation.

E. Whether to linearize or not

When linearizing the Vlasov equation, it is customary to
state that the perturbation c1 is small compared with the
steady-state function c0 and that the product �pc1 can be
neglected. An often unremarked corollary is that

c1 ~
1
p

≠c0

≠p
(16)

and the characteristic scale of the momentum distributions
occurring in c1 and c0 are similar.

However, the Vlasov equation is not concerned with the
absolute amplitude of functions, but rather throughout it is
obsessed with derivatives. Consequently, it is not the rela-
tive size of c0 and c1 that matters, but rather the rela-
tive size of their derivatives. Thus for the case of a very
localized perturbation, the derivatives of c1 may be over-
whelmingly large compared with ≠c0�≠p. In this case,
the perturbation decouples (almost) completely from the
steady-state distribution and one may neglect the term
�pc0; in this case c1 obeys Eq. (8) and c1�H� is an (al-
most) exact stationary solution of the Vlasov equation
provided self-consistency is satisfied. In the case that the
044201-16
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FIG. 32. (Color) Phase space scatter plots (left to right) at 213.99, 213.87, and 213.74 ms, respectively. 1013 protons, 2.2 3 105

macroparticles.
wake derives from longitudinal space charge, we shall
demonstrate explicitly how to construct self-consistent,
stationary solutions. We shall consider two types of so-
lutions: c � P�p�Q�q� and c�H�. In both cases the in-
trinsic nonlinearity of the Vlasov equation is essential to
forming self-trapped distributions.

Because the solitonlike c1 decouples form c0 there is
no need for the momentum center of the perturbation to
coincide with that of the beam. Consequently, one may
have to make a coordinate transform to the rest frame of
the perturbation; we shall assume that this has been done.

F. Dispersion relation

The stationary c1 obeys the approximate equation

FIG. 33. Waterfall plot of line density, 4500 turns. Two holes
split, 1013 protons, 2.2 3 105 macroparticles.
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�p�c1�
≠c1

≠p
1 p

≠c1

≠q
� 0 with

Z
c1 dp dq � n ,

(17)

where the number of particles n in the perturbation is
yet to be determined. We substitute (11) in place of �p
and perform the same mathematical manipulations as in
Sec. V C to obtain a dispersion relation analogous to (12),

Z
Z 1`

2`

1
p

≠c1

≠p
dp � 11 . (18)

Evidently, c1 must be an inverted bell shape, that is a hole,
for the dispersion relation to be fulfilled (assuming Z . 0
and capacitive impedance below transition). The disper-
sion relation (18) is similar to that of Keil-Schnell, but
differs in two respects: whereas the latter contains the full
beam current (proportional to N) and the full momentum
spread of the beam, the former contains only the current
in the hole (proportional to n) and the momentum width
of the hole.

G. c1 5 P���p���Q���q���

We substitute the trial solution

c1 �
e2p2�2s2

s
p

2p
l1�q� , (19)

where s is an arbitrary range parameter, into the time-
independent Vlasov equation (17), and we substitute the
wake-induced acceleration (11) in place of �p, leading to

Z
≠l1

≠q
1

s2 l1�q� 1
≠l1

≠q
� 0 . (20)

Cancellation of ≠l1�≠q throughout leads to the condition
that l1�q� is a negative constant,

l1 � 2s2�Z . (21)

Hence l must be the inverted “top hat” function given by
(21) within some range of jqj # Dq and zero outside that
range. A series of equal top hats is also possible. This
044201-17
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solution is somewhat unphysical but has several properties
which are key features of a more realistic model.

The number density (i.e., the amplitude of c1) is nega-
tive so that only holes are possible below transition energy.
However, particle number density may only be positive (or
zero) and so the positive, background, smooth steady-state
distribution c0 is absolutely essential to the physical real-
ization of the perturbation. Thus c0 $ jc1j for all p, q is
a necessary condition.

The structure is perpetuated by impulses at head and tail
which reverse the direction of motion of trapped particles;
what happens and what length between head and tail is not
terribly important.

The self-consistency condition (21), which derives from
the Hamiltonian H � p2�2 1 Zl1, makes no mention of
the length in q of the perturbation. Essentially, this is
because we assumed c1 and c0 completely decoupled and
so lost the property of “number conservation of particles”;
a more correct theory would renormalize c0 and c1. Our
theory is valid for the case that the perturbation does not
significantly change the number of particles N . Hence the
condition jnj � 2Dqs2�Z ø N .

Despite the decoupling of c0 and c1, the steady-state
distribution does impose some constraints on the perturba-
tion. Because the total number density must be positive,
the phase-space density c0 must be high enough to sup-
port the perturbation. That is to say, for a hole of given
momentum width, there is a critical phase-space density
below which c0 cannot act as a transport medium for soli-
tonlike structures. Let us estimate this critical density.

The density c1 is of the order of n��4sDq� �
2s��4Z�. The density c0 is of the order of N��4pDp�
where Dp is the rms width of c0. Hence the critical
density is

N��pDp� $ s�Z . (22)

The self-consistency condition (21) implies a very
strict relation between the momentum width s of a hole
and its depth l1, such that progressively narrower holes
(s , 1) become exceedingly shallow and hard to detect
experimentally.

H. c1 5 c1���2H���

A function of the Hamiltonian H is automatically a sta-
tionary solution of the Vlasov equation. The Hamiltonian
is

H � p2�2 1 Zl1�q� with l1 # 0 . (23)

The separatrix, which gives the boundary of the perturba-
tion c1, is given by H � 0. Within this boundary particles
circulate periodically on closed paths, and for this rea-
son Schamel [10] has described the solitonlike solutions as
vortices.

The self-consistency condition constrains the form of
c1, and one anticipates the Hofmann-Pedersen [27] form
044201-18
c1 � k
p

2H where the constant k is determined by the
condition l1 �

R
c1 dp. The integral is evaluated using

the change of variable p2�2 � 2Zl1 sin2u, yielding l1 �
2kZl1p�

p
2. Hence the bound-state solution is

c1 � 2

p
2

Zp

q
2p2�2 2 Zl1�q� , (24)

where the shape l1 is an arbitrary function. This function
(24) automatically satisfies the dispersion relation (18).
The condition for critical density c0 $ jc1j implies

N
2pDp

$

s
2l1�q�

2Z
. (25)

The depth of l1 and the maximum extent of the bound-
state momentum excursions 6p̂ are related by solving
H � 0. Thus we find the density condition

N��pDp� $ p̂��2Z� . (26)

I. Pure resistive wake

For the case of a pure resistive wake

�p � Y
Z

c1 dp � Yl1�q� , (27)

where Y is a coupling constant, one may substitute the
trial form c1 � P�p�Q�q� given in Eq. (19) in the time-
independent Vlasov equation. After performing the partial
derivative ≠c1�≠p, the common factor p may be canceled
throughout, then after integrating over momentum p one
obtains the equation

≠l1

≠q
�

Y
s2 l2

1 , (28)

which has solution

l1�q� � 21��k 1 qY�s2� , (29)

where k is a constant of integration. Unfortunately, this
solution is unphysical, essentially because the lack of cou-
pling to c0 has destroyed the requirement of finite and
positive number density. Equation (29) has both nega-
tive and positive infinite number density at the singular-
ity q � 2ks2�Y , though the function is integrable in
the Cauchy principal value sense and the soliton has zero
net charge. However, if resistive-wake solitons exist one
should expect them to exhibit some type of localized bipo-
lar shape.

J. Keil-Schnell revisited

Another possible modification to the Keil-Schnell cri-
terion is based on the following observation. Because
each plane-wave–type perturbation is equally positive and
negative and because a superposition of finite, rather than
infinitesimal, wave amplitudes are required to make deep
holes, as discussed in Secs. II G and III, one must concede
that the steady state distribution c0�p� is not arbitrary. If
044201-18
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one uses plane waves, then it is a mathematical fact that
accompanying any deep hole there is also a steep hill at
either side. Figure 34 shows a Gaussian c0, a square-wave
perturbation c1, and their sum gives rise to an unwanted
ridge in addition to the desired hole. Hence one must cut a
trench into the steady state distribution, along the azimuth,
before adding the wave group, as shown in Fig. 35.

It is worth noting that there is no alternative to the
trench type c0 that is consistent with “cutting a hole from
a smooth background distribution.” If, as in Fig. 36, one
takes a c0 with a ridge and superposes an inverted square-
wave perturbation, the result is a hot spot and not a hole.

For a given hole configuration, there is a precise set of
plane waves required and a definite prescription for how to
modify the steady-state distribution. Consider a localized
044201-19
perturbation of the form c1 � P�p�Q�q�, where P $ 0
is bell shaped and where Q � �b 2 p��p for azimuth
jqj # b , p and Q � �b�p� for azimuth p $ jqj .

b . 0. Further, P�0� � d where d is the depth of the
hole. Then the steady state is modified as follows:

cnew
0 ) cold

0 2 �b�p�P�p� , (30)

with the renormalization condition 2p
R

c
new
0 � N . It is

assumed that P�p� is known and that c
new
0 1 c1 $ 0 for

all p, q. In this case one can immediately write down the
dispersion relation (for zero modulation frequency)

Z
Z 1`

2`

1
p

≠

≠p

∑
cold

0 2
b
p

P�p�
∏

dp � 11 , (31)
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FIG. 34. (Color) Phase space distributions. Left to right: steady-state distribution c0; square-wave perturbation c1; c0 1 c1 has a
hole and a ridge.
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FIG. 35. (Color) Phase space distributions. Left: distribution c0 with trench. Right: c0 1 c1 hole but no ridge.
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hot spot.
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analogous to the Keil-Schnell condition (12). For suffi-
ciently steep P�p�, the modified c

new
0 now allows station-

ary solutions with capacitive impedance below transition.
For example, consider the distribution function

cnew
0 �

N�exp2p2�2�Dp�2
2�bd�p� exp2p2�2s2 �

p
2p �Dp 2 sbd�p�

, (32)

whose dispersion integral is

ZN

∑
bd
s

2
p

Dp

∏ ¡
�Dpp 2 sbd� . (33)

This quantity is positive for s�Dp , bd�p , and when
this condition is satisfied we may expect stationary holes.

This approach is extendable to nonzero modulation
frequencies and arbitrary impedance, though it is not fully
self-consistent. One expands the perturbation in a set
of plane waves

P
k Pk�p�ei�kq2vk t�, leading to the usual

Keil-Schnell dispersion relation for the coherent frequen-
cies vk , assuming no mode coupling. It is customary to
solve this relation by scanning vk , finding for which value
of the impedance is the relation satisfied, and plotting the
result in the impedance plane as a “stability diagram.” For
the double-humped distribution function above [Eq. (32)],
the stability diagram is quite complicated: there are
regions where for each value of impedance there are two
solutions for vk , which implies there are two possible
oscillation modes. When s�Dp . bd�p there are

FIG. 37. Stability diagram for beam with wide Gaussian trench
s�Dp . bd�p �s�Dp � 0.25�.
044201-20
FIG. 38. Stability diagram for beam with narrow Gaussian
trench s�Dp , bd�p �s�Dp � 0.10�.

two modes possible with pure inductive impedance (see
Fig. 37), and when s�Dp , bd�p there is one stationary
mode possible with capacitive impedance (see Fig. 38).
Figures 37 and 38 show the kind of stability diagrams
that are to be anticipated as parameters are varied. In
these examples b � p�4, d � 0.70 and bd�p � 0.175.
We write the complex frequency as vk � v 1 iq . For
clarity we show only the branch 0 # v , 1`; the other
branch is mirror symmetric about the ordinate. Thus, the
stability boundary of Fig. 38 corresponds to the part of
the q � 0 curve as plotted for negative resistance and its
mirror image for positive resistance.

VI. CONCLUSION

There is much experimental evidence at the CERN PSB
to support the existence of near-stationary longitudinal
voids. Most evidence suggests that these holes do not co-
alesce, but that they can break up into smaller holes if
the density is high enough. There is strong supporting
evidence from computer simulations and theoretical analy-
sis that the holes are perpetuated by space-charge forces.
Given these observations, such holes are expected to be
ubiquitous in low energy “booster-type” synchrotrons that
operate below transition and with space charge as the
dominant longitudinal impedance. The behavior of phase-
space holes below transition energy is analogous to the be-
havior of hot spots above transition. However, due to the
044201-20
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energy dependence of the effect, it is more likely to be seen
below transition.

We have derived conditions for stationarity of holes that
satisfy the requirement of self-consistency; essentially, the
relation between the momentum spread and depth of the
holes is given by the Hamiltonian —with the constraint
that the phase-space density be high enough to support the
solitonlike perturbations which are solutions of the non-
linear Vlasov equation. We have shown that the usual
Keil-Schnell [12] criterion does not explain the perpetu-
ation of small voids, but rather they decouple from the
steady-state distribution provided that their phase-space
gradients are sufficiently great. In this case, the stationarity
condition is similar to the Keil-Schnell dispersion relation,
but it is the current within and the momentum spread of
the hole that are the relevant parameters.

We have given conditions for stationarity but only hinted
at calculation/determination of stability. Extending the
analysis to the time-dependent nonlinear Vlasov equation
may prove difficult, and other methods may be needed. For
example, one could take the steady-state barrier-bucket –
like solutions and make a perturbation analysis about these
using the method of Blaskiewicz [28,29] for true barrier
buckets. However, one can remark as follows: If the ini-
tial localized solitary perturbations grow, there must come
a time when the coupling to the steady-state distribution
cannot be ignored, and for space-charge forces below tran-
sition this must have a stabilizing effect.
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APPENDIX: EQUATIONS OF MOTION

A. Phase advance

Let bsc be the particle speed and Rs the mean radius
of the ring. The angular revolution frequency is vrev �
bsc�Rs. Let h be the harmonic number of the carrier rf.
Let jqj # p be azimuth and f rf phase. By convention,
q � 2f�h. Let DP be the momentum deviation from the
synchronous value Ps. The particle phase advances at the
rate

df

dt
� hvrevhs

DP
Ps

, (A1)

where the slip factor is hs � �ap 2 1�g2
s � and ap is the

momentum compaction factor of the lattice. Below transi-
tion, hs , 0.

B. Energy change due to space charge

Let z be path length along the synchronous orbit,
and L�z� the particle density per unit length, such that
044201-21
R2pRs

0 L dz � N . The “classical” formula [15] for longi-
tudinal space-charge electric field (in SI units) is

Ez � 2
eg0

4pe0g2

≠

≠z
L�z� , (A2)

where e0 is the permittivity of free space and e is the ele-
mentary charge. The geometric factor g0 is convention-
ally given as g0 � 1 1 2 ln�b�a� but should preferably be
taken as g0 � 0.5 1 2 ln�b�a�. The rate of energy change
due to space-charge force is dE�dt � bcqeEz . Often, we
prefer to work with rf phase f � zh�Rs in place of orbit
length z. The following transformations apply: ≠�≠z �
�h�Rs�≠�≠f and L�z� � �h�Rs�L�f�. Consequently,

dE
dt

� 2
e2g0bc
4pe0g2

h2

R2
s

≠

≠f
L�f� ,

where
Z 2ph

0
L df � N . (A3)

C. Hamiltonian

If we introduce the function

H �
hvrevhs

2Ps
�DP�2 1

dP
dE

Ç
s

e2g0bsc
4pe0g2

h2

R2
s

L�f� ,

(A4)

the rates of change are given by the derivatives �f �
1�≠�≠DP�H and �DP � 2�≠�≠f�H . Finally, we make
a transformation to the coordinates azimuth q and momen-
tum like p2 � �2vrevhs�Ps�DP2 and introduce the Ham-
iltonian H � p2�2 1 Zl�q�, where the coupling constant

Z �
e2g0

4pe0g2R2
s

and l�q� �
1
h

L�f� . (A5)
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