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Beam dynamics studies for the relativistic klystron two-beam accelerator experiment
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Two-beam accelerators (TBAs) have been proposed as efficient power sources for next generation
high-energy linear colliders. Studies have demonstrated the possibility of building TBAs from X-band
��8 12 GHz� through Ka-band ��30 35 GHz� frequency regions. The relativistic klystron two-beam
accelerator project, whose aim is to study TBAs based upon extended relativistic klystrons, is described,
and a new simulation code is used to design the latter portions of the experiment. Detailed, self-consistent
calculations of the beam dynamics and of the rf cavity output are presented and discussed together with
a beam line design that will generate nearly 1.2 GW of power from 40 rf cavities over a 10 m distance.
The simulations show that beam current losses are acceptable and that longitudinal and transverse fo-
cusing techniques are sufficiently capable of maintaining a high degree of beam quality along the entire
beam line.
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I. INTRODUCTION

Two-beam accelerators (TBAs) based upon free-electron
lasers (FELs) or relativistic klystrons (RK-TBAs) have
been proposed as efficient power sources for next genera-
tion high-energy linear colliders. Studies have demon-
strated the possibility of building RK-TBAs in the X-band
��8 12 GHz� [1,2] and FEL-TBAs in the Ka-band
��30 35 GHz� frequency regions [3–5]. Provided that
further prototyping shows stable beam propagation with
minimal current loss and production of good quality,
high-power rf fields, this technology is compatible with
current schemes for electron-positron colliders in the
multi-TeV center-of-mass scale.

Previous work [6] has shown that considerable micro-
wave power can be developed in a relativistic klystron
amplifier (RKA) configuration. With high beam current
(2–11 kA) and low kinetic energy �500 keV, these de-
vices were typically limited by transport dynamics to have
single output structures. The cavities comprising the rf
circuit are designed to maximize the emitted microwave
power at the output structure. Even though the peak out-
put power is high, the total efficiency is still low, and much
of the available kinetic energy in the beam is wasted at the
beam dump. The concept of the RK-TBA [1,2] was devel-
oped to dramatically increase the overall device efficiency.
In these devices, less charge is transported ��0.5 2 kA�,
but at greater kinetic energy (1–10 MeV) than in an RKA.
Also, the rf circuit is designed to produce only the required
power for a single or, at most, double length of high gra-
dient accelerating structure. As a result, the beam in an
RK-TBA is much stiffer and is perturbed much less than in
an RKA configuration. The beam may be transported over
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long distances to produce useful rf power in tens to hun-
dreds of output structures. The use of suitably designed in-
duction reacceleration cavities and permanent quadrupole
focusing increases the net efficiency of these devices to
a level that is very competitive with traditional klystrons.
The stiffness of their beams makes them attractive can-
didates for producing rf power at higher frequencies than
traditional klystrons can attain.

The high intrinsic efficiency of RK-TBAs derives from
the use of induction linear accelerators. This technology is
capable of generating and propagating electron beams with
kiloampere peak currents, megavolt-scale energies, pulse
lengths up to microseconds, and at repetition rates stretch-
ing up to the megahertz range [7–9]. The pulse format
of the drive beam in the RK-TBA can be tailored to match
that of the high-energy accelerator, and losses in the energy
conversion and transfer processes can be minimized.

RK-TBAs must deal with extremely challenging beam
dynamics. Induction linacs, in general, and induction
linac-driven TBAs, in particular, are known to suffer
from potentially debilitating cumulative transverse beam
breakup (BBU) instabilities [10–12]. A low-impedance,
low-frequency transverse BBU mode resides within the in-
duction cavities, while a high-impedance, high-frequency
BBU mode is present within the rf output structures.
However, it has been shown theoretically that the effect of
these instabilities can be greatly decreased with appropri-
ate design of the beam line transport and focusing system,
and by tailoring some of the beam parameters [13]. In-
creasing the beam’s energy spread induces rapid betatron
phase mixing which effectively cancels the effects of the
low-frequency mode, and adjusting the focusing lattice
to place the rf output structures at half-integral betatron
wavelength separation can reduce the growth in transverse
BBU from exponential to linear. This linear growth will
eventually limit the length of the device, placing a cap
on achievable efficiency. The induction cell cavities may
© 2001 The American Physical Society 041001-1
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also respond to the beam modulation and extract rf power
and/or affect the bunching.

Additionally, a strong longitudinal density modulation
must be imposed upon the beam and maintained over the
entire “active” length of the RK-TBA. Previous experi-
ments conducted at Lawrence Livermore National Labo-
ratory (LLNL) examined the use of longitudinal (velocity)
modulation [14] and transverse (chopping) modulation
[15] techniques to generate a bunched beam which then
powered a number of different rf output structures. These
early relativistic klystron experiments demonstrated that
hundreds of megawatts of peak power could be generated
over many tens of nanoseconds pulse duration, with phase
stability sufficient to drive high-gradient accelerating
structures. Further experiments [16,17] demonstrated that
the drive beams in these klystrons could be reaccelerated
between rf power extraction structures, while the beam
modulation was maintained in the presence of strong
debunching forces.

Previous simulation efforts have shown that this is
possible if the output cavities are appropriately detuned in
their resonance away from the central frequency carried
by the beam’s modulation [18–20]. Inductive detuning,
in which the cavity resonant frequency �f� is tuned
slightly higher than the beam modulation frequency �fb�,
introduces a phase offset between the beam microbunches
(rf buckets) and the cavity mode oscillation such that the
earlier arriving particles in any microbunch lose more
energy than the later arriving particles. After transiting
the cavity, the beam head is moving more slowly than
the beam tail, and rebunching can occur. A correlation
between arrival time and axial velocity thus opposes the
debunching space charge forces. For higher energy beams,
using a transverse chopping and modulation scheme, rela-
tively small ��30±� detuning angles were found to
maintain the beam’s modulation over many extraction
structures, even though a significant fraction of the beam
current must be discarded during the initial modulation
process. For lower energy beams, using a longitudinal
modulation scheme, larger ��70± 90±� detuning angles
become necessary, but no loss of current is necessary for
the initial modulation.

As discussed below, larger detuning angles induce a
large (up to 650%) energy spread in the ensemble of par-
ticles comprising the individual microbunches. The effect
of this energy spread needs to be accounted for in the de-
scription of the transverse beam dynamics. It also remains
to be demonstrated experimentally in a beam line signifi-
cantly longer than previously attempted.

The relativistic klystron two-beam accelerator (RTA)
project has been established at Lawrence Berkeley Na-
tional Laboratory in collaboration with LLNL to study
these and other issues. The primary effort of this test
facility is the construction of a prototype RK-TBA sub-
unit. Presently, an experiment is underway to study BBU
and transverse dynamics in a periodic system with strong
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focusing [21]. Concurrently, the theoretical program is
continuing to develop simulation tools and to design the
remaining portions of the RTA beam line.

The purpose of this paper is to present the first fully 3D,
self-consistent results from simulations of the beam dy-
namics and rf power production in a prototype RK-TBA
device from the modulation section through 10 m of the
main TBA section. In Sec. II, we discuss the basic layout
of the RTA experimental beam line and describe the com-
ponents of the modulation and main TBA sections in de-
tail. Section III describes the algorithms and code used to
perform the simulations. The longitudinal beam dynamics
are then described in Sec. IV, and connections are made to
a simple 1D equilibrium theory. Transverse dynamics are
described in Sec. V, and the influence of the longitudinal
dynamics upon the evolution of the transverse beam en-
velopes is described for the first time. The development of
rf power in the cavities is discussed in Sec. VI, and the re-
lation of the steady-state behavior of the individual cavities
to the evolution of the longitudinal beam phase space is ex-
amined. The operating scheme of the RK-TBA prototype
is extended to include operation in an “afterburner” con-
figuration, which is described in Sec. VII. Finally, the re-
sults are summarized and conclusions drawn in Sec. VIII.

II. DESCRIPTION OF THE RTA BEAM LINE

The entire proposed RTA experiment beam line is shown
in Fig. 1. In the present design, the injector for the sys-
tem delivers a 1.0 MeV beam to the accelerator, which
boosts the energy to 2.5 MeV. This energy is not opti-
mal for either the SL4 klystron (velocity modulation at
�1 2 MeV) or the Choppertron (transverse modulation at
�3 5 MeV) [15]. Nevertheless, these simulations demon-
strate that the SL4 can produce sufficient modulation in a
higher energy beam to initiate the bunching process and
allow for high power generation. A similar study utilizing
the Choppertron will be conducted in the near future.

A detailed schematic of the SL4 and the beginning of
the main TBA is shown in Fig. 2, displaying the focusing
elements, reacceleration modules, and the first nine rf cavi-
ties. The remaining portion of the beam line used in the
simulation is a continuation of the periodic main TBA
section shown. The injector and accelerator are assumed

Injector Accelerator Modules
SL4 Klystron

Main TBA Spectrometer    Beam Dump

FIG. 1. RTA experiment layout.
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FIG. 2. (Color) Modulation and extraction section in RTA
device.

to deliver a 2.5 MeV, 1.0 kA beam with a 1000p mm mrad
normalized edge emittance (250p mm mrad normalized
rms emittance) to the entrance of the SL4. Over the beam
pulse, the beam energy is taken to be constant while the
current rises from 0 A to its steady-state value of 1000 A,
with a 100 ns rise time and 150 ns flattop.

A. The SL4 klystron modulator

The beam modulation section of the RTA device is
the input and gain cavities of a previously designed and
tested relativistic klystron, the SL4 [14]. Figure 3 shows
a schematic of the input and gain section of the klystron
modulator. The cavity properties are shown in Table I.
The first (input) cavity accepts rf power from a low power
(#5 kW), X-band, traveling-wave tube or magnetron
source, operating at a nominal frequency of 11.424 GHz.
The beam enters from the left in the schematic (z � 0 m).
The input rf power modulates the beam energy in cav-
ity #1 and initiates the bunching process. The following
cavities are then driven by the rf component of the beam
current, which develops in the drift spaces between the
cavities.

Beam confinement in this section is performed by a set
of four independent solenoid magnets (shown as a single
solenoid in Fig. 2). The solenoids have an inner radius of
9.6 cm, an outer radius of 12.8 cm, and a length of 15.5 cm.
An iron field clamp (shunt) is placed at the exit plane of
the SL4 (z � 0.98 m) to terminate the solenoid field.

B. Main TBA section

A schematic of a single period of the main TBA extrac-
tion section is shown in Fig. 4. Each module in the lattice
holds one output rf cavity with dual output waveguides,
six focusing and defocusing quadrupoles, and two com-
plete induction reacceleration cells with gaps.

The rf properties of the modules are shown in Table II.
The first rf cavity in the main TBA lattice is cavity #5.

Cavity 1 Cavity 2 Cavity 3 Cavity 4

10 cm 28 cm 14 cm 21 cm

~21 mm14 mm

FIG. 3. (Color) SL4 klystron gain cavities.
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TABLE I. SL4 cavity parameters.

Cavity #1 #2 #3 #4

Frequency f (GHz) 11.428 11.393 11.447 11.469
�R�Q� �V� 60 60 60 60

Qext 320 120 120 120
Qwall 4800 4800 4800 4800

Input power (kW) 1.0 0 0 0

The first two cavities are inductively detuned by 1.3 rad
�f � 11.84 GHz� from the beam modulation frequency
�fb � 11.424 GHz� to provide additional rotation and
compression of the longitudinal phase space for the indi-
vidual microbunches. All following cavities are detuned
by 1.2 rad �f � 11.72 GHz�. The steady-state power
output from each of these cavities can be estimated via
the analytic formula (see Appendix B)

Pout � I2
dcb

2Qext

∑
R
Q

∏
cos2c , (1)

where Idc is the average (dc) current carried by the beam,
b represents the degree of bunching in the beam, Qext is the
external coupling (i.e., “waveguide”-)loaded cavity mode
quality factor, � RQ � is the mode shunt impedance factor,
and c is the mode tuning angle with respect to the beam
modulation frequency (1.2 or 1.3 rad in our case) defined
by

tanc � QL

µ
fb
f

2
f
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∂
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FIG. 4. (Color) One period of the main TBA extraction section,
containing a single rf output structure, two induction reaccel-
eration modules, and six pure-permanent-magnet quadrupoles.
The beam propagates from left to right across the center of this
schematic.
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TABLE II. Design parameters of main TBA cavities.

Cavity #5–#6 #7–#40

Frequency f (GHz) 11.84 11.72
�R�Q� �V� 31.6 17.2

Qext 50 50
Qwall 4800 4800

c (rad) 1.3 1.2

The cavities are designed to produce 50 MW of rf power
from a beam modulated at 11.424 GHz with a bunching
factor of b � 0.7 and carrying 950 A of dc current. In
this process, the output rf power is derived from the ki-
netic energy of the beam. The induction reacceleration
modules are then required to replace this lost beam energy
by supplying 26.25 kV across each of the two gaps in each
module.

Transverse focusing is accomplished by permanent
magnet quadrupoles arranged into the standard FODO
(focus-drift-defocus-drift-focus) lattice [22,23]. There are
six quadrupoles in each 25 cm long TBA period, making
three complete FODO cells. The betatron phase advance
per FODO cell is 60±, so that the net phase advance
between rf cavities is 180±, or one-half of a full betatron
period. To achieve this, the permanent magnets must
produce a 14 T�m quadrupole gradient. With a 4 cm
beam pipe diameter, the magnet blocks must then have a
remanent field of 2800 G. While high, this is well within
the field strengths achievable with ferrites.

BBU considerations

As previously mentioned, cumulative beam breakup in-
stabilities stemming from the resonant excitation of trans-
verse dipole �HEM11� modes in the rf output structures
pose the most severe constraint on the ultimate length of
beam line that will produce usable rf power in an RK-TBA
system. It is thought that limiting the growth of the insta-
bility to four e-folds (i.e., e4 or approximately 102) over
the length of the entire device is sufficient to transport the
majority of the beam pulse.

In our beam line design presented here, the rf cavities
also support a set of dipole modes with resonant fre-
quencies near 18.6 GHz. The mode with minimal exter-
nal port coupling �Qext � 200� shows a transverse shunt
impedance �Z��Q� � 120 V�m. We have simulated the
growth in the transverse mode amplitudes with the OMICE

code [24] for our beam parameters and this beam line.
With no energy spread across a given beam slice (other
than that due to the space charge depression — typically
�1%), and without appropriately spacing the cavities with
respect to the betatron wavelength of the on-energy par-
ticles, the cumulative BBU instability is seen to grow by
�8 orders of magnitude in the amplitude over the 10 m of
main TBA beam line. Appropriately tuning the betatron
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wavelength to the nominal beam energy so that the rf cavi-
ties are spaced an integer number of half-wavelengths apart
(the “betatron node tune”), the growth factor in the instabil-
ity amplitude drops to less than 10. Additionally, increas-
ing the microbunch energy spread increases the amount
of betatron phase mixing present in the beam which also
damps the instability, even when the average bunch en-
ergy varies from the nominal (i.e., the betatron node tune).
The phase-mixed damping improves with increasing en-
ergy spread until it reaches a saturation point when the
energy spread is greater than �625%, at which point the
growth factor is less than 10. As will be shown in the simu-
lations discussed in this paper, the microbunches in the
beam will develop an energy spread of up to �650%
from filamentation of the longitudinal phase space due to
the inductively detuned rf structures. Hence, cumulative
dipole BBU is not expected to be an issue in RTA opera-
tion. However, the importance of this technique to the
successful operation of the RTA cannot be overestimated.
With this in mind we are currently performing a low-
energy (1 MeV) beam transport experiment to measure the
effectiveness of betatron node tuning in a real system [21].

III. SIMULATION CODE

Particle dynamics in relativistic klystrons pose several
thorny problems for simulations. The electron beams are
typically intense (hundreds to thousands of amperes) while
only moderately relativistic (hundreds of kilovolts to tens
of megavolts). Possibly the most important element of
the dynamics in an RK-TBA occurs in the longitudinal
phase space. The beam is modulated at high frequencies
(11–40 GHz), and each microbunch (rf bucket) carries a
charge of tens of nC. Space charge effects will produce
debunching forces which are counteracted by (inductively)
detuning the rf output structures. A microbunch will un-
dergo numerous synchrotron oscillations during transport
through the full-scale device. Also, the microbunches are
not short compared to the rf wavelength. Hence, they
sample very nonlinear fields in the rf output structures.

From this description we can identify the main problems
present in a device simulation. The beams are sufficiently
intense that longitudinal space charge forces present more
than a small perturbation. The beam line elements are nec-
essarily spaced close together, and this requires treatment
of overlapping, nonlinear fringe fields. Transverse focus-
ing is strong so that a half betatron oscillation occurs be-
tween rf output cavities. Transverse emittance, while low,
is still sufficiently large that particles at the beam edge
sample significant nonlinearities in the fields of the beam
line elements. The instantaneous energy spread is large
�10% 100%� to constrain the low-frequency BBU and to
produce the bunching by rf synchrotron rotation. The par-
ticle simulation, of necessity, must track many particles to
provide adequate sampling of both the beam phase space
and the fields experienced.
041001-4
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Fully electromagnetic and relativistic particle-in-cell
(PIC) simulations, popular in the plasma physics commu-
nity, can and do simulate all these processes. Codes of this
type have found their way into the accelerator community
as a means of studying high-perveance beams in klystrons,
for example. However, the computational resources re-
quired are far too great to perform routine design and
optimization on significant lengths of the full-scale TBA.
On the other hand, typical tracking codes in the accelerator
physics community track a relatively small number of
particles with a small phase space extent in complex ex-
ternal field environments. Self-field interactions are either
completely neglected since the beams are usually tenuous
and ultrarelativistic, or included only approximately with
semianalytic models. Maxwell-Vlasov, Fokker-Planck,
and envelope codes can track beam distributions in the
presence of self-fields, but these tend to track only a few
of the lower order moments, while ignoring evolution of
the detailed phase-space distributions.

Past design efforts have utilized simulation codes that
could model only certain aspects of the entire problem.
1D simulations [4] of the longitudinal dynamics in an ex-
tended relativistic klystron do not account for the trans-
verse dynamics. 2D [18,25] simulations cannot accurately
model beam dynamics in both solenoid and quadrupole
transport lattices. Previous 3D simulations concentrated
on modeling the physics involved in the transverse dipole
BBU instability [24], but not the dominant rf bucket dy-
namics and power production in the cavity output struc-
tures. Additionally, all the previous results have utilized a
simplified model of the forces due to the self-fields (and
image fields) of the beam. These models do not accurately
account for the details of the full beam distribution, and
hence cannot predict any changes in that distribution that
may subsequently affect the interaction of the beam with
the focusing lattice and rf structures.

The current generation of simulation code has been de-
veloped to account for all time-dependent and 3D effects,
and the details of the 6D particle distribution [20,26,27].
The entire beam pulse length is divided into a sequence
of microbunches with longitudinal extent corresponding to
the modulation wavelength. These microbunches are then
tracked over the beam line. There are three main compo-
nents to this simulation.

The first is a tracking algorithm to generate nonlinear
transfer maps for pushing noninteracting particles through
the external fields based upon a Lie-algebraic approach
[28–30]. A mapping algorithm is used so that tens of thou-
sands of macroparticles can be pushed from the solution of
a few hundreds of differential equations. A single-particle,
relativistic Hamiltonian is used to derive exact equations of
motion for a small number of “guide,” or fiducial, orbits,

K � 2pz

� 2qAz 2

q
�ptc �2 2 �mc�2 2 � �p� 2 q �A��2 , (3)
041001-5
where 2pt is identified with the total energy of the par-
ticle. The external fields enter through a vector potential,
�A��r , t�. A gauge is chosen such that the scalar potential F

is identically zero. The equations of motion are then solved
numerically over a given beam line interval. The individ-
ual fiducial particles are chosen by partitioning the entire
microbunch phase space and selecting a representative,
hypothetical particle from each partition. The partitions
may be created in any manner. For these simulations,
we have chosen to partition along the longitudinal
arrival-time coordinate. A set of approximate Hamilton-
ians is also constructed from a 6D Taylor series expansion
around the individual fiducial orbits. The coordinates and
momenta in these approximate Hamiltonians represent the
difference between the actual coordinates and momenta
and those of the fiducial particles, and are called “devia-
tion” coordinates and momenta. The Taylor series is
expanded to fourth order in these deviation variables, and
provide equations of motion accurate to third order. The
remaining particles in each partition are then propagated
along the beam line by the equations of motion generated
by the deviation Hamiltonians (see Appendix A)

The second component in the code is a particle-in-cell
algorithm [31] that solves a set of Helmholtz equations for
the self-fields, including the conducting boundary condi-
tion of the beam tube. A multigrid algorithm [32] is uti-
lized to speed the convergence of the PIC algorithm. The
generated impulses themselves constitute a “kick” map,
and are interleaved with the single-particle maps by means
of a split-operator algorithm [33–36] . This technique
is based on splitting the Hamiltonian into pieces that can
be solved exactly (or through some desired order of ac-
curacy) and then combining the separate maps to produce
an approximate net mapping for the full Hamiltonian over
some step �Dz� along the beam line. In the second-
order scheme we adopt, the split-operator method pro-
duces a net mapping that is second-order accurate in the
step size represented by the mapping [i.e., the error intro-
duced by splitting the operator is of the order of �Dz�3].
Split-operator symplectic integration algorithms, includ-
ing the well-known leapfrog algorithm of plasma physics
simulations [31,37], are widely used in the treatment of
Hamiltonian systems. The total Hamiltonian is represented
in the form

Htot � Hkin 1 Hext 1 Hself , (4)

where Hkin is the kinetic portion describing single-
particle motion in the absence of all fields, Hext is the
contribution from external fields, and Hself is the con-
tribution from self-fields. The maps from the first two
contributions are calculated together by the single-particle
formalism described above, while the map resulting from
self-forces is calculated separately. A combined map is
then produced to advance particles over an interval t.
041001-5
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Accurate through second order in this step, the combined
map is expressed as

Ftot�t� � Fkin1ext�t�2�Fself�t�Fkin1ext�t�2� . (5)

The third component is an equivalent circuit equation
solver that advances the modal rf cavity fields in time due
to excitation by the modulated beam (see Appendix B).
The derivation of the equivalent circuit equation is well
covered in the available literature [38–40]. What is new
and significant here is the introduction of a description
of the beam using a periodic Klimontovich distribution.
This will allow us to calculate the average interaction of
the rf mode with any 6D beam distribution, automatically
accounting for slippage and beam loading effects by in-
corporating actual particle trajectories. This method ac-
counts for only individual cavity modes, but is many times
faster than an electromagnetic PIC algorithm. Finally, the
circuit equation is separated into two distinct time scales,
and a first order ordinary differential equation is derived
for the slow scale time evolution. This is then solved ana-
lytically in the limit of short (slow) time scale intervals.
Hence, by observing closely what happens to a single mi-
crobunch during its traversal of a cavity, we may study the
transient dynamics in the entire system without the need to
track each consecutive microbunch. For a slowly evolving
system, we need only track those microbunches separated
by a large fraction of the mode’s free-oscillation decay
time, which can be tens or hundreds of rf bucket lengths.

A. Simulation parameters

We have modeled the beam dynamics and the evolution
of the cavity fields from initial transients into the steady-
state regime. The main parameters of the simulation
are given in Table III. In this simulation 8192 macro-
particles were used, and initially loaded into a 3D semi-
Gaussian distribution.1 The initial normalized rms
transverse emittance, averaged over any given microbunch,
is 250p mm mrad (1000p mm mrad normalized edge
emittance). The rf and induction cavity field profile
distributions in z are taken to be Gaussian with standard
deviations of 4.03 and 5.0 mm, respectively.

For the self-field calculations, the Helmholtz equa-
tion computational volume encloses a single 11.424 GHz
(2.624 cm long) rf bucket, extending transversely to the in-
ner surface of the 4 cm diameter beam pipe. Since the self-
field potential is solved in the beam’s rest frame, the
microbunch length is dilated from the laboratory frame
by a factor of g and extends over approximately 15.5 cm.

1The particles have a Maxwellian distribution in momentum
and energy spread, and uniform distribution in transverse posi-
tion and arrival time.
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TABLE III. Main TBA parameters.

Nominal beam energy (MeV) 2.5–3.0
dc beam current (A) 930–1000
gberms �p mm mrad� 250–300
Bunching parameter b 0.5–0.8
FODO cell length 25�3 cm
Betatron phase advance�FODO cell �s0� 60±

rf cavity spacing 25 cm
rf output power�cavity (MW) 25–60
Induction gap voltage (kV) 26.25
Modulation frequency fb (GHz) 11.424
rf cavity frequency f (GHz) 11.84, 11.72
QL 50
�R�Q� �V� 31.6, 17.2
Total length 10 m

In this frame, the longitudinal to transverse aspect ratio is
approximately 4:1. This computational volume encloses
only a single rf bucket so we impose periodic boundary
conditions between the head and tail. Prior to bunching,
the particles in this volume are distributed more or less
uniformly in longitudinal position. During the bunching
process, this is no longer true. However, the distribution
of particles in longitudinal position will still extend over
most of this volume. Looking at frequency components
carried by the beam modulation, we expect that the first
few harmonics of the spectrum will dominate. It is then
possible to utilize only a relatively small number of lon-
gitudinal grid points to adequately describe the variation
of self-field forces with longitudinal position. In a similar
manner, we expect the transverse variation of the beam
density to vary quite significantly. Hence, we must use a
larger number of grid points in the x or y direction. For
the simulations discussed here, the computational volume
was discretized into a grid with dimensions 33 3 33 3 8.

B. Inclusion of transverse rf dipole mode effects

These simulations do not include the influence of trans-
verse dipole modes in the induction modules or rf cavities.
Thus, we have not included the important BBU instabili-
ties that have shown to limit current transport in RK-TBAs.
There are certain computational issues regarding the inclu-
sion of multiple frequencies that lie outside the range of the
fundamental and its harmonics. In particular, the simula-
tion tracks individual slices of the beam pulse with lon-
gitudinal extent corresponding to an rf wavelength where
the temporal rf frequency is specified initially. This fre-
quency is taken to be the one of greatest interest. For the
results presented in this paper, this fundamental frequency
corresponds to that of the resonant monopole mode of the
rf cavities. A separate simulation based around the dipole
mode frequency as the fundamental (and only including
the dipole cavity modes) can be accomplished, though we
do not discuss it at this time. Currently, several new com-
putational strategies are being pursued that could enable
041001-6
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multifrequency simulations. It is hoped that this will be
presented in a subsequent work.

However, as a step forward in the sophistication of mod-
eling RK-TBA systems, this simulation shows that pure rf
monopole modes, 3D space charge effects, and quadrupole
transport do not significantly increase the transverse emit-
tance in the beam.

IV. LONGITUDINAL PHASE-SPACE EVOLUTION

The longitudinal dynamics of the particles in an rf
bucket constitute the heart of any RK-TBA. The energy
extracted from the microbunches in the rf cavities must be
replaced in the induction modules. The detuning of the
cavity introduces a nonlinear correlation between energy
and phase for particles within the microbunch. This
induces the particles within the rf bucket to rotate in lon-
gitudinal phase space. The reacceleration in the induction
modules is weakly dependent upon the dc beam current,
but the rf cavity field excitation is strongly dependent
upon both the dc current and the bunching parameter.

In the simulation, we see that the dc current carried by
a microbunch in the middle of the pulse decreases at a
slow rate over the length of the device (Fig. 5), and the
bunching parameter varies significantly along the beam
line. In Fig. 6, we show the variation of the bunching
parameter along the beam line, with the positions of the
rf output cavities indicated. This figure clearly shows the
synchrotron oscillation that follows from the microbunch
rotation. In Fig. 7, the longitudinal phase-space distribu-
tion of the bunch is shown after passing through a cavity
at various locations along the beam line. The individual
particle arrival time �t� at the cavity exit plane is scaled by
the speed of light, and then translated with respect to the
central fiducial arrival time �t0�, s � c�t 2 t0�.

We also see another effect of inductive detuning. The
average energy of a microbunch in the steady-state portion
of the beam pulse increases in the first segment of the
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FIG. 5. Microbunch current evolution from matching section
through main extraction section.
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main TBA beam line (Fig. 8), as the bunching increases
from its initial unbunched state to the final bunched state.
Simultaneously, the energy spread of a microbunch will
increase from its initial value to its final value (Fig. 9).

The cavities are designed to extract their design power
from microbunches with the nominal design value of
the bunching parameter (i.e., b � 0.70) and dc current
(950 A). The beam will continue to gain energy from the
induction modules until this equilibrium state is reached.
Once the nominal bunching has been achieved, there will
be no net energy gain by the individual microbunch.

However, due to the synchrotron rotation required for
longitudinal stability, the beam will experience periodic
debunching and rebunching as it progresses along the beam
line. Neglecting the small decrease in total current car-
ried by an individual microbunch, this will result in the
microbunch periodically losing more or less of its design
energy as it passes through the series of rf output cavities.
This behavior is to be compared directly with the variation
of bunching parameter along the beam line (Fig. 6), and is
shown in Fig. 8. Additionally, we see that the net energy
of the microbunch gradually increases. This increase in net
beam energy can be eliminated by slightly decreasing the
voltage in the reacceleration gaps of the induction mod-
ules. However, the synchrotron rotation will still result in
oscillation of the microbunch energy about some equilib-
rium value.

The steady-state theory [20] provides some insight into
the relation between cavity parameters, power generation,
and synchrotron oscillations. For particles near the beam
line axis, the change in kinetic energy from the interaction
with the excited cavity mode is given by the expression

Dg�t̂� � 2
QL� RQ � jIdcjb

mc2�e
cosc cos�c 1 vb t̂� , (6)
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FIG. 6. (Color) Bunching parameter variation along beam line
(dashed blue line). The beam pipe wall radius (in cm) and
positions of the rf cavities are indicated by the solid red line.
The entrance to the SL4 klystron corresponds to z � 0.
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FIG. 7. (Color) Longitudinal phase-space distribution of par-
ticles in a single rf bucket after passing through cavities #1 (a),
#5 (b), #10 (c), #15 (d), #25 (e), and #35 (f).
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where t̂ is the difference in arrival time between an indi-
vidual particle and the center of the microbunch. Aver-
aging over the rf bucket, the net beam power loss is then
given by

Pb � QL

∑
R
Q

∏
I2
dcb

2 cos2c , (7)

which is equal to the sum of the power absorbed by the
cavity walls plus that transmitted out of the cavity by the
external coupling ports. For the values of Qwall and Qext
considered here (Table II), we can neglect the tiny fraction
of the total power lost to wall heating, compared to that
coupled out the external ports. The energy modulation
given to the individual particles ���Dg�t̂����, relative to the net
energy loss of the microbunch as a whole �Dg �, is then

Dg�t̂�
Dg

�
cos�c 1 vbt̂�

b cosc
. (8)

The induced energy spread along the microbunch due to
the interaction with an rf cavity can then be expressed as

�Dg�max 2 �Dg�min �
2jDgj

b cosc
, (9)

which shows a strong, nonlinear dependence upon the tun-
ing angle. For small tuning angles the induced spread
is a smaller fraction of the net microbunch energy loss,
while larger tuning angles can produce very large energy
spreads. The tuning angle must be large enough to induce
a correlated energy spread that overcomes space charge de-
bunching, while small enough to limit the energy spread
so that the particles within a microbunch can be captured
and contained by synchrotron oscillations. A 1D linear,
equilibrium theory formulation [41] based on standard rf
longitudinal dynamics [22,23,42,] can be used to find the
equilibrium synchrotron oscillation wave number

ks �

vuut kb�L
�g0b0�3

QL� RQ �Idcb

mc2�e
cosc sinc (10)
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FIG. 8. Evolution of microbunch centroid energy along
beam line.
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FIG. 9. Evolution of rms energy spread, normalized to the
microbunch centroid energy.

and the depth of the separatrix

�Dg�sep � 2
p

2

vuut �g0b0�3

kbL

QL� RQ �Idcb

mc2�e
F�c , f0� , (11)

with

F�c , f0� �
q

cosc�sinc 2 sinf0 2 �c 2 f0� cosc� .

(12)

Here, kb (� 2pfb�c) is the beam modulation wave num-
ber, L is the distance between rf cavities, g0 is the equi-
librium beam relativistic factor (with b

2
0 � 1 2 1�g

2
0),

mc2�e is approximately 511 kV, and the separatrix turning
point f0 is determined by solution of the transcendental
equation

sinf0 2 f0 cosc � c cosc 2 sinc . (13)

The separatrix depth determines the energy spread that
can be accommodated in a stable rf bucket that undergoes
synchrotron oscillations with wave number ks. Several
values of f0 from a numerical solution to (13), as well
as factor F�c, f0�, are tabulated in Table IV. Comparing
values generated by (11) with the phase-space distributions
in Fig. 7, we see that the simple 1D formula agrees to
within �20%.

TABLE IV. Separatrix parameters from 1D theory.

c f0 F�c, f0�

0.60 1.22 0.34
0.80 1.66 0.47
1.00 2.13 0.57
1.10 2.38 0.60
1.20 2.66 0.60
1.30 2.96 0.57
1.40 3.33 0.50
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V. TRANSVERSE PHASE-SPACE EVOLUTION

The behavior of the microbunches in longitudinal phase
space affect the transverse dynamics as well. In particu-
lar, we notice that an initially matched transport system
loses that feature as the microbunch compresses longitu-
dinally and its energy spread increases. An effect of this
compression will be to enhance the peak radial, defocus-
ing self-fields in the presence of the conducting beam pipe,
while the enhanced energy spread introduces lower energy
particles into the transport lattice. These two effects can,
in principle, be dealt with by appropriately adjusting the
strength of the quadrupoles along the beam line. In our
studies we have maintained a constant parameter FODO
lattice for simplicity of design. In Fig. 10 we show the
evolution of the two transverse rms envelopes (x and y)
along the beam line for microbunches in the steady-state
portion beam pulse. Visible is the slight increase in the av-
erage envelope radius at locations of peak bunching (near
z � 4 m and z � 8.5 m). There is evidence here of an
apparent state of quasiequilibrium since the synchrotron
oscillation period encompasses many betatron periods. In
this situation, the rms envelopes of the microbunch can
respond to the slowly increasing (or decreasing) current
density by slow expansion (or contraction).

In Fig. 11, we show the evolution of the normalized rms
transverse emittance. In the usual definition of the rms
transverse emittance [43],

erms �
q

�x2� ��x0�2� 2 �xx0�2 (14)

(and similarly for y), the phase space is defined in terms
of position �x� and paraxial angle �x0 	 yx�yz�, and en-
semble averages are performed over the particles in an rf
bucket (denoted by the angle brackets, � �). In these simula-
tions, where a Hamiltonian approach is used, the normal-
ized canonical momentum � p̃x � px�mc � gbx�mc 1

qAx�mc� is employed instead of x0. We will, however,
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FIG. 10. (Color) Evolution of transverse rms envelopes (hori-
zontal: solid red line; vertical: dashed green line). Beam pipe
wall and rf cavities are superimposed (dotted blue line).
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continue to refer to the emittance calculated with p̃x as the
rms transverse emittance. For particles born in a field-free
region, the two definitions yield identical results. There
are some important differences, though, which show up in
the simulations.

From Fig. 11, we may observe distinct types of behav-
ior. First, we see that transverse emittance exhibits slow,
steady growth over the beam line, increasing by approxi-
mately 8% over 10 m. Secondly, there is evidence of an
oscillation in the transverse emittances correlated to the
synchrotron oscillation. The emittance increases in the re-
gions of the beam line where the beam experiences bunch-
ing or rebunching, and decreases in the debunching cycle
of the synchrotron oscillation. This is another indication
of the quasiequilibrium discussed above.

The first observation can be explained by noting that the
beam is far from stationary in any part of this beam line.
The detailed beam distribution is not matched, since the
beam rms energy spread is growing from a nominal few
tenths of a percent to 25%. We would expect some growth
in the transverse emittance.

The oscillation of the transverse emittance following the
synchrotron oscillation has a more direct explanation. As
the microbunches are compressed during bunching or re-
bunching, the particles at the center of each microbunch see
an increasing charge density. The local transverse space
charge forces are now stronger and, over a period of sev-
eral betatron wavelengths, the rms beam envelope expands
in response. At the opposite end of the synchrotron oscil-
lation cycle, the particles in the center of the microbunch
see weakening transverse space charge forces as the micro-
bunch expands. The envelope now contracts. This state
of quasiequilibrium is shown in Fig. 10. However, as the
beam envelope expands, particles with large amplitude ex-
cursions find themselves at ever greater distances from the
beam line axis. Hence, they sample stronger nonlinearities
in the fringe fields of the beam line elements. These non-
linear fields then enter the emittance computation via the
041001-10
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canonical momentum. In this way, the rms transverse emit-
tance may oscillate along with the bunching parameter.

The transverse phase-space distributions of the micro-
bunches at locations corresponding to the output planes of
several cavities along the beam line are shown in Fig. 12.
It is seen that the distribution does not undergo any signifi-
cant changes during propagation, and that the microbunch
remains stable along the beam line.

VI. DEPENDENCE OF RF PRODUCTION UPON
BEAM DYNAMICS

After an initial transient evolution of the cavity fields in
time, the mode amplitudes enter the steady-state regime.
This evolution is shown in Fig. 13, where the abscissa is
the time elapsed �DT � as the beam pulse head entered
the simulation at z � 0 m, scaled by the speed of light,
s0 � cDT . The input cavity sustains a constant power
level reflected from the cavity. The power shunted to the
loads in the SL4 gain cavities is shown to indicate the rise
of the cavity mode amplitude from one cavity to the next,
betraying the increase in modulation amplitude. Finally,
the power shunted to the exit waveguides in the output
structures are displayed. We see that the output power
levels in the main TBA section cavities vary by a fac-
tor of 2–3, and generally agree with the analytic estimate
given by Eq. (1). The synchrotron oscillations affect the
coupling of the microbunch to the rf cavities, resulting in
an oscillation along the beam line of the steady-state out-
put power levels of the cavities, shown in Fig. 14. In a
very long device, one that allows the bunches to rotate
through many synchrotron oscillations, it is expected that
the particles will more evenly fill the rf bucket in longitu-
dinal phase space through the process of filamentation so
that the variation in the steady-state output power among
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FIG. 13. (Color) Transient to steady-state power output in the
RTA, displaying the reflected power in the input cavity, the
power shunted to the loads in the gain cavities, and the power
exiting the waveguides in the main TBA output structures. The
abscissa is the elapsed time scaled by speed of light.
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FIG. 14. Steady-state output power (a) and phase (b) in the
main TBA section.

later cavities decreases. In fact, it may even be desirable
in an actual device to increase the initial energy spread
in a microbunch, or to sharply decrease the synchrotron
wavelength at the front end of the RK-TBA, just to enhance
the rate at which the longitudinal phase-space bucket is
filled.

Similarly, the output phases also show a periodic be-
havior. While remaining relatively constant in the regions
of rebunching and maximum compression, there is a rapid
change in the phase during the cycles of debunching and
minimum compression, shown in Fig. 14.

VII. EXTENSION TO AN AFTERBURNER
CONFIGURATION

At the end of a generic RK-TBA is an “afterburner”
section, the primary purpose of which is to increase over-
all system efficiency by extracting more power out of the
modulated beam at the end of the main TBA. This section
has a number of rf extraction cavities, permanent magnets
for focusing, but no reacceleration cells. The beam line de-
sign presented here also gives us the ability to study beam
dynamics in the afterburner section of a main TBA. In
this case, no reacceleration is applied to the beam after
z � 4 m.
041001-11
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The evolution of the average energy and energy spread
of the microbunch along the beam line is shown in Fig. 15.
We see that without the benefit of reacceleration, the av-
erage energy in the microbunch will decrease at a steady
rate. As a result of this decrease in the microbunch av-
erage energy, the normalized energy spread will continue
to grow.

The transverse phase space is affected by this decrease
in energy. The transverse components of the Lorentz force
are proportional to 1�g, and hence become more important
as the energy drops. We see the emittance growing rapidly
as the energy continues to drop, accompanied by growth
in the beam envelopes (Fig. 16). The transverse phase
distribution of the microbunch after the 40th rf cavity is
shown in Fig. 17. The vertical phase-space distribution
has become significantly diluted, increasing from approxi-
mately 270p mm mrad in the previous scenario (Fig. 11)
to approximately 310p mm mrad in the present case, with
the majority of this growth occurring in the last 2 m of
beam line.

The increase in emittance and the beam envelope causes
a slight increase in the rate of current loss from scraping.
Meanwhile, the longitudinal Lorentz force is proportional
041001-12
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FIG. 16. (Color) Evolution of transverse rms envelopes (a) and
normalized emittances (b) (horizontal: solid green line; vertical:
dashed blue line) during afterburner operation.

to 1�g3 so that the drop in energy and increase in energy
spread results in a shortening of the synchrotron oscillation
period (Fig. 18). This effect also shows up in the output
power and phase variation in the cavities along the beam
line (Fig. 19), which also demonstrate the synchrotron

FIG. 17. (Color) Transverse phase-space distributions (horizon-
tal: green diamonds; vertical: blue crosses) after 40 rf cavities
in afterburner operation.
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FIG. 18. Current (a) and bunching parameter (b) evolution in
the afterburner configuration.

oscillations. We also see that the beam quality in the
longitudinal phase space is greatly diminished after the
40th cavity (Fig. 20), compared to our previous scenario
(Fig. 7).

VIII. SUMMARY

The results of a detailed simulation of the beam dynam-
ics in the proposed RTA beam line have been presented.
These results show that a prototype RK-TBA can be de-
signed to produce 1.2 GW of power at 11.424 GHz us-
ing 40 rf cavities and driven by a 1-kA, 2.5-MeV electron
beam. Beam losses amount to only 7% over the 10-m long
bunching and extraction section, while the average trans-
verse beam envelopes remain nearly constant. In this same
distance, the normalized rms transverse emittances grow
by only 8%. This occurs even though the 6D beam distri-
bution is nonstationary and the rms energy spread increases
from a few tenths of a percent to 25% of the average en-
ergy. By “turning off” most of the induction reaccelera-
tion modules in the simulation, it has been demonstrated
that this same beam line can be operated in an afterburner
mode, with useful power generated with greater efficiency.
This will allow a single experiment to test different seg-
ments of a complete RK-TBA system.
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FIG. 19. Steady-state output power (a) and phase (b) in the
afterburner configuration.

The lower limit in energy for a kiloamp scale RK-TBA
seems to be approximately 2.5 MeV. Below this en-
ergy, the equilibrium beam size is too large to propagate
through the output structures without incurring unaccept-
able losses [44]. However, the allowable normalized edge
emittance �1200p mm mrad� is twice that previously ex-
pected �600p mm mrad� from earlier studies [45]. Hence,
constraints on emittance growth during beam generation
and propagation to the modulator section can be relaxed
somewhat, if tighter control can be maintained once the
beam is in the main TBA section.

The transverse envelopes can be matched in moving be-
tween solenoidal and magnetic quadrupole focusing lat-
tices. However, matching the longitudinal sector of the
beam dynamics proves more difficult. This will be true
of any TBA device that attempts to match into a chan-
nel with constant rf cavity parameters. To avoid the large
variation in output power levels from the various cavities
along the beam line, it will be necessary to incorporate
a second-order design strategy. This strategy may vary
the parameters of the cavities to attempt to achieve nearly
constant rf power extraction from every cavity. Doing so
might prove to be unnecessary if a transverse modulation
scheme is used so that only a fraction of the longitudinal
041001-13
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FIG. 20. (Color) Longitudinal phase-space evolution in after-
burner operation, taken from the exit plane of cavities #15 (a),
#20 (b), #25 (c), #30 (d), #35 (e), #40 (f).
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phase space defined by the separatrices are occupied by
beam particles. Larger detuning angles than previously
considered (70± instead of 30±), and larger microbunch en-
ergy spreads (up to 650%), can be safely transported in
the main TBA section. This has important implications
for reducing low-frequency BBU via phase-mixed damp-
ing. The larger energy spread induces rapid cycling of
the synchrotron oscillation, further enhancing longitudinal
stability.
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APPENDIX A: FIDUCIAL TO DEVIATION
HAMILTONIAN

In this Appendix we derive the single-particle Hamilton-
ian function which describes the dynamics of the beam
particles lying close to the fiducial orbit. A simple canoni-
cal transformation is applied to the Hamiltonian (3) by con-
structing a generating function. The resulting transformed
Hamiltonian is then expressed in terms of the deviation co-
ordinates and expanded in a power series representation.

We find it easier to analyze the Hamiltonian (3) by first
renormalizing the momenta, energy, time coordinate, and
potentials. To do so, we first define the normalized quan-
tities: K̃ � K�mc, p̃� � �p��mc, 2g � pt�mc2, and
s � ct. Additionally, the potentials are normalized via
Ã � q �A�mc. With this normalization the Hamiltonian
function (3) becomes

K̃ � 2Ãz 2

q
�2g�2 2 1 2 �p̃� 2 Ã��2 . (A1)

1. Fiducial orbit

A single-particle guiding orbit (the fiducial orbit) is cal-
culated which usually represents the motion of the beam
centroid or barycenter. Given a set of initial conditions, the
equations of motion derived from the Hamiltonian (A1) are
solved to obtain an exact orbit for the fiducial particle. This
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orbit is represented as a function of z and has the scalar
components

jg�z� � �xg, p̃xg, yg, p̃yg, sg, 2gg� �z� . (A2)

The fiducial orbit described above produces a particular
“chart” in phase space, connecting initial to final values.
For particles with initial conditions near those of the fidu-
cial particle, the chart is equivalent to a mapping, taking
initial values to final values. This mapping can be de-
rived analytically from the fiducial orbit and the underly-
ing Hamiltonian flow.

2. Canonical transformation to deviation coordinates

Individual particles are characterized in their initial val-
ues by the difference of their phase space coordinates from
that of the fiducial orbit. The phase space coordinates of a
given particle are defined as

j�z� � �x, p̃x , y, p̃y , s, 2g� �z� . (A3)
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The deviation coordinates are defined as

ĵ�z� � j�z� 2 jg�z� � �x̂, dx, ŷ, dy, ŝ, ds� �z� , (A4)

where jg�z� denotes the coordinates of the fiducial, or
“guide,” orbit. These fiducial coordinates are scalar func-
tions of the affine parameter z and are used to construct
a canonical transformation via the type-2 generating func-
tion [46]

F2�x, dx, y, dy, s, ds, z� � �x 2 xg� �dx 1 p̃xg�
1 �y 2 yg� �dy 1 p̃yg�
1 �s 2 sg� �ds 2 gg� . (A5)

The resulting

K̂�x̂, dx, ŷ, dy, ŝ, ds� � K̃ 1
≠F2

≠z
. (A6)

Carrying out the derivation yields
K̂ � 2Ãz�r̂� 1 �rg, ŝ 1 sg� 2

q
�ds 2 gg�2 2 1 2 � �d� 1 p̃�g 2 Ã��r̂� 1 �rg, ŝ 1 sg��2

1 �x 2 xg�p̃0
xg 2 x0g�dx 1 p̃xg� 1 �y 2 yg�p̃0

yg 2 y0g�dy 1 p̃yg� 1 �s 2 sg� �2gg�0 2 s0g�ds 2 gg� . (A7)
3. Power series expansion

This Hamiltonian can now be expanded in a power se-
ries2 in the deviation coordinates,

K̂ � K̂0 1 K̂1 1 K̂2 1 K̂3 1 K̂4 1 · · · . (A8)

The lowest-order term in this expansion does not contribute
to the equations of motion since it is only a function of z,
and so it is neglected. By defining the particle phase space
coordinates in terms of deviations from the fiducial orbit
coordinates, the linear term in the expansion is explicitly
zero.3 The remaining terms are of second- and higher-order
in the deviation coordinates. For small deviations from the
fiducial orbit, this power series will rapidly converge. We
will only consider terms in the Hamiltonian up to fourth
order. This gives equations of motion valid to third order.

It is useful to perform this power series expansion to
examine the effects of particular nonlinearities. We first
introduce a little shorthand notation. The vector potential
is also represented as a power series expansion in the con-
figuration space coordinates about the fiducial orbit

Ãz � Ãz0 1 Ãz1 1 Ãz2 1 Ãz3 1 Ãz4 1 · · · , (A9)

2This power series contains many expansion coefficients for
a 6D phase space, not all of which are independent from each
other. Use of a Lie-algebraic representation, instead of a Taylor
series representation, reduces the number of coefficients to the
minimum required at any order, while still maintaining (at least
approximately) the constraint of symplecticity.

3In cases where the beam line axis does not coincide with the
individual magnet axes, a linear term in the Hamiltonian is used
to express the alignment error [29].
Ã� � Ã0 1 Ã1 1 Ã2 1 Ã3 1 Ã4 1 · · · (A10)

� Ã0 1 Ã1 . (A11)

The lowest-order term in this expansion gives the values
of the vector potential components along the fiducial orbit,
with higher-order terms adding contributions due to devia-
tions from this orbit.

The fiducial orbit relativistic factor gg has an associated
normalized velocity, bg �

p
1 2 1�g2

g. Of course, this
assumes that the fiducial orbit does not reverse direction.
If this were to occur, the clauses of the implicit function
theorem would be violated and the entire framework pre-
sented here would be invalid. This could conceivably be
tolerated as long as the calculation of the maps ceases when
the forward momentum of the fiducial reaches zero. At
this point, we could switch Hamiltonians from K � 2pz
to H � 2pt , reparametrizing the phase space, and keep
integrating the equations of motion. Physically, we are in
danger of invalidation only if we were to attempt modeling
systems such as conventional klystrons, where the beam is
violently decelerated over a short distance. Fortunately,
that is not the case in RK-TBA systems.

The kinetic momentum differs from the canonical mo-
mentum which appears in the Hamiltonian functions. If
we denote the (normalized) transverse kinetic momentum
by p̃, where p̃ � p̃� 2 Ã�, then we may write

p̃0 � p̃�g 2 Ã0 � gg �b�g , (A12)

p̃1 � �d� 2 Ã1 . (A13)

Higher-order terms, p̃2, etc., can be defined as the
opposites of the corresponding term in the transverse
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vector potential expansion, but this distinction will not be emphasized.
The deviation Hamiltonian is then expressible in the deviation variables as

K̂ �
≠F2

≠z
2 Ãz 2

q
�ggbg�2 2 2ggds 1 d2

s 2 � �d� 1 p̃�g 2 Ã��2 . (A14)

Combining terms in the deviation Hamiltonian,

K̂ �
≠F2

≠z
2 Ãz 2 
�ggbzg�2 2 2ggds 1 d2

s 2 d2
� 2 2 �d� ? p̃0 1 2p̃0 ? Ã1 2 �Ã1�2�1�2. (A15)

After a little algebra, we obtain

K̂ �
≠F2

≠z
2 Ãz 2 �ggbzg�

Ω
1 2

1
�ggbzg�2

�d2
� 2 d2

s 1 2ggds 1 2p̃0 ? � �d� 2 Ã1� 1 Ã2
1�

æ1�2

. (A16)
The expression (A16) is now in a state from which we
can derive terms of the power series representation. We
can see that the terms of the series represent powers of
the ratio of transverse momentum deviation:forward mo-
mentum. Thus, this series will converge more rapidly for
beams of small normalized emittance. It should be noted,
however, that the ratio is what really matters. The fiducial
trajectory is, in theory, calculated exactly. It may represent
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an orbit with classical or relativistic energies equally well
(as long as it does not reflect at some position z).

Performing the power series expansion on (A16) to
fourth order, neglecting terms which are independent of the
deviation coordinates, and noting that terms of first order
in �j cancel identically with the first term, we find (drop-
ping the “g” subscript from guide orbit quantities, gg, bzg)
after some algebra
K̂2 � 2Ãz2 2
5�p̃2

0 �3 1 6�gbz�2�p̃2
0 �2 1 8�gbz�4�p̃2

0 � 1 16�gbz�6

32�gbz�7
�d2
s 2 p̃2

1 1 2p̃0 ? Ã2�

1
15�p̃2

0 �2 1 12�gbz�2�p̃2
0 � 1 8�gbz�4

16�gbz�7
�gds 1 p̃0 ? p̃1�2, (A17)

K̂3 � 2Ãz3 2
5�p̃2

0 �3 1 6�gbz�2�p̃2
0 �2 1 4�gbz�4�p̃2

0 � 1 16�gbz�6

16�gbz�7
�p̃0 ? Ã3 1 p̃1 ? Ã2�

2
15�p̃2

0 �2 1 12�gbz�2�p̃2
0 � 1 8�gbz�4

16�gbz�7
�gds 1 p̃0 ? p̃1� �d2

s 2 p̃2
1 1 2p̃0 ? Ã2�

1
5�p̃2

0 � 1 2�gbz�2

4�gbz�7
�gds 1 p̃0 ? p̃1�3, (A18)

K̂4 � 2Ãz4 2
5�p̃2

0 �3 1 6�gbz�2�p̃2
0 �2 1 8�gbz�4�p̃2

0 � 1 16�gbz�6

32�gbz�7
�2Ã2

2 1 2p̃1 ? Ã3 1 2p̃0 ? Ã4�

2
15�p̃2

0 �2 1 12�gbz�2�p̃2
0 � 1 8�gbz�4

8�gbz�7
�gds 1 p̃0 ? p̃1� �p̃0 ? Ã3 1 p̃1 ? Ã2�

1
15�p̃2

0 �2 1 12�gbz�2�p̃2
0 � 1 8�gbz�4

64�gbz�7
�d2
s 2 p̃2

1 1 2p̃0 ? Ã2�2

2
15�p̃2

0 � 1 6�gbz�2

8�gbz�7
�gds 1 p̃0 ? p̃1�2�d2

s 2 p̃2
1 1 2p̃0 ? Ã2� 1

5
8�gbz�7

�gds 1 p̃0 ? p̃1�4. (A19)
Along with the equations of motion for the fiducial tra-
jectory, the power series expansion (A17)–(A19) provides
a basis for linear and order-by-order nonlinear analysis and
solution of the equations of motion for the entire ensemble
of particles comprising the beam.

In the situation where no dipole fields exist, and the
fiducial orbit has no transverse excursion from the beam
line axis, these expressions simplify immensely. In this
case, p̃0 � 0 � �b�, and bz � b �
p

1 2 1�g2. The
deviation Hamiltonian series terms (A17)–(A19) take the
limiting form,

K̂2 � 2Ãz2 2
1

2�gb�
�d2
s 2 p̃2

1 � 1
1

2�gb�3
�gds�2,

(A20)
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K̂3 � 2Ãz3 2
1

�gb�
�p̃1 ? Ã2� 2

1
2�gb�3

�gds� �d2
s 2 p̃2

1 � 1
1

2�gb�5
�gds�3, (A21)

K̂4 � 2Ãz4 2
1

2�gb�
�2Ã2

2 1 2p̃1 ? Ã3� 2
1

�gb�3
�gds� �p̃1 ? Ã2� 1

1
8�gb�3

�d2
s 2 p̃2

1 �

2
3

4�gb�5
�gds�2�d2

s 2 p̃2
1 � 1

5
8�gb�7

�gds�4. (A22)
Comparing the two sets of expansions, (A17)–(A19)
and (A20)–(A22), we see that the coupling of the off-axis
fiducial momentum components with the vector potential
introduces new terms. These can be treated and analyzed
as pseudomultipoles. In most cases of interest, the fields
in the accelerator beam line are only weakly nonlinear, so
that the power series can be seen to rapidly converge. Even
in the cases (such as rf fields) where there is one coordinate
(in the rf cavity case, the arrival time ŝ) along which the
fields have a strongly nonlinear variation, taking multiple
fiducial elements along the range of that coordinate can
restore the accuracy of the finite power series expansion.

APPENDIX B: BEAM-CAVITY INTERACTION

This Appendix summarizes the theory and formalism in
the beam-cavity interaction we expect to find in relativistic-
klystron two-beam accelerator systems.

1. Fundamental elements and dynamics

In this section we describe the main elements that take
part in the dynamics: the cavity voltage and convection
current (beam). We will not undergo here the full discus-
sion or derivation of the basic interaction as embodied in
the circuit equation. These are well covered in the avail-
able texts [38–40]. We will merely make their introduction
and briefly discuss some of their properties. The particu-
lar model of the current density which provides the bridge
between the circuit analogy and the tracking code will be
presented.

a. Modal elements and dynamics

We are specifically concerned with the interaction of the
beam with the fundamental monopole mode �TM010� in a
single standing-wave (SW) idler or output cavity, and with
the fundamental TE10 mode in any coupled, external wave-
guide. Application to transverse deflecting or focusing
modes can also be handled with this formalism, with little
variation.

We will assume that the fields in the cavity are domi-
nated by a single monopole mode. We express the cavity
electric field as a product of a time-dependent mode am-
plitude with a spatial mode profile (indexed by l),

�E��r , t� � al�t� �El��r� . (B1)

The spatial profile of the mode is assumed to have the
so-called “Slater” normalization [38],
Z
cavity

d3r �El��r� ? �El��r� � 1 . (B2)

Other normalizations are sometimes used. Another one
we employ will be described later. The spatial field profile
is assumed to be static; all of the temporal behavior of
the field enters through the mode amplitude. This is the
quantity which is used to describe the cavity voltage as
seen by the beam, and is proportional to the electric field in
any output waveguide. Knowing the spatial mode profile,
and the total electric field at time t, the mode amplitude
can be defined by

al�t� �
Z

cavity
d3r �E��r , t� ? �El��r� . (B3)

The other dynamical quantity is the current density rep-
resenting the beam traveling through the cavity structure.
We define a modal current density by computing the over-
lap of the time-dependent current density with the spatial
profile of the mode electric field,

Jl�t� �
Z

cavity
d3r �J��r , t� ? �El��r� (B4)

such that

�J��r , t� � Jl�t� �El��r� . (B5)

The cavity may have coupling that permits rf power
to enter or leave. This coupling can be weak or strong.
Viewed in terms of steady-state behavior, this coupling is
typically characterized by an external-coupling quality fac-
tor, Qext, of the cavity. We may also describe the coupling
as an impedance transformation from the mode amplitudes
(for incoming and outgoing waves) of the attached wave-
guide, through the coupling port surface, to the mode am-
plitude of the resonant cavity. This coupling surface is
usually taken to lie in the transverse plane of the connecting
waveguide, a short distance �,l� from the cavity. Slater
[38] calls this surface “the plane of the detuned short.”
Collin [40] defines this plane as to lie sufficiently far from
the physical cavity aperture that evanescent mode ampli-
tudes are negligible. In either case, we define a relation-
ship based on the continuity of the transverse electric field
at the port surface between the incoming �1� and outgo-
ing �2� waveguide mode amplitudes and the cavity mode
amplitude,

V1
1 1 V2

1 � V1lal . (B6)
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Here, the external coupling parameter V1l measures the
overlap between the cavity mode (“l”) and the fundamen-
tal waveguide mode (“1”). This is a reasonable assumption
for klystron input/output ports. The external coupling pa-
rameter may be related to the externalQ value of the cavity
via the relation

V1l �

s
e0vlZc1
Qext

, (B7)

where Zc1 is the characteristic impedance of the waveguide
mode. This coupling can be calculated, or measured, on
the bench with a network analyzer.

As detailed in Refs. [38,39], we write down an equiva-
lent circuit equation describing the time evolution of the
mode amplitude due to excitation by both the external
rf current drive and the incoming waveguide mode, and
losses from wall heating, beam loading, and coupling to
the outgoing waveguide mode,µ
d2

dt2
1

vl

Qw

d
dt

1 v2
l

∂
al�t� � 2

1
e0

d
dt
Jl�t�

1
vl

Qext

d
dt

µ
V1

1 2 V2
1

V1l

∂
.

(B8)

This equation is equivalent to a damped harmonic os-
cillator, driven by two independent source terms. The
undriven oscillator term contains two external parameters
related to the resonant mode: the angular frequency
vl and the wall-loss quality factor Qw . They can be
determined from cold-cavity experiments or numerical
simulations.

Since the temporal structure of the fields and currents
is predominantly harmonic in nature with an angular fre-
quency vb close to the resonant frequency of the cavity,
it will be helpful to consider the corresponding frequency
domain description. We may assume that the modal am-
plitudes and spatial profiles are real-valued functions. For
quasi-steady-state harmonic oscillation at the modulation
rf frequency, we express the time dependence of the rf am-
plitudes as

al�t� 	 âl cos�vbt 1 wl� ,

Jl�t� 	 J̃l cos�vbt� , (B9)

V6
1 �t� 	 ŷ6 cos�vbt 1 w6� .

It will be convenient to also use complex-valued quan-
tities. In this case we may express the time-dependent rf
modal amplitudes as real parts (denoted by Re) of a com-
plex phasor,

al�t� 	 Re
ãl exp�2i�vbt 1 wl��� ,

Jl�t� 	 Re 
J̃l exp�2ivbt�� , (B10)

V6
1 �t� 	 Re
ỹ7 exp�2i�vbt 1 w6��� .

These time-dependent mode amplitudes have constant co-
efficients. This is approximately correct on the time scale
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of the rf modulation period �Tb�, but these amplitudes also
possess a slow time variation as well. This slow variation
will be discussed further in Sec. 2 of this Appendix.

b. Normalization of the cavity electric field

Returning to the problem of the beam-cavity interaction,
we observe that the simulation model employs a paraxial
approximation based upon a description of the fields near
the beam line axis. In particular, we consider only the
on-axis longitudinal electric field profile and assume that
it is a function of only longitudinal position (z), with a
separable time dependence. The values of the field and
its derivatives along the axis are used to generate all other
electric and magnetic field components (permitted by sym-
metry) near the axis by construction of the vector potential
Az��r , t�. From the point of view of the simulation, we need
only those field components along the axis, a complete de-
scription of the rest of the cavity is unnecessary.

However, without the detailed description of the total
electric field profile throughout the entire cavity, we are
unable to normalize the modes according to the Slater pre-
scription (B2). But, this normalization need not be per-
formed in the particle tracking simulation; it may also be
done when the modes are initially generated by electro-
magnetic codes [SUPERFISH, URMEL, MAFIA, GDFIDL, etc.].
This can be performed through a combination of analytical
modeling of the on-axis field profile with numerical calcu-
lation of the circuit �r�Q�. This relates the on-axis voltage
seen by the beam to the total energy stored in the cavity.

The longitudinal component of the monopole mode
electric field profile in single-cell cavities with open beam
pipes is well approximated by a Gaussian distribution
along the beam line axis. The standard deviation �s� can
be obtained from simulation data by appropriate fitting
procedures. The longitudinal field profile of the monopole
mode can then be represented by

Ezl�z� �
Nlp
2ps

exp

∑
2

z2

2s2

∏
� Nle0�z� , (B11)

for a cavity centered at z � 0. Here, Nl is the normaliza-
tion constant that we wish to determine. In terms of the
modal fields, the circuit �r�Q� is defined for constant ve-
locity �bz� particles as∑

r
Q

∏
l

�
1

e0vl

Ç Z
cavity

dz Ezl�z� exp�ivlz�bzc�
Ç2

.

(B12)

An accelerator �R�Q� is also widely used in the accelera-
tor literature, where �R�Q� � 2�r�Q�.

To derive an expression for the normalization constant,
we substitute our analytical approximation for the on-axis
field profile. Incurring a negligible error, we extend the
limits of integration in the above integral to 6`. We then
find our normalization constant to be
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Nl �

µ
e0vl

∑
r
Q

∏
l

∂1�2

exp

∑
v

2
ls2

2b2
z c2

∏
. (B13)

This defines the connection between the modal fields used
in the circuit analogy and the fields used in determining
the beam dynamics. We refer to this definition of the field,
e0�z�, as the “line voltage” normalization such that

Z 1`

2`
dz e0�z� � 1 . (B14)

c. Periodic Klimontovich current distribution

The connection between the discrete particle description
employed by the tracking code and the current density
used in the circuit equation is made by appealing to the
Klimontovich distribution [47]. Since the rf amplitude
of the modulated current density varies only very slowly
on the rf time scale, the charge per microbunch and the
distribution function appear to be periodic when observed
over a few rf periods’ duration. We describe the time
dependence of the charge density distribution by expanding
in a Fourier series basis defined over a single rf period

�J��r , t� 	 �zQb
1
N

NX
n�1

d2��r� 2 �r�n�d�t 2 tn� , (B15)
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Jz��r , t� �
1
2
J0��r�

1
X̀
l�1

�J1
l ��r� cos�lvbt� 1 J2

l ��r� sin�lvbt�� ,

(B16)

for t, tn [ �2Tb�2,Tb�2�. Here, N is the number of par-
ticles carried in a simulated microbunch and Qb is the to-
tal charge carried by the beam current past a stationary
observer in a time Tb . Hence, the beam dc current aver-
aged over an rf period is Ib � Qb�Tb . We further assume
that the particle distribution within the microbunches is
quasiperiodic with period Tb . Individual particles in the
microbunch pass the beam line position z0 at times tn�z0�
and at transverse positions �r�n�z0�. The relativistic nature
of the beam allows us to neglect the transverse current den-
sity components, provided the rf power extracted from the
beam in single cavity is only a small fraction of the total
beam power.

We compute the Fourier components of the current den-
sity,

J
�6�
l ��r� �

2
Tb

Z Tb�2

2Tb�2
dt

µ
cos�lvbt�
sin�lvbt�

∂
Jz��r , t� . (B17)

Integrating, we obtain

J6
l ��r; vb� � 2Ib

1
N

NX
n�1

d2��r� 2 �r�n�
µ

cos�lvbtn�
sin�lvbtn�

∂
.

(B18)

Reassembling the Fourier components,
Jz��r , t� � Ib
1
N

NX
n�1

d2��r� 2 �r�n�
Ω
1 1 2

X̀
l�1

�cos�lvbt� cos�lvbtn� 1 sin�lvbt� sin�lvbtn��
æ

(B19)

� Ib
1
N

NX
n�1

d2��r� 2 �r�n�
Ω
1 1 2

X̀
l�1

cos�lvb�t 2 tn��
æ
. (B20)

The modal current density at time t0 is now calculated to be

Jl�t0� �
Z

cavity
d3r Jz��r, t0�Ezl��r� � Ib

1
N

NX
n�1

Z
cavity

dz Ezl��r�n, z�
Ω
1 1 2

X̀
l�1

cos�lvb�t0 2 tn��
æ

� Ib

*Z
cavity

dz Ezl��r�, z�

+
1 2Ib

X̀
l�1

*Z
cavity

dz Ezl��r�, z� cos�lvb�t0 2 t�z��

+
. (B21)

We have denoted with angular brackets, � �, an average over the distribution of particles within an rf bucket. Here, t�z�
is the arrival time at beam line position z with transverse offset �r� of an element of the current density. Again, it will be
convenient to use the real parts of complex-valued quantities,

Jl�t� � Ib

*Z
cavity

dz Ezl��r�, z�

+
1 2Ib

X̀
l�1

Re

(
exp�2ilvbt�

*Z
cavity

dz Ezl��r�, z� exp�ilvbt�z��

+)
. (B22)

This particular integral of the modal electric field occurs so often that we will just define
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w̃�v, �r�� �
Z

cavity
dz Ezl��r�n, z� exp�2ivt�z�� . (B23)

The phase convention employed in this definition corre-
sponds to t�zmid� � 0, where zmid is the longitudinal posi-
tion at the center of the cavity. This convention is applied
to the fiducial orbit only; all other particle orbits introduce
relative phase changes.

The particular function defined by (B23) plays an ex-
tremely important role in the dynamics of the beam and the
evolution of the cavity field amplitude. It serves to define
the cavity voltage, and hence the mode �R�Q� and shunt
impedance. It contains transit time effects, and, when
applied to beam particle trajectories in the presence of a
background rf field, it will then compute beam loading
contributions to the shunt impedance and the net energy
deposited into the mode. We will refer to it as the mode
transit function.

The modal current density in (B10) can then be ex-
pressed as

Jl�t� � Ib�w̃y�v � 0, �r���

1 2Ib
X̀
l�1

Re
exp�2ilvbt� �w̃y�lvb , �r���� .

(B24)

For the beams we consider here, only the l � 1 term is
necessary to retain for the monopole mode. Higher-order
azimuthal modes may couple to higher harmonic compo-
nents in the beam’s spectrum.
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2. Analysis of the circuit equation

Here we will employ the elements developed in the pre-
vious section. We will assume that there exist two distinct
time scales of interest. A fast time scale, where varia-
tions are seen to occur within an rf period, and a slow time
scale. The latter can be taken to be the fill time of the cav-
ity �TF � TbQl�p�, the rise time of the driving current,
or some other relevant time scale. The mode amplitude
and current density are modulated at the fast time scale.
But the evolution of the amplitude, as well as any phase
drift, occur on the slow time scale. As a result, we may
rewrite the governing circuit equation in terms of these
slowly varying quantities and the slow time scale.

a. Slow time-scale equation of motion

We introduce slow time variations into the modal am-
plitudes and phases,

âl � âl�t�, wl � wl�t� ,

Ĵl � 2Ib�t� �w̃y�v, �r���, (B25)

ŷ6 � ŷ6�t�, w6 � w6�t� ,

where the time-dependent quantities are all real-valued
functions. These functions are required to be slowly vary-
ing in time with respect to the rf period. For a quantity f�t�,
this means that jdfdt j ø jfvbj. We substitute these into the
circuit equation (B8) and neglect second-order time deriva-
tives of slowly varying quantities
µ
v2

l 2 v2 2
ivvl

Qw

∂
�âle

2iwl� 1

µ
vl

Qw
2 2iv

∂
d
dt

�âle
2iwl�

�
vl

QextV1l

µ
d
dt

2 iv

∂
�ŷ1e2iw1 2 ŷ2e2iw2 � 2 2

�w̃y�
e0

µ
d
dt

2 iv

∂
Ib . (B26)
This equation can be simplified by introducing a voltage
normalization. We define an on-axis cavity circuit voltage
�Ṽc� and forward �ṼF� and reverse �ṼR� port voltages in
the mode transit normalization via

Ṽc � �w̃0âle
2iwl� ,

ṼF �

µ
w̃0ŷ

1e2iw1

V1l

∂
, (B27)

ṼR �

µ
w̃0ŷ

2e2iw2

V1l

∂
,

where w̃0 � w̃�vb , �r� � 0�. In this normalization, the
continuity of the transverse electric field at the port plane
is expressed as

Ṽc � ṼF 1 ṼR . (B28)
In the absence of any beam, the mode transit function
w̃ is undefined. However, there may still be fields present
in the cavity as well as coupling through the ports. In this
case, we will utilize a different scheme, the port overlap
normalization,

Ṽc � �V1lâle
2iwl� ,

ṼF � �ŷ1e2iw1� , (B29)

ṼR � �ŷ2e2iw2� .

As defined, these voltages are complex valued. The
microbunch-averaged accelerator shunt impedance is de-
fined through Rb � Ql ��R�Q��, where

ø∑
R
Q

∏¿
�

2w̃0�w̃y�
e0vl

. (B30)
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With these definitions, the circuit equation (B26) becomes (in the mode transit normalization)µ
v2

l 2 v2 2
ivvl

Qw

∂
Ṽc 1

µ
vl

Qw
2 2iv

∂
d
dt
Ṽc �

µ
d
dt

2 iv

∂ ∑
vl

Qext
�ṼF 2 ṼR� 2 vl

ø∑
R
Q

∏¿
Ib

∏
. (B31)

Using the continuity condition (B28), we may express the reverse voltage in terms of the cavity and forward voltages.
Doing so, the circuit equation becomesµ

v2
l 2 v2 2

ivvl

QL

∂
Ṽc 1

µ
vl

QL
2 2iv

∂
d
dt
Ṽc �

µ
d
dt

2 iv

∂ ∑
2

vl

Qext
ṼF 2 vl

ø∑
R
Q

∏¿
Ib

∏
. (B32)
The loaded quality factor Ql has been introduced with
the definition

1
QL

�
1
Qw

1
1

Qext
, (B33)

which is a statement of net power loss in the cavity’s fields
in the absence of beam coupling.

From standard microwave terminology, we recall the
definitions of the tuning angle c , cavity fill time TF , and
coupling parameter b,

tanc � QL

µ
vl

v
2

v

vl

∂
, (B34)

TF �
2QL

vl

, (B35)

b �
Qw

Qext
, (B36)

and introduce the phase change in a fill time n � vTF .
The circuit equation can now be written as

2i
vvl

QL
�1 1 i tanc�Ṽc 1

µ
vl

QL
2 2iv

∂
d
dt
Ṽc

�

µ
d
dt

2 iv

∂ ∑
2

vl

Qext
ṼF 2 vl

ø∑
R
Q

∏¿
Ib

∏
.

(B37)

Since Qw is typically several thousand or more, we ne-
glect terms of order O� 1

4Q2
w

�, and express derivatives in
terms of t � t�TF (using primes to indicate derivation).
We also introduce the supplementary parameters

m �
1 2 i�n

1 1 n2 (B38)

and

a � m�1 1 i tanc� . (B39)

In Sec. 3 of this Appendix, it will be shown that the
shunt impedance as defined here is a complex-valued quan-
tity, but that it can be expressed asø∑

R
Q

∏¿
�

∑
R
Q

∏
l

Fb , (B40)

where ∑
R
Q

∏
l

� 2
jw̃0j

2

e0vl

(B41)
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is a manifestly real-valued quantity and Fb is a complex-
valued distribution-dependent form factor, with magnitude
of the order of unity. This form factor provides a measure
of the space time overlap of the microbunch distribution
with the mode on the time scale of the rf period. Its cal-
culation takes into account the individual electron trajec-
tories, and hence accounts for beam-loading effects. With
the distribution independent shunt impedance,

Rl � QL

∑
R
Q

∏
l

, (B42)

the circuit equation takes its final form,

Ṽ 0
c 1 aṼc � m

µ
1 1

i
n

d
dt

∂ ∑
2b

b 1 1
ṼF 2 RlFbIb

∏
,

(B43)

ṼR � Ṽc 2 ṼF . (B44)

This is the main result of this section. We solve (B43)
for the special case of linear variation of the current with
time. This will give us solutions valid for both the initial
and final ramping portions of the beam current as well as
the flattop. We do not attempt to find a global solution
over time, which requires inclusion of the self-consistent
interaction of the cavity back upon the beam. Rather, we
will seek a local solution, valid only over a short time
duration (though still long compared to the fast time scale),
as an approximation to use within the numerical simulation
to advance the cavity mode voltages in time.

b. Analytic solution for short (slow scale) time duration

The circuit equation above (B43) can be simplified
slightly by introducing parameters that absorb the local
time dependence of the beam current and forward power,

Bb�t� � 1 1
i
n

I 0b�t�
Ib�t�

, (B45)

BF�t� � 1 1
i
n

Ṽ 0
F�t�

ṼF�t�
. (B46)

Both of these factors become unity under steady-state con-
ditions. Equation (B43) is now

Ṽ 0
c 1 aṼc �

2b

b 1 1
mBFṼF 2 RlFbmBbIb . (B47)

We integrate this differential equation over a brief time
interval compared to the slow time scale, but over many rf
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periods. We assume that the microbunch dependent form
factor �Fb� is nearly constant, which is a good approxi-
mation provided the cavity voltage does not change by a
significant fraction of the beam voltage over the interval
of integration. In other words, we assume the intrabunch
particle motion remains nearly identical from microbunch
to microbunch, so that the bunch-averaged quantities such
as emittance and energy spread do not appreciably vary
over the interval of integration. This particle motion is
calculated by the tracking algorithm based upon fields ex-
cited from the passage of previous microbunches and the
coupling of external rf power into the cavity. We allow
for a linear time dependence of the current and forward
power, so that both Bb and BF are constant over the time
interval. After integrating the equation between times t1

and t2, and dropping terms of order O � 1
4Q2

w
�, we find our

short term solution

Ṽc�t2� � Ṽc�t1�e2a�t22t1�

1

∑
BF

2b

b 1 1
ṼF�t1� 2 RlFbBbIb�t1��

3 cosce2ic�1 2 e2a�t22t1�� . (B48)

We define a (complex-valued) beam impedance by Zb �
RlFbBb . The solution to the circuit voltage is then

Ṽc�t2� � Ṽc�t1�e2a�t22t1�

1

∑
BF

2b

b 1 1
ṼF�t1� 2 ZbIb�t1��

3 cosce2ic�1 2 e2a�t22t1�� . (B49)

This solution is seen to track both losses and phase shifts
due to beam loading and phase slippage on the slow
time scale.

c. Observed fields and power flow

The physical observables, the time-dependent rf mode
amplitudes, are derived from these circuit voltages. The
observables have the time dependence

al�t� 	 âl�t� cos���vbt 1 wl�t���� , (B50)

Jl�t� 	 Ĵl�t� cos�vbt� , (B51)

V6
1 �t� 	 ŷ6�t� cos���vbt 1 w6�t���� . (B52)

Depending upon the voltage normalization scheme (B27)
and (B29), the amplitudes and phases of the fields and
modes are then

â�t� �

Ç
Ṽc
w̃0

Ç
, wl�t� � 2�

µ
Ṽc
w̃0

∂
,

ŷ6�t� � V1l

Ç
ṼF,R

w̃0

Ç
, w6�t� � 2�

µ
ṼF,R

w̃0

∂ (B53)
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in the mode transit normalization,

â�t� �

Ç
Ṽc
V1l

Ç
, wl�t� � 2��Ṽc� ,

ŷ6�t� � jṼF,Rj, w6�t� � 2��ṼF,R�
(B54)

and in the port overlap normalization.
Of interest is the amount of rf power flowing into and

out of the cavity derived from the Poynting flux. The
waveguide modes are normalized such that the transverse
electric fields satisfy a relation similar to (B2). The net rms
power flowing in the waveguide, again assuming a single
mode, can then be shown to be

Pguide �
�ŷ1�2 2 �ŷ2�2

2Zc1
, (B55)

with

P1 �
�ŷ1�2

2Zc1
, (B56)

P2 �
�ŷ2�2

2Zc1
, (B57)

denoting the forward and reverse rms power flows in the
connecting waveguide, respectively. Translating this into
the normalization schemes gives

P1 �
e0vl

2Qext

Ç
ṼF
w̃0

Ç2
, P2 �

e0vl

2Qext

Ç
Ṽc 2 ṼF

w̃0

Ç2
;

(B58)

P1 �
jṼF j2

2Zc1
, P2 �

jṼc 2 ṼF j2

2Zc1
, (B59)

in the mode transit and port overlap schemes, respectively.
Note that the reverse voltage has been expressed in terms
of the forward and cavity voltages.

The rms value of the energy stored in the cavity is given
by

Uc �
e0

2
jâlj

2. (B60)

The rms power shunted to the walls and to the reverse
waveguide mode can be derived by appealing to the defi-
nition of the quality factor,

P �
vlUc

Q
. (B61)

Hence, the wall-loss power and the reverse power are given
by

Pw �
vlUc

Qw
�

e0vl

2Qw
jâlj

2, (B62)
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P2 �
vlUc

Qext
�

e0vl

2Qext
jâlj

2, (B63)

as expected. From energy conservation, the sum of these
shunted powers must equal the power obtained from the
beam and the forward power,

Pb 1 P1 � Pw 1 P2 . (B64)

d. Steady-state behavior

In the limit of steady-state behavior, the differential cir-
cuit equation (B43) becomes the algebraic equation

Ṽc �

µ
2b

b 1 1
ṼF 2 ZbIb

∂
cosce2ic , (B65)
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ṼR � Ṽy 2 ṼF . (B66)

We compute the reverse power flow in terms of the forward
power flow and beam coupling,

P2 �
e0v

2Qext

3

Ç µ
2b

b 1 1
ṼF
w̃0

2 RlIb
Fb
w̃0

∂
cosce2ic 2

ṼF
w̃0

Ç2
.

(B67)

The complex-valued phasors are represented by (B53) or
(B54), and

Fb
w̃0

�

Ç
Fb
w̃0

Ç
e2iwb . (B68)

The reverse power flow is then
P2 � P1

∑
sin2c 1

µ
1 2 b

1 1 b

∂
cos2c

∏
1

QL

Qext
jFbj

2I2
bRl cos2c

1

s
P 1

QL

Qext
jFbj2I

2
bRl cos2c

∑
2b

b 1 1
cosc cos�wb 2 w1� 2 cos�c 1 wb 2 w1�

∏
. (B69)
In the absence of any forward power flow, all power is
shunted from the beam into the cavity walls as well as
coupled through the exterior waveguide. The power loss
to the beam is then

Pb � Pw 1 P2 (B70)

�
e0vl

2QL

Ç
RlIb

Fb
w̃0

cosce2ic

Ç2
(B71)

�
e0vl

2QL

Ç
1
w̃0

Ç2
R2

lI
2
b jFbj

2 cos2c

�
e0vl

2QL

2

e0vl� RQ �
Q2
L

∑
R
Q

∏2

I2
bjFbj

2 cos2c

� I2
bb

2QL

∑
R
Q

∏
cos2c , (B72)

where we identify the bunching parameter b as

b � jFbj . (B73)

3. Internal microbunch dynamics and the averaged
shunt impedance

In this section we calculate the bunch-averaged value
of the shunt impedance. This will necessitate a somewhat
closer inspection of the intrabunch particle dynamics as the
beam crosses the cavity. In particular, we need to examine
slippage effects that determine the beam loading effects in
the interaction.

From our definition of the shunt impedance (B30) we
recall
ø∑
R
Q

∏¿
� 2

w̃0�w̃y�
e0vl

, (B74)

where

w̃�vb , �r�� �
Z

cavity
dz Ezl��r�, z� exp�2ivbt�z��

(B75)

and w̃0 � w̃�vb , �r� � 0�. In the usual linac formulation,
the function w̃0 is calculated by assuming a constant ve-
locity b0 of particles through the cavity. In that case,
t�z� � t0 1 �z 2 z0���b0c�. Here, we allow for intra-
bunch particle motion resulting from a finite beam energy
spread and from the influence of rf fields preexisting with
the cavity. We determine the value of t from the fiducial
orbit.

To calculate the trajectory dependent mode transit func-
tion, w̃y�vb , �r��, we maintain the spirit of our tracking
code and appeal to the power series expansion. For a SW
monopole mode, we use

Ezl��r�, z� � f0�z� 1 r2
�f2�z� 1 r4

�f4�z� 1 · · · ,
(B76)

where r2
� � x2 1 y2, and the auxiliary functions are

(primes denoting total derivatives with respect to z)

f0�z� � Ezl��r� � 0, z� � Nle0�z� , (B77)

f2�z� � 21�4Nl�e000 1 k2
0e0� , (B78)

f4�z� � 1�64Nl�e00000 1 2k2
0e

00
0 1 k4

0e0� , (B79)

and k0 � wl�c. This particular set of series coefficients
follows from the requirement that Ez��r�, z� satisfy
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the wave equation. As shown, the mode field profile
Ezl��r�, z� carries the “Slater” normalization, while the
field e0�z� has the “line voltage” normalization. With the
form of the mode profile expressed in (B76), we rewrite
the mode transit functions as

w̃y 	
Z

cavity
dz�f0�z� 1 r2

�f2�z� 1 r4
�f4�z��

3 exp�ivbt�z�� , (B80)

w̃0 �
Z

cavity
dz f0�z� exp�2ivbt�z�� .

In evaluating these integrals during the simulation, we
break up the interval covering the entire longitudinal length
of the cavity into a set of shorter subintervals (on the order
of 10). In each subinterval, we will assume that individual
particle transverse coordinates do not change appreciably.
Then, for each particle in the simulation, we replace r2

� and
r4

� by the values r 2
� and r 4

�, averaged over the subinterval.
Equation (B80) can be rewritten as

w̃y 	
Z

cavity
dz f0�z� exp�ivbt�z��

1 r 2
�

Z
cavity

dz f2�z� exp�ivbt�z��

1 r 4
�

Z
cavity

dz f4�z� exp�ivbt�z�� . (B81)

In these integrals, the arrival time in the exponential is a
dynamical coordinate of each particle. We may express
the arrival time of an individual particle as the sum of the
fiducial arrival time with the time deviation coordinate of
the particle, t � t0 1 t̂.

In computing the microbunch averages over the subin-
tervals, we further assume that the individual particle lon-
gitudinal phases (i.e., arrival times) remain nearly constant
with respect to the fiducial. We will use the notation

vt�z� � �v�c�ct�z� � ks�z�

� ks0�z� 1 kŝ�z� � ks0�z� 1 kŝ , (B82)

where s0�z� is the scaled arrival time coordinate for the
fiducial at beam line position z, and ŝ measures the de-
viation in scaled arrival time between individual particles
and the fiducial. From (B81), the “kth”-order mode transit
function isZ

cavity
dz fk�z� exp�ivbt�z��

	 exp�ikbŝ�
Z

cavity
dz fk�z� exp�ikbs0�z�� (B83)

� exp�ikbŝ�w̃
y
k , (B84)

where (k � 0, 2, 4, etc.), and the integrals are to be per-
formed over the fiducial quantities only.
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For the beams of interest to us for RK-TBA devices, the
longitudinal phase space is characterized by microbunches
which subtend a significant fraction of the rf wavelength,
with small instantaneous energy spread and significant cor-
relation between energy and arrival time. By retaining non-
linearities in the equations of motion to only low orders,
large errors are accumulated for particle orbits lying far
from the fiducial. We ameliorate this situation by comput-
ing the transfer maps induced by multiple fiducials. The
original fiducial (called the “central” fiducial) is retained
to provide continuity, but temporary fiducials are added to
more accurately describe the entire microbunch dynamics
by sampling different portions of the longitudinal phase
space. This can be rapidly evaluated in the simulation
environment.

The bunch-averaged shunt impedance is evaluated by
taking averages over the spatial and phase coordinates of
the particles in the microbunch

�Rl� � Ql

∑
R
Q

∏
l

Fb � Ql

Ω
2jw̃0j

2

e0vl

æ
Fb , (B85)

Fb � �exp�ikbŝ�� 1
w̃

y
2

w̃0
y

�r 2
� exp�ikb�ŝ��

1
w̃

y
4

w̃
y
0

�r 4
� exp�ikbŝ�� . (B86)

This last form serves to define the bunch-averaged form
factor Fb . In practice, the microbunch form factor (B86)
is calculated by integrating the differential contribution to
Fb over all of the subintervals comprising the rf gap as
described above. Doing so, the calculation of Fb includes
contributions from intrabunch particle motion during the
interaction and, as such, includes any beam-loading ef-
fects. The microbunch form factor (B86) is seen to differ
from the usual definition [48]

fb � �exp�iu�� ,

where u is the longitudinal phase of an individual elec-
tron in the microbunch, in that (B86) includes higher-order
longitudinal and off-axis effects. These effects are usually
described by a gap-coupling coefficient and/or a beam-
loading admittance [49] in the klystron literature.
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