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Simple method for any planar wiggler field simulation
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This paper deals with a nonstandard method for calculating the magnetic field of planar wigglers and
undulators consisting of pure permanent magnets. This method of calculation is based on certain prop-
erties of the Fourier transform. It allows the analytical expression of the Fourier transform for the planar
magnetic fields through the wiggler’s geometry and magnetization of its blocks. The upper theoretical
limit for the amplitude of the magnetic field is derived and matched with the field amplitude of planar
wigglers with standard designs. The property of universality for planar wigglers is also taken into con-
sideration as it may greatly simplify the analysis of magnetic fields for wigglers with different designs.
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I. INTRODUCTION

Presently, permanent magnets are widely used in wig-
gler and undulator designs. Microundulators often employ
nonstandard schemes based on permanent magnets as well.
The importance played by permanent magnets generates
a need for the thorough study of the wiggler’s magnetic
field, concentrating principally on its general properties.
The straightforward way of analyzing the magnetic field
properties is to calculate analytically (or numerically) the
magnetic field distribution using the following analysis of
its characteristics. In particular, the easy axis rotation theo-
rem has been proved for planar magnetic systems: if at
each point of a pure permanent magnet system all of its
easy axes are rotated by an angle u while the system ge-
ometry remains the same, then all magnetic fields outside
the magnetic system rotate by the opposite angle 2u with-
out a change in amplitude [1]. If this is true, the verti-
cal component of the magnetic field is changed, producing
corresponding changes in the radiation spectra and power.
The easy axis symmetry principle, which is valid in three
dimensions, was also considered and used in the magnetic
field analysis for wigglers [2].

This paper deals with an alternative method for planar
(two-dimensional) magnetic field analysis through the di-
rect computation of its Fourier transform. The Fourier
transform of planar magnetic fields may be expressed ana-
lytically in terms of the magnetic system’s geometry and
the distribution of its magnetization, thus describing ex-
plicitly their effects on the magnetic field. This method
provides possible proof for the property of universality for
planar wigglers: if all easy axes of the wiggler’s top part
are rotated by the angle u, and at the same time all easy
axes of its bottom part are rotated by the opposite angle 2u
1098-4402�01�4(4)�040701(5)$15.00
while keeping the system geometry the same, the magnetic
field varies, while the absolute value of the Fourier trans-
form of the magnetic field remains the same. From this it
follows that the total power of wiggler radiation, as well as
the positions of radiation harmonics, remains unchanged
under such modification of the wiggler’s magnetization.
This paper also deals with the upper theoretical limit for the
magnetic field amplitude of planar pure permanent magnet
wigglers. The value of this limit is matched with that of
standard wigglers. The method proposed herein can con-
siderably simplify the computer simulation and analysis of
magnetic fields for planar wigglers with different designs.

II. MAGNETIC FIELD SIMULATION

Let us consider a magnetic system with the magnetic
moment distribution �M��r 0�. The magnetic field �B��r�, gen-
erated by this system outside the magnets, is given by the
following expression [3]:

�B��r� �
Z

d3 �r 0
3 �R��� �M��r 0� ? �R��� 2 �M��r 0� ? R2

R5 , (1)

where �r � �x, y, z�, �r 0 � �x0, y0, z0�, �R � �r 2 �r 0, R �
j �Rj, and the integration is taken over the volume of mag-
nets. We use here the right-hand Cartesian system of coor-
dinates with the x and y axis directed horizontally and the
z axis directed upwards. The xoy plane is assumed to be
free of the magnetic material. Let us next imagine that the
magnetic system is infinitely wide and homogeneous along
the x axis. By this it is meant that the magnetic moment
�M��r 0� is x independent: �M��r 0� � �0,My�y0, z0�,Mz�y0,z0��.

If this is true, we may perform the integration along the x
axis in Eq. (1) and express the field through the integrals
over the cross section of the magnetic system:
By�y, z� �
Z

dy0 dz0
2My�y0, z0� ��y 2 y0�2 2 �z 2 z0�2 1 4Mz�y0, z0� �y 2 y0� �z 2 z0��

��y 2 y0�2 1 �z 2 z0�2�2 , (2)

Bz�y, z� �
Z

dy0 dz0
22Mz�y0, z0� ��y 2 y0�2 2 �z 2 z0�2 1 4My�y0, z0� �y 2 y0� �z 2 z0��

��y 2 y0�2 1 �z 2 z0�2�2 . (3)
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The easy axis rotation theorem may be derived easily
from expressions (2) and (3). Let us turn the magnetic
moments through the angle u in an anticlockwise direction:

M 0
y�y, z� � My�y, z� cos�u� 2 Mz�y, z� sin�u� , (4)

M 0
z�y, z� � Mz�y, z� cos�u� 1 My�y, z� sin�u� . (5)

The magnetic field B0
y,z�y, z�, which is produced by the

distributions M 0
y,z�y, z�, is also calculated using Eqs. (2)

and (3). After some algebraic transformations where ex-
pressions (4) and (5) have been inserted into the proper
expressions for B0

y,z�y, z�, we get

B0
y�y, z� � By�y, z� cos�u� 1 Bz�y, z� sin�u� , (6)
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B0
z�y, z� � Bz�y, z� cos�u� 2 By�y, z� sin�u� . (7)

By comparing these results with those of Eqs. (4) and (5),
it is apparent that the magnetic field is turned through the
opposite angle 2u without any change in its amplitude [1].

Next consider a Fourier transform of the vertical com-
ponent of the magnetic field,

B̃�p� �
Z `

2`
Bz�y, z � 0� exp�ipy� dy . (8)

Substituting Eq. (3) into (8) and applying Cauchy’s
theorem, we may integrate with respect to y —variable
analytically. As a result, we get the following expression
for the Fourier transforms (8):
B̃�p� � 2pjpj
Z

dy dz exp�ipy� exp�2jpzj� �Mz�y, z� 2 iMy�y, z� sgn�pz�� . (9)
The complex conjugation of expression (9) is equivalent to
the change of the argument’s sign,

B̃�2p� � B̃��p� , (10)

which is also evident from Eq. (8).
Let us consider now an infinitely long wiggler with the

length of period l. We may expand its periodical magnetic
field into the Fourier series with the following Fourier co-
efficients (k is integer):

Bz�y, z � 0� �
X̀

k�2`

B̃k exp

µ
2i

2pk
l

y

∂
, (11)

where

B̃k �
1
l

Z l

0
exp

µ
i

2p

l
ky

∂
Bz�y, z � 0� dy . (12)
Let bz�y� be the vertical component of the magnetic
field at the median plane z � 0, which is produced by one
wiggler’s period. It follows from the concept of super-
position that the wiggler’s field is the sum of such one-
period fields,

Bz�y, z � 0� �
X̀

n�2`

bz�y 1 nl� . (13)

By substituting Eq. (13) into (12) and changing the vari-
able y � y0 2 nl, the sum of integrals passes into the
integration over all values of y0,

B̃k �
1
l

Z `

2`
exp

µ
i

2p

l
ky0

∂
bz�y0� dy0. (14)

As a consequence of Eqs. (9) and (14), we get the follow-
ing expression for the Fourier coefficients:
B̃k �
4p2jkj

l2

Z
S

dy dz exp

µ
i

2p

l
ky

∂
exp

µ
2

2p

l
jkzj

∂
�Mz�y, z� 2 iMy�y, z� sgn�kz�� , (15)
where the integration in (15) is performed over the cross
section of this one period S, k � 0, 61, 62, . . . .

The expression (15) allows us to find the Fourier coeffi-
cients directly for wigglers with nonstandard designs, skip-
ping an explicit calculation for wiggler magnetic fields,
thus simplifying considerably the magnetic field analysis.

Let us apply the results obtained above for the infinitely
long, pure permanent magnet planar wiggler with standard
design. It is suggested that each of the top and bottom parts
of the wiggler’s period by itself involves N rectangular
uniformly magnetized blocks (N � 4 for Fig. 1 and N �
8 for Fig. 2). It has been assumed that from each block
to the next, the easy axes are rotated by the angle 2p�N ,
with the first block being magnetized vertically and the
following mirror-type symmetry about the median plane:

Mz�y, 2z� � Mz�y, z� and My�y, 2z� � 2My�y, z� .
(16)
Relation (10) allows us to consider here only positive
numbers of harmonic k � 1, 2, 3, . . . . For the nth mag-
netic block (both top and bottom), we get

Mz�y, z� 2 iMy�y,z� sgn�z�

� M exp

µ
2i

2p

N
�n 2 1�

∂
, (17)

where M �
q

M2
z 1 M2

y and is a constant, l
n �n 2 1� ,

y ,
l
N n and n � 1, 2, . . . , N .

In this case, the integral in (15) may be broken down
into the sum of 2N integrals over the cross sections of the
individual magnetic blocks with the following analytical
evaluation of these individual integrals. The summation of
the resulting series gives us
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FIG. 1. Halbach wiggler configuration.
40701-3
FIG. 2. Eight-blocks per period wiggler configuration.
B̃k �
BrN
pk

exp

µ
2

pg
l

k

∂ ∑
1 2 exp

µ
2

2ph
l

k

∂∏
exp

µ
ip
N

∂
sin

µ
p

N

∂
. (18)
Here k � 1 1 mN , m � 0, 1, 2, . . . , h is the height of
block, g is the wiggler’s gap, and Br � 4pM is a rema-
nent field of the magnetic blocks. Substituting Eq. (18)
into Eq. (11) with the use of (10), we get

Bz�y, z � 0� � 2
X̀

m�0

jB̃kj cos

µ
2p

l
ky 2

p

N

∂
. (19)

This formula is equivalent to that of a previous study [4]
where it was derived through the direct field calculation.

The first harmonic (where m � 0 and, correspondingly,
k � 1) has a maximum at the point with the longitudinal
coordinate yc � l��2N� that is located at the middle of
the vertically magnetized block. However, the correspon-
dent arguments of cosine at this point for the succeeding
nonzero harmonics (with k � 1 1 mN) are equal to mp,
and the contributions of the neighboring harmonics for the
magnetic field value (19) are of opposite sign,
Bz�yc, z � 0� � 2
X̀
m�0

�21�mjB̃kj . (20)

III. UPPER THEORETICAL LIMIT FOR
WIGGLER MAGNETIC FIELD

Let us determine conditions in which the first harmonic
of the magnetic field reaches its maximum. The expression
in the braces of Eq. (15) may be presented as

Mz�y, z� 2 iMy�y, z� sgn�z�
� M�y, z� exp ���2ia�y, z���� , (21)

where M�y, z� �
q

M2
y �y, z� 1 M2

z �y, z� is a real positive
function. By substituting Eq. (21) into integral (15), we
get at k � 1
B̃1 �
4p2

l2

Z
S

dy dz exp

∑
i

µ
2p

l
y 2 a�y, z�

∂∏
exp

µ
2

2p

l
jzj

∂
M�y, z� . (22)
It is well known that j
R

f�x� dxj #
R
jf�x�jdx. The

equality is fulfilled if jf�x�j � f�x�. This relation, as ap-
plied to integral (22), implies that the integrand in (22)
should be a real positive function. It means that the mag-
netic blocks should be magnetized as high as possible
(though restricted by technical reasons), so that M�y, z� �
M is a constant. In addition, the complex exponent in
Eq. (22) should be equal to one, which gives

a�y, z� �
2p

l
y . (23)

By this it is meant that the easy axis rotates continuously
and progressively along the longitudinal coordinate, clock-
wise at the wiggler’s top part and anticlockwise at the
bottom part. In this case, the Fourier coefficients peak
at k � 61 and are equal to
B̃`
61 � Br exp

µ
2

pg
l

∂ ∑
1 2 exp

µ
2

2ph
l

∂∏
. (24)

All higher harmonics of the wiggler magnetic field are
equal to zero.

Let us now compare this theoretical limit with the first
harmonic of the magnetic field produced by standard pure
permanent magnet wigglers. For schemes described in
Sec. II we have

B̃1 � B̃`
1

N
p

exp

µ
ip
N

∂
sin

µ
p

N

∂
. (25)

It follows from relation (25) that the Halbach-type wiggler
configuration (Fig. 1) reaches 90% of the theoretical limit,
and the configuration in Fig. 2 reaches 97.5% of the theo-
retical limit. This demonstrates that the performances of
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the standard schemes are close enough to the upper theo-
retical limit.

It should be noted that the wiggler with the configuration
similar to the one in Fig. 2 (but with N � 6 blocks per
period) was suggested in Ref. [5].

IV. INCREASING THE MAGNETIC FIELD
AMPLITUDE

Let us examine the following transformation of the wig-
gler’s magnetic system: we rotate the easy axes about the
x axis at each point of the wiggler’s bottom part (z , 0)
through the angle u (i.e., in an anticlockwise direction) and
at each point of the wiggler’s top part (z . 0) through the
opposite angle 2u (i.e., in a clockwise direction). This
transformation is described by the equations

M 0
y�y, z� � My�y, z� cos�u� 1 Mz�y, z� sin�u� sgn�z� ,

(26)

M 0
z�y, z� � Mz�y, z� cos�u� 2 My�y, z� sin�u� sgn�z� ,

(27)

from which it also follows that

M 0
z�y, z� 2 iM 0

y�y, z� sgn�pz�
� �Mz�y, z� 2 iMy�y, z� sgn�pz��

3 exp ���2iu sgn�p���� . (28)

The last expression shows that such modification of
the magnetic system yields the additional phase factor in
Fourier coefficients of the vertical magnetic field or in its
Fourier transform [see Eq. (15) or Eq. (9), respectively]
[6]

B̃0
k � B̃k exp ���2iu sgn�k���� . (29)

The shape of the magnetic field will be changed in the
process since the phase factor differs at k . 0 and k , 0.
At the same time, the absolute values of the Fourier coef-
ficients will not be changed by this transformation.

The magnetic field, which is produced by this “ro-
tated” configuration, is given by the Fourier series (11)
with Fourier coefficients (29), where B̃k are determined
by Eq. (18). From the above we might conclude that

B0
z�y, z � 0� � 2

X̀
m�0

jB̃kj cos

µ
2p

l
ky 2

p

N
1 u

∂
.

(30)

This expression peaks at u �
p

N and y � 0, and its maxi-
mum value is equal to

B0
z�y � 0, z � 0� � 2

X̀
m�0

jB̃kj , (31)

which is evidently higher than the value give by Eq. (20).
Figure 1 shows the standard Halbach configuration

(N � 4), and Fig. 3 shows the configuration when the
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FIG. 3. Rotated wiggler configuration.

easy axes are properly rotated at the angle u � 0.25p .
Figure 4 shows a comparison of the magnetic field profiles
for these two configurations. The magnetic fields were
calculated for the wigglers according to the following
parameters: the length of period is 40 mm, height of the
magnetic blocks is 80 mm, the gap is 2 mm, and the
remanent field of the magnetic blocks is 1.0 T. As can be
seen from these plots, the standard Halbach configuration
generates the magnetic field with amplitude of only
about 75% of the field amplitude, which is produced by
the rotated configuration. The difference in the profiles
results from the additional phase factor of the Fourier
coefficients, with the same strength of field harmonics for
both cases [see Eq. (29)].

Notice that an unusual arrangement for the wiggler mag-
nets was suggested with the aim to enhance the gain on
the third harmonic [7]. This design, with the magnetiza-
tion vectors parallel and antiparallel to the wiggler axis, is
just one example of the configurations (with N � 2 and
u � 0.5p, respectively) that can be achieved using this
general approach.
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FIG. 4. Magnetic field produced by two different wiggler
configurations — the Halbach and the rotated configurations.
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V. PROPERTY OF UNIVERSALITY FOR PLANAR
WIGGLERS

The method considered here for analysis of the planar
magnetic field allows us to state the following property of
universality for planar wigglers, which is highly significant
in many applications: if all easy axes of the wiggler’s top
part are rotated by the angle u (anticlockwise) and at the
same time all easy axes of its bottom part are rotated by the
opposite angle 2u (clockwise) while the system geometry
remains the same, the profile of the magnetic field varies,
but the total power of wiggler radiation as well as the
spectral positions of radiated harmonics remain unchanged
by such modification. Notice that this transformation of the
magnetization vectors that is described by Eqs. (26) and
(27) differs from those described by the easy axis theorem
[see Eqs. (4) and (5)] and, consequently, the results differ
as well.

The total power of electromagnetic radiation, emitted by
the high-energy electron in its passage through the wig-
gler’s magnetic field, is equal to [3]

W �
2e4g2

3m2c4

Z
L

B2
z�y, z � 0� dy , (32)

where L is the wiggler’s total length, c is the speed of
light, e and m are the electron charge and mass, respec-
tively, and g is its reduced energy. Due to the periodicity
of the magnetic field, the integral in (32) is equal to the
integral over one period l multiplied by the number of pe-
riods L�l. The one-period integral of the magnetic field
squared, according to Parceval’s theorem, is proportional
to the sum of the field’s Fourier coefficients, raised to the
second power. As a result, we get

W �
2e4g2

3m2c4 L
X̀

k�2`

jB̃kj
2 . (33)

Since the transformation, which is given by Eqs. (26) and
(27), does not change the absolute values of the Fourier
coefficients [see relation (29)], the total power (32) is in-
variant under the considered transformation.

The spectral positions of the wiggler’s harmonics are
also invariant. The wavelength ln of the nth harmonic on
the wiggler’s axis is given by

ln �
l

2g2n
�1 1 0.5K2� , (34)

where K is the wiggler’s deflection parameter and gener-
ally is determined by the following relation:

K2 �

µ
el

pmc2

∂2 X̀
k�1

jB̃kj
2

k2 . (35)
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Similarly to the total power, the invariance of the abso-
lute values of the Fourier coefficients causes the invariance
of the deflection parameter and, consequently, the wave-
lengths of the generated harmonics [6].

Let us discuss briefly how the rotation of the magne-
tization vectors [given by Eqs. (26) and (27)] affects the
intensities of the radiated harmonics. For undulators with
a relatively weak magnetic field (i.e., in the case of a small
deflection parameter, when the radiation is of a dipole-type
in the electron rest frame), the intensities of the undulator’s
harmonics are determined by the magnetic field Fourier
transform squared [8]. Consequently, the spectral charac-
teristics of dipole radiation remain also invariant under this
transformation process of the magnetic system.

For planar wigglers with a relatively strong magnetic
field K $ 1, generally this transformation of the wiggler’s
magnetization will change the intensities of radiated har-
monics, increasing some of them and decreasing others in
such a way that the total power remains the same. Two
wigglers with standard design (Fig. 1) and with magne-
tization vectors rotated through 0.25p (Fig. 3), having
parameters described in the previous section, were taken
as an example. The deflection parameter is equal to K �
5.75 for both cases giving reasonably intensive high har-
monics. On-axis intensities of a few harmonics, generated
by 1 GeV electron beam were numerically simulated for
these different configurations. These simulations show that
the intensity of the first harmonic in the second (rotated)
case is lower by 0.4% as compared with the standard wig-
gler, while the intensities of the third, fifth, and seventh
harmonics are higher by 17%, 8%, and 4%, respectively.
The on-axis intensities of ninth and higher harmonics in
rotated wigglers are again lower than those of the standard
configuration.
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