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Simulation of the head-tail instability of colliding bunches
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A numerical simulation of a possible coherent beam-beam instability of the head-tail type is
sented. The studied model employs a linearized coherent beam-beam interaction and takes co
account of the bunch length, including the deformation of the colliding bunches during their ove
Measured head-tail mode spectra from the VEPP-2M collider are compared with the results of the
lytical model and tracking. A computer code for evaluation of the coherent mode increments, which
used for analysis of possible ways to stabilize the beam-beam system, is described.
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I. INTRODUCTION

Beam-beam effects, which are the main phenomena l
iting the luminosity of modern colliders, have been the f
cus of accelerator physicists’ attention for a long time [1
Analytic equations describing processes happening in
colliding beam systems are extremely complex because
its intrinsic nonlinearity. Therefore a computer simula
tion using particle tracking becomes an important tool f
analysis of the beam-beam system. Another way to so
the problem is by system simplification; in particular, fo
small betatron oscillation amplitudes, it is often allow
able to linearize the transverse force exerted by the bea
on each other. This case is referred to as the lineari
beam-beam interaction. Both the rigid transverse distrib
tion model [1,2] and the solution of the linearized Vlaso
equation [3–5] for two beams of equal intensities pred
the existence of two coherent beam-beam modes: thes

mode with the tune equal to the betatron tunenb , and
the p mode with the tune shifted byYj, where j is
the beam-beam parameter andY is a factor approximately
equal to 1 [2,5]. These modes have been observed in
ferent machines [1,6].

The single bunch collective phenomena including t
head-tail effect are well known [7]. The latter arises fro
the interplay of longitudinal and transverse motion an
is expressed in terms of coherent synchrobetatron mo
coupled via transverse wakefields. Usually the betatr
coupling between 2 transverse degrees of freedom is sm
and therefore a separate treatment of horizontal and ve
cal synchrobetatron oscillations is a good approximatio
Since the rise time of the head-tail instability is muc
shorter than the radiation damping time ine1e2 machines,
we can drop the radiative effects in what follows.

The residual coherent beam-beam interaction from se
ratede1e2 beams is known to enhance the head-tail i
stability caused by the transverse impedance in the L
collider [8], and numerical studies of this combined effe
were done using a model where the bunch length was
glected in calculating the beam-beam kick, i.e., for the ca
of a bunch much shorter than the beta-function value,b�,
at the interaction point (IP) [9].
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It has been recently proposed that a finite length (i
�b�) of colliding bunches can lead to the coupling of sy
chrobetatron modes in the beam-beam system, and th
head-tail–type instability of colliding bunches may ari
[10]. In the case of two circulating colliding bunche
which are assumed to produce no wakefields other t
those due to the collective beam-beam response, this
ear model does not predict any instability unless one of
mode tunes reaches a resonance. However, a head-ta
stability appears in the beam-beam system if the transv
impedance of the circular collider is taken into conside
tion, or in the special case of a circulating bunch colli
ing with a bunch produced anew on each turn (a so-ca
linac-ring collision).

In this paper we study the frequency spectrum of t
synchrobetatron oscillations of colliding bunches. The l
earized beam-beam force model is used in our calculatio
which include the bunch length effect resulting in the fa
that the colliding bunches are bent during their overla
Owing to the linearized beam-beam approximation, the
namics of the two transverse dimensions decouple, he
it is permissible to consider only one such dimension. T
coherent mode spectrum is obtained using two metho
an analytical method based on the circulant matrix form
ism and numerical particle tracking. Section II describ
the circulant matrix method, while the model used in t
particle tracking is presented in Sec. III. In Sec. IV we d
cuss the results for the beam-beam interaction in a colli
free of impedance elements and compare the calculat
with experimental data. In Sec. V the effect of machi
impedance is considered. Section VI gives the results
a linac-ring collision scheme.

II. CIRCULANT MATRIX METHOD

The detailed theory of the circulant matrix describin
the collective synchrobetatron motion is given in Ref. [1
Here we shall focus only on an extension of the meth
to the case of two colliding bunches, aiming at a spec
analysis of the dipole synchrobetatron modes of the be
beam system.
© 2001 The American Physical Society 024403-1
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We use the so-called “hollow beam” model. It assumes
that all particles of the bunch have equal synchrotron am-
plitudes and are evenly spread over the synchrotron phase,
forming a ring in the synchrotron phase space. The ring
is divided into N mesh elements, each characterized by its
transverse dipole moment and its synchrotron phase. The
dipole moment of the ith mesh, 1 , i , N , is propor-
tional to the transverse displacement xi of the centroid of
the particles populating this mesh, times the portion Nb�N
of the bunch intensity, Nb , per mesh. The betatron motion
will be described in terms of the normalized betatron vari-
ables, xi and pi , where pi is the respective momentum.
Thus 2N variables will be needed to characterize synchro-
betatron motion in each bunch. They form a 2N vector,
where xi and pi are listed in the order corresponding to
the mesh number, according to its synchrotron phase.

The synchrobetatron oscillations of N elements forming
a bunch are represented by the 2N 3 2N matrix M, which
maps the above vector over the collider arc,

M � C ≠ B ,

where ≠ denotes the outer product, B is the usual betatron
oscillation matrix

B �

µ
cosmb sinmb

2 sinmb cosmb

∂
,

C is the N 3 N circulant matrix [11] with elements

Cij �
sinNwij

N sinwij
,

wij �
1
2

µ
ms 2 �N 2 i 1 j�

2p

N

∂
,

�1 , i, j , N� ,

and mb, ms are the betatron and synchrotron phase
advances. With N � 2m 1 1, the eigenvectors and
eigenvalues of matrix M exactly correspond to the first
2m, . . . , m synchrobetatron harmonics with the tunes
nb 2 mns, . . . , nb 1 mns, nb,s � mb,s�2p.

Note that the synchrotron oscillation in the circulant ma-
trix formalism transports the dipole moment values around
the circle formed by the mesh elements with fixed syn-
chrotron phases (i.e., fixed longitudinal positions in the
bunch), rather than performing a permutation of the meshes
themselves.

Expansion of the model to the case of two noninteracting
bunches is straightforward by using a 4N 3 4N matrix,

M2 �

µ
1 0
0 1

∂
≠ M .

The linearized beam-beam interaction is described by
a 4N 3 4N matrix Mbb consisting of consecutive short
024403-2
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FIG. 1. Position of macroparticles in the synchrotron phase
space.

kicks and drifts between interactions of macroparticles sit-
ting in each mesh, and assumed to be rigid Gaussian disks
[2]. For example, let us consider the interaction of two
bunches each consisting of three elements. Since matrix
M2 makes a transformation from the IP to the IP, the first
step is the longitudinal unfolding of the bunch. Figure 1
shows the position of the particles in their mesh elements
before the first interaction. The next step is the interaction
between particles 1, 3, 4, and 6, which is linear in relative
distance. For instance, the kick given to the first particle is

Dp1 � 2
2pj

3
��x1 2 x6� 1 �x1 2 x4�� ,

where x and p are the particle’s coordinate and momen-
tum, and j is the beam-beam parameter. Next follows the
free drift and interaction of particles 2, 4, 6 and 1, 3, 5; next
the drift and interaction of the “ tail” particles No. 2 and
No. 5, and finally longitudinal folding of the bunch to the
IP. Generalization of the algorithm to the case of N . 3
is evident and can be left for the reader.

The complete one-turn matrix Mt is the product of the
arc matrix and the beam-beam matrix, Mt � M2Mbb . Its
eigenvalues and eigenvectors completely characterize the
synchrobetatron modes of the beam-beam system and can
be obtained numerically using a computer algebra system.

The above analytical approach is not intended for obtain-
ing closed-form solutions, rather it provides an algorithm,
which proved efficient for N , 10.

III. PARTICLE TRACKING

A. Tracking algorithm

As compared with the analytical method, straightfor-
ward tracking is easily implemented for a large number
Np of macroparticles and is not limited to the hollow-
beam model; we can use any particle distribution in the
synchrotron phase space of a bunch. However, compari-
sons of simulations for the hollow and filled beam have
shown no significant difference in the synchrobetatron
024403-2
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mode spectrum.1 A large number of macroparticles
participating in the simulation is required to evaluate the
amplitudes and frequencies of higher-order modes, but
usually these modes are not of much importance because
of small coupling. Moreover, they are suppressed by
quantum fluctuations of the synchrotron radiation. These
factors, together with an increase of the tracking time, set
the reasonable limit of the Np value at about 50.

The tracking scheme is presented in Fig. 2. First, the
initial conditions for all macroparticles of the two bunches
are set: x1,i , x2,j, p1,i , p2,j , s1,i , s2,j, d1,i, and d2,j. Here
subscripts 1, i and 2, j (i, j � 0, . . . , Np) label betatron co-
ordinates x, momenta p, longitudinal coordinates s, and
energy deviations d of macroparticles in the two bunches.
Typically, the initial displacements and momenta in one
bunch were set to zero while the other had some small ini-
tial offset. The offset value is not significant because all
interactions are linear in x. Stage II is sorting the particles
in each bunch so that the larger numbers i, j would label
the larger s, corresponding to the bunch tail. This allows
us to establish the correct interaction sequence and to cal-
culate the longitudinal coordinate of the interaction point
Dsij of particles i, j with respect to the reference at the
IP. Next, in stage III we unfold the bunches, i.e., we cal-
culate the particles’ betatron displacements at Dsij using
their initial momenta, as if there were no fields in the in-
teraction region:

x̃1,i � x1,i 2 p1,iDsij ,

x̃2,j � x2,j 1 p2,jDsij .

Stage IV gives the change in momenta due to the beam-
beam kick,

I

II

III

IV

V

VI

VII

Initial
conditions

Bunch unfolding
from IP

Longitudinal
ordering

Beam-beam kick

Longitudinal
folding to IP

Dipole
moment storage

Synchro - 

transformation

i,j=1..Np N turns

betatron

FIG. 2. Tracking process chart.

1Typically, the radial modes in the head-tail mode spectrum
are not important for the bunch length shorter than the wake
variation length, which is our case.
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Dp1,i � 2
2pj

Np
�x̃1,i 2 x̃2,j� ,

p̃1,i � p1,i 1 Dp1,i ,

Dp2,j � 2
2pj

Np
�x̃2,j 2 x̃1,i� ,

p̃2,j � p2,j 1 Dp2,j .

Here we assume that the bunches have equal intensities
and the kick does not change over the bunch length, which
implies that the bunch length is less than b�. Stage V
returns the particles to the reference point at the IP,

x1,i � x̃1,i 1 p̃1,iDsij ,

x2,j � x̃2,j 2 p̃2,jDsij .

Summation of the resulting displacements over i and j
gives the total dipole moments of each bunch to be stored in
stage VI. The one-turn iteration loop is closed with stage
VII, which performs the linear synchrobetatron transfor-
mation µ

x
p

∂0
1,i

�

µ
cosmb sinmb

2 sinmb cosmb

∂ µ
x
p

∂
1,i

,

µ
s
d

∂0
1,i

�

µ
cosms sinms

2 sinms cosms

∂ µ
s
d

∂
1,i

.

Here we use the normalized betatron coordinates x �
X�

p
b� and p � P

p
b�.

The betatron tune chromaticity, x, can be taken into
consideration in this stage by including it in the betatron
phase advance:

mb � 2p�nb 1 xd� .

B. Data postprocessing

The spectrum of coherent modes was obtained by apply-
ing the Fourier transform to the array of dipole moments
sampled on each turn. In the Fourier amplitudes, peaks
higher than a predefined value were defined as reliable
and their tune was evaluated. The interpolated fast-Fourier
transform with the Hanning data windowing [12] was used
to improve the tune determination accuracy.

In general, some synchrobetatron modes may show
exponential growth or decay, with their characteristic
times and respective increments or decrements, bringing
time-dependent amplitudes in the total dipole moment.
Our increment calculation method is based on the time
dependence of the Fourier peaks. Consider a sinusoidal
signal with an exponentially changing amplitude

S�t� � Ael�t01t� cosvt .

For small l, the Fourier amplitude of harmonic v is

AF � Ael�t01Tw�2� sinhlTw�2
lTw

,

024403-3
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where Tw is the time-window width. A Fourier transform
of two data windows with the same width, one with t0 � 0,
the other with t0 � T , gives the amplitudes AF�0� and
AF �T�. From these, the value of increment, l, can be
obtained:

l �
1
T

ln
AF�T�
AF�0�

.

This technique can also be applied in the case of mul-
tiple harmonics. Evaluation of l becomes difficult when
some of the modes are unstable, so that excessive growth
of their Fourier amplitudes can suppress contributions of
stable and damped modes. This can cause an error due to
noise contribution to the small amplitudes. Therefore, the
spectrum calculation in more than two windows is needed
to improve accuracy of the evaluation of the mode incre-
ments using the least squares method.

IV. SYNCHROBETATRON MODES OF THE
BEAM-BEAM SYSTEM

Figure 3 presents calculations of the mode spectrum
vs the beam-beam parameter for the head-on collision of
equal intensity bunches circulating with the same beta-
tron and synchrotron tunes. Dashed lines show the matrix
method results with N � 5; circles are the tracking data
for 50 particles per bunch. Three horizontal lines show the
nb 2 ns, nb , and nb 1 ns tune values. A good agree-
ment is seen up to j � 2ns, with only small differences
at higher bunch intensities. These differences are due to
a limited number of synchrobetatron modes considered in
the matrix model (m � 22, 21, 0, 11, 12), which is in-
sufficient to describe coupling with higher-order modes.
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FIG. 3. (Color) Synchrobetatron mode tunes vs j. Comparison of the circulant matrix model and tracking. Equal bunch intensities,
nb � 0.11, ns � 0.03, and the bunch length is 0.7b� .
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0,π
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IP IP

FIG. 4. Schematic view of the coherent synchrobetatron beam-
beam modes.

For identification of harmonics in Fig. 3 we introduced
a notation illustrated in Fig. 4. The first index in the nota-
tion labels the synchrotron wave number, i.e., the number
of dipole moment variations over the synchrotron phase.
The second index, s or p, is borrowed from the rigid
beam model and labels the coherent beam-beam eigen-
modes with even and odd symmetries between the two
colliding bunches, respectively. We can see that degen-
eracy of m s and m p modes (m fi 0) is removed by the
mode coupling when the mode tunes approach each other.

The same calculation for colliding bunches of unequal
intensity (j1�j2 � 0.5) is presented in Fig. 5, where more
modes seem to be exhibited simply because the intensity
asymmetry completely removes degeneracy from the mode
spectrum.

In perfect agreement with the theoretical model [10],
these calculations have shown that the mode tunes do not
intersect. Their repulsion is due to coupling of the synchro-
betatron modes via the collective beam-beam response.
There is no coherent instability in the whole range of j
024403-4
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FIG. 5. (Color) Synchrobetatron mode tunes vs j2. Comparison of the circulant matrix model and tracking. Unequal bunch intensi-
ties, j1�j2 � 0.5, nb � 0.11, ns � 0.03, and the bunch length is 0.7b� .
when neither mode reaches the tune of 0 or 0.5. Interac-
tion in this system is symmetrical, and the system is closed.
Oscillations in such systems are stable.

Since the VEPP-2M collider (BINP, Novosibirsk) [13]
has a negligible transverse impedance, we had an opportu-
nity to compare these simulation results with experimental
data. Vertical oscillations of the electron bunch were
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FIG. 6. (Color) Synchrobetatron mode tunes vs the beam-beam parameter j per one IP. Experimental data (circles) and simulation
(lines). VEPP-2M was operated with one e1 and one e2 bunch colliding at two IPs, nb � 0.101, ns � 0.0069, b� � 6 cm, and
the bunch length was 3.5 cm.
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excited with a short kicker pulse, and following coherent
oscillations of the two bunches were observed. Vertical
coordinates of the bunches were sampled by a fast analog-
to-digital converter at 8192 turns. The Fourier transform
of the collected data gave the coherent modes spec-
trum, where the proposed synchrobetatron modes of the
beam-beam system were experimentally detected, and their
024403-5
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spectrum was measured as a function of the beam-beam
parameter at different synchrotron tunes. Figure 6 shows
that our model provides an excellent agreement with
the experiment [14]. This agreement corroborates the
analytical and numerical models employed, and validates
their extension to the case where the transverse impedance
in the machine is not small.

V. IMPEDANCE

The action of the machine impedance is introduced in
the tracking code by adding the collective kick to each
bunch. The kick of the ith particle is then

Dpi �
i21X
j�1

Qxj ,

where, for simplicity, a constant wake model is used, which
is adequate for a short bunch. Generalization for any time
dependence of the transverse wakefield is straightforward.

This collective interaction makes the system non-
Hamiltonian and its behavior changes drastically: the
coherent instability of colliding bunches appears without
a threshold. Exponential growth of the mode amplitude
is characterized by the mode increment per turn, defined
in Sec. III B. Figure 7 shows the dependence of the
mode increments on j for the constant wake. A negative
increment means damping. The increments are linear in
impedance.

The betatron tune chromaticity, x, causing an additional
adjustable coupling of transverse and longitudinal motion,
is a common cure for this type of instability. Consideration
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FIG. 7. Synchrobetatron mode increments per turn vs j for combined action of the beam-beam interaction and machine impedance
(tracking). Equal bunch intensities, nb � 0.11, ns � 0.03, and the bunch length is 0.7b�. The constant wake, Q � 0.005, corre-
sponds to the m � 0 mode tuneshift of 23 3 1025 � 21023ns .
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of the chromaticity effect has shown that the low-order
synchrobetatron modes, m � 0, 21, either s or p, can be
damped, whereas other modes remain unstable and their
dependence on x is very complicated [10].

VI. LINAC-RING COLLISIONS

A special scheme of the colliding beams has been re-
cently proposed for experiments on electron interaction
with heavy ions: to collide the ion bunches circulating in a
storage ring with the electron bunches supplied by a linac.
This is called the linac-ring collision scheme.

In each collision particles of the electron bunch have
zero coordinates and momenta and the ion bunch preserves
memory about previous interactions. In the tracking algo-
rithm this is simply achieved by setting all xi and pi of one
bunch to zero on each turn. For the linac-ring scheme, the
matrix model can be modified by using matrix Mlc,

Mlc �

µ
1 0
0 0

∂
≠ M ,

instead of M2.
In the simulation we take equal beam-beam parame-

ters, j, in the electron and ion beams, and both collid-
ing bunches’ lengths are set equal to b�; in the ion ring
nb � 0.1, ns � 0.002, and the momentum deviation am-
plitude is assumed to be equal to ns, so that the ion ring
chromaticity, x, numerically coincides with the chromatic
phase.

In the linac-ring collision scheme the head-tail insta-
bility results from the betatron phase advance over the
024403-6



PRST-AB 4 SIMULATION OF THE HEAD-TAIL INSTABILITY OF … 024403 (2001)
0.01 0.02 0.03 0.04 0.05 0.06 0.07

-0.75

-0.50

-0.25

0

0.25

0.50

0.75

1

0
-1sy

nc
hr

o-
be

ta
tr

on
 m

od
e 

in
cr

em
en

ts

ξ

10 -3x

 0

m= +1

−1

m=

m=
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FIG. 9. Synchrobetatron mode increments per turn vs the chro-
maticity x with constant j � 0.01; other parameters are the
same as in Fig. 8.
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FIG. 10. Synchrobetatron mode tunes vs j for constant chro-
maticity x � 0.409; other parameters are the same as in Fig. 8.

beam-beam interaction length, but this effect can be ex-
actly compensated by the ion ring chromaticity. For zero
chromaticity some modes are unstable (Fig. 8), but it is
possible to stabilize all of them at a certain positive value of
x (Fig. 9). This value does not depend on the beam-beam
parameter j, so this is a perfect cure for the instability.
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as in Fig. 8.

When the phase advance over the bunch length is com-
pensated by the chromaticity, the 0 and 21 modes couple
as in the strong head-tail effect. The instability in this case
has a threshold up to which a normal operation is possible
(Figs. 10 and 11).

VII. CONCLUSIONS

Using the circulant matrix formalism and numerical
simulation we studied the coherent synchrobetatron mode
spectrum of colliding bunches of finite length for lin-
earized beam-beam interaction. In both the approaches, the
bunches are sliced into transversely rigid macroparticles.
However, the bunches are not longitudinally rigid, and we
take into account their deformation during the beam-beam
overlap.

For the case of pure beam-beam interaction of circu-
lating bunches, coherent oscillations always remain stable
unless some of the mode tunes reach a resonance. The
coherent synchrobetatron mode spectra predicted by both
models for this case of negligible transverse impedance
have been observed experimentally at the VEPP-2M col-
lider. The measured data are in good quantitative agree-
ment with our analytical and numerical models.

Calculations involving the machine impedance predict
a coherent beam-beam instability without a threshold.
Some, though not all, of the synchrobetatron modes can
be damped by optimizing the betatron tune chromaticity.
Since the models used the linearized beam-beam interac-
tion, their prediction of instability is not as conclusive as
the above prediction of stability.

The linac-ring collision examination has shown that a
head-tail instability of the chromatic type is possible in
such a beam-beam system without any impedance ele-
ments in the machine. By adjusting the ring chromaticity,
complete stabilization of the system is possible up to the
threshold of the strong head-tail instability, also caused by
the beam-beam interaction.
024403-7
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