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Analysis of shielding charged particle beams by thin conductors
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We present an analysis of shielding of electromagnetic fields excited by beams of charged particles
surrounded by thin conducting layers or metal stripes inside an external structure of finite length. The
ability of shielding by a layer thinner than the skin depth is explained and expressions for the impedance
are derived. A previous result showing preferential penetration through the shielding layer at the resonant
frequencies of the surrounding structure is verified and extended to include finite resistivity of the outer
structure. Integration over the spectrum of the beam bunch shows that penetration is (nearly) independent
of the quality factors of the resonances. The transition of these results to those for a geometry of infinite
length requires numerical evaluation.
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I. INTRODUCTION

The shielding of rf fields emanating from coaxial cables
was treated in the literature more than 50 years ago [1]. A
large number of publications followed afterwards, and an
entire journal issue was devoted to this subject [2]. It was
already known then that conducting layers of a thickness
less than the skin depth could reduce the outside field
strength sufficiently to avoid “cross talk” between adjacent
cables. Also, the wall penetration of rf fields excited by
charged particle beams has been analyzed in a number of
publications [3–5]. In most of these papers, rotationally
symmetric structures or concentric wire cages of infinite
extent were assumed for simplicity, as will also be done
here except for the wire cage.

The importance of the finite length of structures sur-
rounding a thin conducting shield has been recognized
when investigating the field penetration into the Large
Hadron Collider (LHC) kickers [6]. An analysis of such
a geometry was made recently [7] which showed that rf
fields will penetrate through a thin shielding layer prefer-
entially at the resonant frequencies of the cavity formed by
the surrounding structure. However, that analysis did not
include a finite resistivity of the structure material which
will be treated here.

In addition, we will also discuss the effects of shielding
by conducting stripes or wire cages, which are often pre-
ferred to a continuous metal layer in order to reduce eddy
current losses in rapid cycling synchrotrons or pulsed de-
vices such as kickers. The results of a number of bench
measurements on such structures have been published [6,8]
as well as recent measurements with beam [9].

II. SHIELDING BY A THIN CONDUCTING
CYLINDER

For the calculation of the longitudinal coupling
impedance, we take as source field a narrow ring of charge
Q with radius a traveling with velocity y � bc along the
1098-4402�01�4(2)�024402(7)$15.00
z axis inside a circular cylindrical screen of inside radius
b and thickness t surrounded by a concentric vacuum
chamber of radius d .

In the frequency domain with k � v�y, this corre-
sponds to a charge and current density given by

r�s��r , z� �
Q

2pay
d�r 2 a�e2jkz ,

J�s�
z �r,z� � yr�s��r, z� �

Q

2pa
d�r 2 a�e2jkz .

(2.1)

The (Fourier transforms of the) electromagnetic (EM) field
components generated by this source in free space outside
the beam, r $ a, are then given by

E�s�
z �r, z� � jvm0

QI0�na�
2pb2g2 K0�nr�e2jkz ,

Z0H
�s�
u �r, z� � 2vm0

QI0�na�
2pbg

K1�nr�e2jkz , (2.2)

E�s�
r �r, z� � 2vm0

QI0�na�
2pb2g

K1�nr�e2jkz ,

where m0 is the free space permeability, k0 � v�c � bk,
g � �1 2 b2�21�2 is the relativistic energy factor, n �
k�g is the radial propagation constant in vacuum, and In,
Kn are modified Bessel functions of the first and second
kind, order n, regular at r � 0 and r � `, respectively.

The fields given by Eqs. (2.2) can be thought of as a
wave moving in the outward radial direction. As discussed
in the preceding section, we investigate a thin conducting
cylinder, extending from r � b to r � b 1 t, which is
used to isolate the beam and the region r . b 1 t from
one another. We shall assume that t ø b and d ø b,
where d �

p
2��vms� is the skin depth in a metal with

conductivity s and permeability m. At the moment, we
make no assumptions about the relative size of t and d.

Because of the presence of the conducting layer, the EM
field components in Eqs. (2.2) must be revised to include
© 2001 The American Physical Society 024402-1



PRST-AB 4 ROBERT GLUCKSTERN AND BRUNO ZOTTER 024402 (2001)
the reflected wave. In the region a , r # b, the compo-
nents required for matching are

Ez�r , z� � A�K0�nr� 1 aI0�nr��e2jkz ,

Z0Hu�r, z� � 2jbgA�K1�nr� 2 aI1�nr��e2jkz ,
(2.3)

where a is a not yet determined reflection coefficient, and

A � jv
m0QI0�na�
2pb2g2 . (2.4)

The radially outgoing wave for r $ �b 1 t� is

Ez�r, z� � AT K0�nr�e2jkz ,

Z0Hu�r, z� � 2jbgAT K1�nr�e2jkz ,
(2.5)

where T is a transmission coefficient. For b # r #

b 1 t, inside the metal with a conductivity s ¿ v´0,
the radial propagation constant becomes approximately
nc � �1 1 j��d and, hence, jncbj ¿ 1. With the large
argument approximations for modified Bessel functions
and Hu � �s�n2

c� �≠Ez�≠r�, we get

Ez�r, z� � A�Be�11j� �r2b��d 1 Ce2�11j� �r2b��d�e2jkz ,

Hu�r, z� �
sdA
1 1 j

�Be�11j� �r2b��d (2.6)

2 Ce2�11j� �r2b��d�e2jkz,

when t ø b. The coefficients a, T and the amplitude
factors B, C can be determined by requiring continuity of
Ez and Hu at r � b and r � b 1 t. After considerable
algebra the transmission coefficient is found to be

T �
1

cosh��1 1 j�t�d� 1 D sinh��1 1 j�t�d�

�
1

1 1 �1 1 j�Dt�d
, (2.7)

where the approximation is valid for t ø d. With the
abbreviation

j � 2�1 1 j�
jbg

Z0sd
�

1 2 j

2
b2gkd , (2.8)

the parameter D can be written as

D � 2
jI1K1 1 I0K0�j

I1K0 1 I0K1
, (2.9)

where In � In�nb�, while Kn � Kn�n�b 1 t��. Because
t ø b, all Bessel functions may be evaluated at nb.
Then we can use the Wronskian [10] K0�x�I1�x� 1

I0�x�K1�x� � 1�x to simplify the denominator of
Eq. (2.9):

D � 2nb�jI1K1 1 I0K0�j� � 2nb

∑
j

2
2

ln�nb�
j

∏
.

(2.10)
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Now we approximate T for kb ø g; i.e., for not too
high frequencies or for ultrarelativistic beam energies,
Eq. (2.7) becomes

T �
1

1 2
b2k2bt

2 1
2j

b2g2
bt

d2 ln kb
g

. (2.11)

The conducting shell shields the beam from the region
outside when the transmission coefficient is small,
jT j ø 1. We thus get the shielding condition

t

d
¿

2d

b

∑
�bkd�4 1

µ
2

bg

∂4

ln2�kb�g�
∏21�2

. (2.12)

For kd ø 2
p

ln�nb��b2g, this condition simplifies to

t

d
¿

b2g2

2 ln�kb�g�
d

b
. (2.13)

On the other hand, kd . 2
p

ln�nb��g for large g, and the
condition becomes t ¿ 2��k2

0b�, independent of the skin
depth. Depending on the values of bg and kb, shield-
ing can then be achieved with a layer whose thickness
is smaller than the skin depth. The ability of a con-
ducting layer thin compared to the skin depth to shield
electromagnetic fields has been known for many years
[1,2]. This astonishing feature can be explained by the fact
that part of the field is reflected by the conducting layer,
while the transmitted part undergoes a succession of re-
flections from both interfaces at r � b and r � b 1 t.
When t ! 0, the accumulated result is complete transmis-
sion. However, for finite t, the successive reflections are
shifted in phase and damped so as to lead to the result in
Eq. (2.11).

A major simplification of the analysis can be made when
t ø d. Then the tangential electric field in the conduct-
ing layer can be considered to be constant in r, implying
a current density sEz within the conductor. The discon-
tinuity in the tangential magnetic field through the layer is
then given by

dHu � tsEz . (2.14)

In this limit, which is used in the rest of this paper, it is
not necessary to consider the variation of Ez or the current
density within the conductor.

III. SPACE CHARGE AND RESISTIVE WALL
IMPEDANCES

We now consider an outer beam pipe of radius d, con-
ductivity sd, and skin depth dd � �2�vmsd�1�2, shielded
by a cylindrical layer at r � b of conductivity sb, skin
depth db � �2�vmsb�1�2, and thickness t ø d at r � b
(see Fig. 1). The source fields in Eqs. (2.2) are modified
as in Eqs. (2.3) to include both the effects of the conduct-
ing layer and the beam pipe. With the still undetermined
024402-2
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τ
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FIG. 1. Geometry of a screen in a circular cylindrical vacuum
chamber.

reflection coefficient a they can be written as

Ez�r , z� � A�K0�nr� 1 aI0�nr��e2jkz,

Z0Hu�r, z� � 2jbgA�K1�nr� 2 aI1�nr��e2jkz ,
(3.1)

for r , b. With the undetermined transmission coefficient
p one can write the fields for r . b,

Ez�r, z� � pA�K0�nr� 1 adI0�nr��e2jkz,

Z0Hu�r, z� � 2jbgpA�K1�nr� 2 adI1�nr��e2jkz .
(3.2)

The second reflection coefficient ad at the outer layer
r � d can be obtained directly by applying the “Leon-
tovich boundary condition” Ez � 2

p
jvm�s Hu there.

This yields

ad � 2
K0�nd� 1 rK1�nd�
I0�nd� 2 rI1�nd�

� 2
K0�nd�
I0�nd�

2 jd , (3.3)

where r � �1 2 j�b2gkd�2. For jrj ø 1, one gets ap-
proximately

jd �
1 2 j

2
b2g2

I2
0 �nd�

dd

d
. (3.4)

We require Ez�r, z� to be continuous at r � b, which
yields one condition for a and p:

K0�nb� 1 aI0�nb� � p�K0�nb� 1 adI0�nb�� . (3.5)

The change in Hu at r � b must satisfy Eq. (2.4), leading
to the second condition for a and p:

p�adI1�nb� 2 K1�nb�� 2 �aI1�nb� 2 K1�nb��

�
h

nb
�K0�nb� 1 aI0�nb�� , (3.6)
024402-3
where

h �
2jtb

b2g2d
2
b

. (3.7)

The longitudinal impedance is usually defined as the
integral over (the Fourier transform of) the axial electric
field component along the axis r � 0. When it is obtained
by integrating at the annular radius r � a, this will only
suppress the constant term of unity in the g factor g �
1 1 2 ln�b�a�. This term actually reduces to 1�2 if one
correctly averages over the beam cross section. Ignoring
these small differences, the impedance can be written as

Zk�v� � 2
1
Q

Z `

2`
dz Ez�a, z�ejkz . (3.8)

Solving Eqs. (3.5) and (3.6) for a and p and assuming
k0d ø bg (low frequency and/or high g), we thus find,
for the impedance divided by the azimuthal mode number
n � v�v0,

Zk�v�
nZ0

� 2
j

bg2

∑
ln
b
a

1
ln�d�b� 2 jd

1 2 h�ln�d�b� 2 jd�

∏
.

(3.9)

The impedance Zk�n, computed without low-frequency
approximations, is shown in Fig. 2. In the absence of a
shielding layer �h � 0�, the impedance in Eq. (3.9) re-
duces to the standard form of space charge (SC) plus resis-
tive wall (RW) impedance. The dependence on the beam
pipe radius and conductivity becomes negligible when

jhj jln�d�b� 2 jd j ¿ 1 , (3.10)

in which limit Zk�v� � ZSC
k �v� 1 ZRW

k �v�, with

ZSC
k �v�
nZ0

� 2
j

bg2
ln
b
a

(3.11)

and

ZRW
k �v� � 2

bd
2
bnZ0

2tb
�

bZ0

v0mbtsb

�
2pR

2pbtsb
� Rshield . (3.12)
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FIG. 2. (Color) Longitudinal impedance calculated with
Eq. (3.9) (computed by MATHEMATICA [11]).
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The right-hand side of Eq. (3.12) is simply the resistance
of the conducting shield in the axial direction. We shall
later see that the result �ZRW

k �v� � Rshield� is also true
for a shield of finite length.

For dd ø d�b2g2 or jjdj ø ln�d�b�, the shielding
condition Eq. (3.10) can be written as

t

db
¿

b2g2

2 ln�d�b�
db

b
, (3.13)

corresponding to the shielding of the space charge fields.
For high energy machines, however, usually dd ¿

d�b2g2 or jjdj ¿ ln�d�b�, the condition becomes

t

db
¿

db

b
d
dd

, (3.14)

corresponding to the shielding of the resistive wall
impedance.

IV. SHIELDING BY A WIRE CAGE

In the previous section, we considered the shielding ca-
pability of a thin conducting layer at r � b. However,
in order to reduce eddy currents due to a rapidly chang-
ing magnetic field, one would prefer to shield with N
thin wires of conductivity s, radius rw , located at �rp
024402-4
(rp � b, up � 2pp�N ), where p goes from 0 to N 2 1
(see Fig. 3).

In the absence of any shielding, the EM fields inside a
conducting vacuum chamber at r � d can be written, for
a # r # d, as

Ez�r, z� � AG0�nr�e2jkz ,

Z0Hu�r, z� � jbgAG0
0�nr�e2jkz,

(4.1)

where

G0�nr� � K0�nr� 1 adI0�nr� ,

G0
0�nr� � 2K1�nr� 1 adI1�nr� ,

(4.2)

with ad chosen to satisfy the boundary condition at the
beam pipe radius r � d; see Eq. (3.3).

We now add the fields which are due to a current Iw
in each of the N wires. For this we replace G0�nr� in
Eq. (4.1) by

G0�nr� 1 I
N21X
p�0

K0�nj �r 2 �rp j� , (4.3)

where I � QI0�na� is a dimensionless current. The elec-
tric field corresponding to the term proportional to I in
Eq. (4.2) does not yet satisfy the required boundary con-
dition at r � d. In order to do this, we use the addition
theorem [12]
K0�nj�r 2 �rpj� �

( P`
n�2` In�nr �Kn�nb� cosn

°
u 2 up

¢
, for r , b ,P`

n�2` Kn�nr�In�nb� cosn
°
u 2 up

¢
, for r . b .

(4.4)
We may replace Kn�nr� in Eq. (4.4) by Gn�nr�, where

Gn�nr� � Kn�nr� 1 adnIn�nr� . (4.5)

Here, ad in Eq. (3.3) is generalized for the nth harmonic
to

adn � 2
Kn�nd�
In�nd�

2 jdn , (4.6)

p

d

b

r

θ

x

w

p

r

FIG. 3. Geometry of a wire cage.
with

jdn � �1 2 j�
b2g2

2I2
n�nd�

dd

d
. (4.7)

We furthermore require that the wire current be consis-
tent with the electric field in each wire, leading to

Iw � pr2
wsEz�b, z,up � . (4.8)

After considerable algebra, assuming kd ø bg as for the
cylindrical shell, we obtain the impedance in the form
analogous to that of Eq. (3.9):

Zk�v�
nZ0

� 2
j

bg2

∑
ln
b
a

1
�jd 2 lnd�b� �1 2 D�

hw�lnd�b 2 jd� 2 �1 2 D�

∏
.

(4.9)

Here,

hw �
jNr2

w

b2g2d
2
b

,

D �
jr2

w

b2g2d
2
d

ln

∑
b

Nrw

µ
1 2

b2N

d2N

∂∏
.

(4.10)

For rw ø bgdd, we can neglect D in Eq. (4.9), provided
N ¿ 1 and d 2 b . b�N , i.e., when the radial extent
beyond the wires is larger than the spacing between wires.
024402-4
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In that case the condition is fulfilled as the harmonics
due to the wire periodicity decay rapidly with jr 2 bj.
Furthermore,

hw �
j
p

pNr2
w

b2g2d2
�

j
p

Awires

b2g2d2
(4.11)

and

h �
j2tb

b2g2d2
�

j
p

Ashell

b2g2d2
, (4.12)

allowing us to reach the important conclusion that only the
net area of conductors counts for the penetration of fields
in a regular array of wires.

The same result is valid for narrow conducting stripes on
a thin ceramic cylinder, which is often the most practical
implementation of shielding.

V. CAVITY OF FINITE LENGTH

In analogy to the analysis without a shield [13], we write
an integral equation for the longitudinal electric field Ez

in a cavity of length g and of outer radius d, coaxial with
an infinite beam pipe of radius b (see Fig. 4):

Ez �r, z� � A

∑
K0�nr� 2

K0�nb�
I0�nb�

I0�nr�
∏
e2jkz

1
Z `

2`
dq e2jqzA�q�

J0�kr�
J0�kb�

,

r # b , (5.1)

where the propagation constant is

k2 � k2 2 q2. (5.2)

The term proportional to I0�nr� is included so that the
first term in brackets vanishes at r � b. Then the term
including A�q� has a nonvanishing value only for 0 ,

z , g, where Ez�b, z� � f�z� is different from zero.
The integration contour in the q plane is taken above

(below) the poles where J0�kb� � 0 on the positive (nega-
tive) real q axis to ensure outgoing waves (generated by the
cavity) in the beam pipe. A Fourier transform of Eq. (5.1)
at r � b leads to

A�q� �
1

2p

Z g

0
dz0 f�z0�ejqz

0

. (5.3)

Use of Maxwell’s equations then leads to

Z0Hu �b, z� � 2
jbgA

nbI0�nb�
ejkz

2
jk0b
2p

Z g

0
dz0 f�z0�Kp�z 2 z0� , (5.4)

where the pipe kernel Kp�z � can be written as a sum over
the zeros of J0�ps�:

Kp�z � �
2pj
b

X̀
s�1

ejbs jz j�b

bs
. (5.5)
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FIG. 4. Cavity of finite length.

Here,

bs � �k2
0b

2 2 p2
s �1�2 � 2j�p2

s 2 k2
0b

2�1�2 � 2jbs .
(5.6)

We now write the magnetic field in the cavity region
b 1 t , r # d in terms of f�z�, which is the electric
field at r � b, in the presence of a conducting layer at
r � b of thickness t ø d. Thus

Z0Hu�b 1 t, z� � 2
jk0b
2p

Z g

0
dz0 f�z0�Kc�z, z0� , (5.7)

where the cavity kernel Kc�z, z0� is given by

Kc�z, z0� � 4p2
X

�

h��z�h��z0�
k2

0 2 k2
�

, (5.8)

where k� � v��bc and h��z� is the normalized magnetic
field at r � b 1 t for the mode � in the annular cavity
occupying b 1 t # r # d, 0 , z , g.

We now require that the discontinuity in Hu across the
thin shield satisfy Eq. (2.14). This leads to the integral
equationZ g

0
dz0 F�z0� �Kp �z 2 z0� 1 Kc�z, z0��

� e2jkz 2
4pjt
k2d2b

F�z� , (5.9)

where

f�z� � 2
jQZ0

k0b2I0�nb�
F�z� . (5.10)

Once Eq. (5.9) is solved for F�z�, we obtain the cavity
impedance

Zcav
k �v�
Z0

�
j

k0b2

Z g

0
dz F�z�ejkz , (5.11)

when we confine our attention to low frequencies where
k0 ø bg�b.

The cavity kernels can be evaluated approximately for
the case k0g ø b and k�d 2 b� ø b. Then they are
independent of z and z0 and can be written as [14]
024402-5
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Kc 1 Kp �
2p

k2bg�d 2 b�
1

2pj
b

k0b�pX
s�1

1
bs

2
2p

b

b�pgX
s�kb�p

1
bs

. (5.12)

One can then solve Eq. (5.9) to obtain the cavity admittance

Ycav
k �v� �

2pk0b
Z0

∑
2j

k2
0g�d 2 b�

1

k0b�pX
s�1

1
bs

1

b�pgX
s�k0b�p

j
bs

1
2t

k2
0gd2

∏
. (5.13)
The second and third terms in the brackets come from
the pipe kernel. They are independent of the cavity pa-
rameters, except for a weak logarithmic dependence on g.
The condition for effective shielding is nondependence on
d 2 b which becomes

t

d
¿

d

2�d 2 b�
. (5.14)

At low frequencies, the impedance (or admittance) is then
dominated by the resistance of the shield of length g,
namely,

Zcav
k �v� � Rshield �

g

2psbt
. (5.15)

If one chooses to shield with wires of finite length,
one can accomplish this using N wires whose total cross
sectional area is equal to the cross sectional area of a
continuous layer

Npr2
w � 2pbt , (5.16)

as shown in Sec. III. In this case, N must be large and the
spacing of the wires must be small compared to d 2 b to
achieve effective shielding.

It has been pointed out [15] that other cavity modes will
enter into the cavity kernel at higher frequencies, requiring
additional contributions to the first term in the brackets of
Eq. (5.13), which will be proportional to �v2 2 v2

m�21

for a cavity mode with frequency vm�2p. Therefore,
the conducting layer cannot shield the cavity when v is
close to vm. However, for a realistic beam bunch, there
is a spread of frequencies. Then only the average value
of �v2 2 v2

m�1 1 1�Q��21 is important, where Q is the
quality factor of the resonance. For Q ¿ 1, the integral
becomes independent of Q. Then we obtain the shielding
condition

t

d
¿

gd

�d 2 b�Lbunch
, (5.17)

where Lbunch is the length of the beam bunch.
As g increases, Eq. (5.17) places an ever increasing

lower bound on t�d, in disagreement with our predic-
tion for infinite g in Eqs. (3.13) and (3.14). However, in
that case we would need to solve the integral equation,
Eq. (5.9), for F�z� when g is large. We have not been able
to do so analytically, but clearly the solution in Eq. (5.13),
which applies to the case g ø b�k, is no longer expected
to be valid.

We also expect Eq. (5.17) to be valid for screening by
N wires. In this case we write it in the form
024402-6
Awires ¿
2pbgd2

�d 2 b�Lbunch
, (5.18)

where we assume thatN ¿ 1 and that the spacing between
wires is small compared with d 2 b. In addition, these
general principles should also apply to the screening of
holes by conducting wires.

VI. SHIELDING OF TRANSVERSE FIELDS

It is possible to repeat the foregoing analysis in order to
explore shielding of transverse fields. The general discus-
sion of reflection and transmission coefficients in Sec. II
also applies to the transverse case and should lead to the
same condition for effective shielding as in Eq. (2.12). In
fact, a detailed analysis of shielding the transverse space
charge impedance for the infinite, perfectly conducting
beam pipe confirms this. Unfortunately, the analysis is
made more complicated by the need to consider both TE
and TM modes in the beam pipe. We plan to present a more
detailed discussion of shielding the transverse impedance
by a thin conducting layer or a wire cage of finite conduc-
tivity in a future paper.

VII. CONCLUSIONS

Shielding of electromagnetic fields by thin conducting
layers or thin wires inside a vacuum chamber of finite re-
sistivity has been analyzed for both cases of infinite or
finite lengths of the layer. Approximate conditions for ef-
fective shielding as well as expressions for the longitudi-
nal impedance were derived. It was found that the analysis
could be simplified considerably by assuming that the axial
electric field is constant across the thin conducting layer,
while the magnetic field changes by an amount equal to
the current flowing through it.

For shields of finite length, the fields are given by an
integral equation, and an approximate expression for the
admittance is given which is considerably simpler than the
corresponding impedance. However, the transition from
the finite to the infinite case could not be done analytically
and requires numerical evaluation of the integral equation
under conditions when the simplifying assumptions do not
apply.

The shielding effect of a layer much thinner than the skin
depth is often puzzling; it can be explained by multiple
reflections at both surfaces of the layer, taking into account
damping and phase shifting of the radial waves inside of
it. For the case of conducting wires or strips, it has been
024402-6
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found that only the total area is important for shielding,
as long as the distance from the shield to the outer wall is
large compared to the distance between wires.
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