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A highly accurate self-consistent particle code to simulate the beam-beam collision in e1e2 storage
rings has been developed. It adopts a method of solving the Poisson equation with an open boundary.
The method consists of two steps: assigning the potential on a finite boundary using Green’s function and
then solving the potential inside the boundary with a fast Poisson solver. Since the solution of Poisson’s
equation is unique, our solution is exactly the same as the one obtained by simply using Green’s function.
The method allows us to select a much smaller region of mesh and therefore increase the resolution of
the solver. The better resolution makes more accurate the calculation of the dynamics in the core of the
beams. The luminosity simulated with this method agrees quantitatively with the measurement for the
PEP-II B Factory ring in the linear and nonlinear beam current regimes, demonstrating its predictive
capability in detail.
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I. INTRODUCTION

The beam-beam interaction is one of the most impor-
tant limiting factors determining the luminosity of storage
colliders. It has been studied extensively by theoretical
analysis [1], experimental measurements [2], and computer
simulations [3]. Historically, due to the complexity of
the interaction, many approximations, such as strong-weak
[4] or soft-Gaussian [5], have been introduced in order to
simulate the interaction in a reasonable computing time.
The self-consistent simulation of the beam-beam inter-
action by solving the Poisson equation with a boundary
condition has been proposed to investigate first the round
beams [6] and then the flat beams [7]. To enhance the accu-
racy and reduce the computational overhead, an algorithm
(and a code) of the so-called df method that can handle
strong-strong interactions has been introduced [8]. An-
other self-consistent approach to the beam-beam interac-
tion is to use Green’s function directly or indirectly [9,10].

In the present paper we will develop a method that
takes advantages from both self-consistent approaches: a
smaller region of mesh from the method of using Green’s
function and a faster solver for the interior. In order to
develop a highly accurate predictive code at the luminos-
ity saturation region, it is necessary to have a fully self-
consistent treatment of the field-particle interaction at
collision. Since we are interested in simulating the asym-
metric e1e2 storage collider PEP-II [11], which needs to
maximize the luminosity and thus the beam current, it is
even more crucial that the beam-beam interaction in the
large current regime be treated accurately.

In a self-consistent simulation of the beam-beam inter-
action in storage rings, the beam distributions have to be
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evolved dynamically during collision with the opposing
beam together with the propagation in the rings. Dur-
ing collision, the beam distributions are used at each time
sequence to compute the force that acts on the opposing
beam.

Since positrons and electrons are ultrarelativistic par-
ticles in high-energy storage rings, the beam-beam force
is transverse and acts only on the opposing beam. Hence,
given a beam distribution, we can divide the distribution
longitudinally into several slices and then solve for the
two-dimensional force for each slice. Self-consistency is
achieved by introducing many-body particles in the field
that in turn constitute charge current, the strategy of
the particle-in-cell (PIC) procedure (see, for example,
Ref. [12]). In this paper, for simplicity, we use only
a single longitudinal slice for a bunch, ignoring any
beam-beam effects encompassing over the length of the
bunch.

II. METHOD

In modern colliders, beams are focused strongly at the
interaction point to achieve high luminosity. As a result,
the transverse dimension of the beam is much smaller than
the dimension of the beam pipe at the collision point.
Therefore, the open boundary condition is a good approxi-
mation for calculating the transverse beam-beam force.

A. Green’s function

Given a charge density rc�x, y�, which is normalized to
the total charge
© 2001 The American Physical Society 011001-1
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Z
dx dy rc�x, y� � Ne , (2.1)

where N is the total number of particles, the electric po-
tential f�x,y� satisfies the Poisson equationµ

≠2

≠x2 1
≠2

≠y2

∂
f�x,y� � 22prc�x, y� , (2.2)

with x and y being the transverse coordinates. The solution
of the Poisson equation can be expressed as

f�x, y� �
Z

dx0 dy0 G�x 2 x0, y 2 y0�rc�x0, y0� , (2.3)

where G is Green’s function which satisfies the equationµ
≠2

≠x2
1

≠2

≠y2

∂
G�x 2 x0, y 2 y0�

� 22pd�x 2 x0�d�y 2 y0� . (2.4)

In the case of open boundary condition, namely the bound-
ary is far away so that its contribution to the potential can
be ignored, one has the well-known explicit solution for
Green’s function:

G�x 2 x0, y 2 y0� � 2
1
2

ln��x 2 x0�2 1 �y 2 y0�2� .

(2.5)

This explicit solution can be used directly to compute the
potential. The main problem of this approach is that it is
slow to calculate the logarithm and the number of com-
putations is proportional to the square of the number of
macroparticles N2

p . One can reduce Np by introducing a
two-dimensional mesh to smooth out the charge distribu-
tion [9]. Or to further improve the computing speed, one
can map the solution onto the space of spectrum by the
fast Fourier transformation (FFT) and then calculate the
potential [9,10].

B. Reducing the region of mesh

Another alternative approach is to solve the Poisson
equation with a boundary condition [7], because the region
(20 mm 3 450 mm for PEP-II) occupied by the beam is
much smaller than the boundary defined by the beam pipe
(2 cm radius) at the collision point. In order to achieve
required resolution, a few mesh points per s of the beam
are needed, otherwise the size of mesh is too large for nu-
merical computation.

However, it is unnecessary to cover the entire area with
mesh inside the beam pipe since the area is mostly empty.
We chose a smaller and finite area of the mesh, which is
large enough to cover the whole beam, and, by carefully
selecting the potential on the boundary, we can obtain the
accurate solution inside the boundary.

We denote by f1 the solution (2.3) of the Poisson equa-
tion. Let f2 be the solution obtained by solving the
Poisson equation in a two-dimensional area S with the
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potential prescribed on a closed one-dimensional L bound-
ing the area S,

f2�x,y� �
Z

S
dx0 dy0 G�x 2 x0, y 2 y0�rc�x0, y0� ,

(2.6)

where �x, y� [ L. By definition, we have f1 � f2 on the
boundary L. Let U � f1 2 f2 and use the first identity
of Green’s theorem [13] in two dimensions,Z

S
�U=2U 1 �=U�2� dx dy �

I
L
U

≠U
≠n

dl , (2.7)

where dl is a line element of L with a unit outward normal
n. Since U � 0 on L and =2U � 0 inside L, we haveZ

S
�=U�2 dx dy � 0 , (2.8)

implying that U is a constant inside L. We can set U � 0,
which is consistent with the value on the boundary. Hence,
f1 � f2. The two solutions are identical.

III. FIELD SOLVER

We adopt the PIC technique to calculate the fields
induced by the charge (and current) of the beams self-
consistently. The charge distribution of a beam is rep-
resented by macroparticles. These macroparticles are
treated as a single electron or positron dynamically. In
order to compute the field acting on the particles of the
opposing beam, we first deposit their charges onto the grid
points of a two-dimensional rectangular mesh. We denote
by Hx the horizontal distance between two adjacent grid
points and by Hy the distance in vertical direction.

A. Charge assignment

We chose the method of the triangular-shaped cloud [14]
as our scheme for the charge assignment onto the grid.
On a two-dimensional grid, associated with each macro-
particle, nine nearest points are assigned with nonvanishing
weights as illustrated in Fig. 1. We use “0” to denote the
first, “1” as the second, and “2” as the third nearest lines.

The weights are quadratic polynomials of the fractional
distance, rx � dx�Hx , to the nearest line

w0
x �

3
4

2 r2
x ,

w1
x �

1
2

µ
1
4

1 rx 1 r2
x

∂
, (3.1)

w2
x �

1
2

µ
1
4

2 rx 1 r2
x

∂
.

The coefficients are chosen such that the transition at the
middle of the grid is continuous and smooth, and w0

x 1

w1
x 1 w2

x � 1, which is required by the conservation of
charge. In order to retain these properties, the weights
of the two-dimensional grid are simply a product of two
011001-2
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FIG. 1. (Color) Scheme of charge assignment.

one-dimensional weights. For example, w00 � w0
xw

0
y or

w12 � w1
x w2

y .

B. Poisson solver

It is crucial to solve the Poisson equation fast enough
(within a second on a computer workstation) for the beam-
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beam simulation, because the radiation damping time is
about 5000 turns and several damping times are needed to
reach an equilibrium distribution. For the reason of the
computing speed, we follow Krishnagopal [7] and choose
the method of cyclic reduction and FFT [15]. A five-
point difference scheme is used to approximate the two-
dimensional Laplacian operator

fi21,j 1 fi11,j 2 2fi,j

H2
x

1
fi,j21 1 fi,j11 2 2fi,j

H2
y

� 22prci,j , (3.2)

where i and j are the horizontal and vertical indices that
label the grid points on the mesh.

Truncation errors are of the order of H2
x and H2

y . It is
worthwhile to mention that, if we use the same number
of mesh points per s in both transverse directions in the
case of beam aspect ratio 30:1, the truncation errors in the
horizontal plane are dominant. To minimize the errors in
our simulation, we select 3 times more mesh points per s

in the horizontal direction compared to the vertical one.

C. Field

The field �E � 2=f is computed on the two-
dimensional grid, using a six-point difference scheme
Exi,j � 2
1

12Hx
��fi11,j11 2 fi21,j11� 1 4�fi11,j 2 fi21,j� 1 �fi11,j21 2 fi21,j21�� , (3.3)

Eyi,j � 2
1

12Hy
��fi11,j11 2 fi11,j21� 1 4�fi,j11 2 fi,j21� 1 �fi21,j11 2 fi21,j21�� . (3.4)
The field off the grid is computed with the same smooth-
ing scheme used in the charge assignment to ensure the
conservation of momentum. The fields Ex and Ey are in-
terpolated between the grid points. They are calculated
by using the weighted summation of the fields at the nine
nearest points with exactly the same weights used as the
charge is assigned.

IV. PARTICLE TRACKING

The motion of a particle is described by its canonical
coordinates

zT �
°
x,Px , y, Py

¢
, (4.1)

where Px and Py are particle momenta normalized by the
design momentum p0.
A. One-turn map

When synchrotron radiation is turned off, a matrix is
used to describe the linear motion in the lattice

zn11 � Mzn , (4.2)

where M is a 4 3 4 symplectic matrix which can be parti-
tioned into blocks of 2 3 2 matrices when linear coupling
is ignored,

M �

µ
Mx 0
0 My

∂
. (4.3)

Here Mx and My are 2 3 2 symplectic matrices. The ma-
trix Mx is expressed with the Courant-Snyder parameters
bx, ax, and gx at the collision point,
Mx �

µ
cos�2pnx� 1 ax sin�2pnx� bx sin�2pnx�

2gx sin�2pnx� cos�2pnx� 2 ax sin�2pnx�

∂
, (4.4)

where nx is the horizontal tune. A similar expression is applied in the vertical plane.
011001-3
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B. Damping and synchrotron radiation

Following Hirata [16], we apply the radiation damp-
ing and quantum excitation in the normalized coordinates,
since it is easily generalized to include linear coupling.
The motion of a particle in the normalized coordinates is
described by a rotation matrix

Rx �

µ
cos�2pnx� sin�2pnx�

2 sin�2pnx� cos�2pnx�

∂
, (4.5)

which is obtained by performing the similarity transforma-
tion

Rx � A21
x MxAx , (4.6)

where

Ax �

√ p
bx 0

2
axp
bx

1p
bx

!
,

A21
x �

√ 1p
bx

0
axp
bx

p
bx

!
.

(4.7)

When synchrotron radiation is switched on, we simply
replace the rotation matrix Rx with the following map in
the normalized coordinates x̄ and P̄x,µ

x
Px

∂
� e21�txRx

µ
x
Px

∂
1

q
ex�1 2 e22�tx �

µ
hx

hPx

∂
,

(4.8)

where hx̄ and hp̄x are Gaussian random variables normal-
ized to unity, tx is the damping time in units of the number
of turns, and ex is the equilibrium emittance. In the verti-
cal plane, a similar map is applied.
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C. Beam-beam kick

Assuming particles are ultrarelativistic and the collision
is head-on, the kick on a particle by the opposing beam is
given by the Lorenz force

dPx � 2
2e
E0

Ex , (4.9)

dPy � 2
2e
E0

Ey , (4.10)

where Ex and Ey are the horizontal and vertical compo-
nents of the electric field evaluated at the position of the
particle. They are computed with the Poisson solver as
outlined in the previous section each time two slices of the
beam pass each other. Half of the transverse force is the
magnetic force due to the beam moving at the speed of
light. The energy of the particle E0 � cp0, appearing in
the denominator of the above expressions, comes from the
normalization of the canonical momenta Px and Py and
the use of the s coordinate s � ct as the “time” variable.

A typical beam-beam kick experienced by a particle near
the axis is shown in Fig. 2 with the PEP-II parameters,
which are tabulated in the next section. As expected
based on the derivation in Sec. II B, the kick that resulted
from solving the Poisson equation with the inhomogeneous
boundary condition agrees well with the analytic solution.
In addition, the agreement demonstrates that the scheme
of the charge deposition works well, the mesh is dense
enough, and the number of macroparticles is large enough.

The number of macroparticles used to represent the dis-
tribution of the beam is 10 240. The area of the mesh
is 8sx 3 24sy , and there are 15 grid points per sx and
five per sy . There are about 15 macroparticles per cell
within 3s of the beam. These parameters are chosen to
FIG. 2. (Color) The beam-beam kick by a flat Gaussian beam with aspect ratio 30:1 near the x and y axes. The dash-dotted curve
is the case when f � 0 is assigned as the boundary condition. The “3” is the kick when the inhomogeneous boundary condition
is used. The solid curve is the kick produced by the Erskine-Bassetti formula [17].
011001-4
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minimize truncation errors and maximize resolution. The
256 3 256 mesh is also the maximum allowed by a com-
puter workstation to complete a typical job within a rea-
sonable time.

The discrepancy between the solution with the homo-
geneous boundary condition f � 0 and the analytic one
worsens as the beam aspect ratio becomes larger because
the actual change of the potential on the horizontal bound-
aries becomes larger.

V. APPLICATION TO PEP-II

An object-oriented C++ class library has been written to
simulate the beam-beam interaction using the method out-
lined in the previous sections. In the library, the beam and
the Poisson solver are all independent objects that can be
constructed by the user. For example, there is no limita-
tion on how many objects of the beam are allowed in the
simulation, and the beams can have different parameters
as an instance of the beam class. These features provide
us with great flexibility to study various phenomena of the
beam-beam interaction.

We will carry out the simulation of beam-beam interac-
tion with the current operating parameters of the PEP-II so
that the results of the simulation can be compared with the
known experimental observations. As a goal of this study,
after a proper benchmarking of the code against the experi-
ment, we shall be able to make predictions on parameter
dependence and show how to improve the luminosity per-
formance of the collider.

A. PEP-II operating parameters

The parameters used in the simulation are tabulated in
Table I. The vertical b�

y at the interaction point (IP) is
lowered to 1.25 cm [18] from the design value 1.5 cm [11].
The horizontal emittance 24 nm rad in the low energy ring
(LER) is one-half of the design value 48 nm rad because
the wiggler has been turned off to increase the luminosity.
The damping time, 9740 turns, in the LER is a factor of 2
larger than the one in the high energy ring (HER) because
of the change of the wigglers made during the construction
of the machine. The degradation of luminosity from the
increase of the damping time was then found to be about
10% based on the beam-beam simulation. The tunes are

TABLE I. Parameters for the beam-beam simulation.

Parameter Description LER �e1� HER �e2�

E (GeV) Beam energy 3.1 9.0
b�

x (cm) Beta X at the IP 50.0 50.0
b�

y (cm) Beta Y at the IP 1.25 1.25
tt (turn) Transverse damping time 9740 5014

ex (nm rad) Emittance X 24.0 48.0
ey (nm rad) Emittance Y 1.50 1.50

nx X tune 0.649 0.569
ny Y tune 0.564 0.639
011001-5
split and are determined experimentally to optimize the
peak luminosity.

B. Procedure of simulation

The distribution of the beam is represented as a col-
lection of macroparticles that are dynamically tracked.
The procedure to obtain equilibrium distributions of the
two colliding beams is as follows: (i) initialize the four-
dimensional Gaussian distribution according to the
parameters of the lattice at the collision point and the
emittance of the beam. The distributions of two beams
are independent and different; (ii) iterate a loop with three
damping times; (iii) propagate each beam through the cor-
responding lattice using a one-turn map with synchrotron
radiation; (iv) cast the particle distributions onto the grid
as the charge distribution with weighting and smoothing;
(v) solve for the potential on the grid with the Poisson
solver; (vi) compute the field on the grid; (vii) calculate
the beam-beam kick to the particles of the other beam
with the field at the position of the particles. The field
off the grid is interpolated with the same weighting
and smoothing used in the charge deposition; (viii) save
data such as beam size, beam centroid, and luminosity;
(ix) end of the loop; (x) save the final distributions.

We vary the beam intensity with a step of dN1 � 1010

and the fixed beam current ratio I1:I2 � 2:1, which is
close to the ratio for the PEP-II operation. At each beam
current, we compute the equilibrium distributions.

Particle loss outside the area (8sx 3 24sy) covered by
the mesh is closely monitored. There is no loss at the
low beam currents (the first 15 data points). At very high
current (beyond the 15th data point), the loss is still less
than 1%.

C. Beam-beam blowup

Given equilibrium distributions that are close enough to
the Gaussian, we can introduce the beam-beam parameters

j6
x �

reN7b6
x

2pg6s7
x �s7

x 1 s7
y �

,

j6
y �

reN7b6
y

2pg6s7
y �s7

x 1 s7
y �

,

(5.1)

where re is the classical electron radius, g is the energy
of the beam in units of the rest energy, and N is the total
number of the charge in the bunch. Here the superscript
“1” denotes quantities corresponding to the positron beam
and “2” denotes quantities corresponding to the electron
beam.

The results of the simulation are summarized in Fig. 3.
The horizontal size of the positron beam grows linearly as
the currents increase while the horizontal size of the elec-
tron beam remains unchanged. We see that the reduction of
the horizontal size of the positron beam at the low current
011001-5
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FIG. 3. The beam size and beam-beam tune shifts as a function of the positron current while the electron current is fixed at one-half
of the positron current. The dashed line presents the maximum operating current of the positron beam with 605 bunches at 1400 mA.
has helped to match its beam size to the horizontal size of
the electron beam. That is the reason that turning off the
wiggler in the LER has helped to increase the luminosity.

In the vertical plane, the beam sizes are reasonably
matched until I1 � 1000 mA. The final vertical blowup
of the positron beam near I1 � 1400 mA is the cause of
the saturated luminosity. The large vertical mismatch at
the higher current could also lead to the deterioration of the
beam lifetime during the collision. As a result, the maxi-
mum current of the positron beam is limited to below
1400 mA.

Experimentally, there is no blowup of beam size in either
plane seen in the electron beam. For the positron beam, the
sizes in both planes grow as the currents increase. How-
ever, it is difficult at this point to make quantitative com-
parisons between measurement and simulation because
the resolution of the synchrotron monitors is unknown,
particularly due to the heating damage when they were
installed.

As shown in the figure, at the maximum operating
currents I1 � 1400 mA and I2 � 700 mA, the vertical
beam-beam tune shifts for positrons are about 0.06 and
for electrons 0.015. The large differences in the tune
shifts are a direct consequence of the mismatch of the
beam sizes and the violation of the energy transparency
condition I1g1 � I2g2. The lower current ratio makes
the positron beam weaker and the electron beam stronger.
It is clear that the positron beam is weaker than the
electron beam at this working point and current ratio.
011001-6
D. Luminosity

Given the two beam distributions, r1 and r2, the lu-
minosity can be written as

L � nbf0N
1N2

Z `

2`

Z `

2`
r1�x, y�r2�x, y� dx dy ,

(5.2)

where nb is the number of the colliding bunches, f0 is
the revolution frequency, and N1,N2 are the number of
particles in each position and electron bunch, respectively.
Since the distribution r is normalized to unityZ

dx dy r�x, y� � 1 (5.3)

and proportional to the charge density rc, we evaluate the
overlapping integral by a summation over r1

c r2
c on the

mesh. Furthermore, if we assume the distributions are
Gaussian, the overlapping integral can be carried out,

L �
nbf0N1N2

2pSxSy
, (5.4)

where Sx �
q

s12

x 1 s22

x and Sy �
q

s12

y 1 s22

y . The
two methods agree within a few percent. The mesh method
gives a higher luminosity than the Gaussian one. We al-
ways use the mesh method, since it can be applied to broad
classes of distribution.

The luminosity as a function of beam current is shown in
Fig. 4. The maximum luminosity with a different number
of bunches is corresponding to nb times of the saturated
011001-6
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FIG. 4. (Color) Luminosity as a function of the beam current.
The labels are the number of the colliding bunches.

TABLE II. Luminosity comparisons for PEP-II.

Month nb Lmeas Lsim

May 554 1.90 2.20
August 605 2.20 2.40
October 692 3.10 2.80

luminosity of a single bunch. The single bunch luminosity
is limited by a final rapid vertical blowup of the positron
beam, as discussed in the previous section. In the accelera-
tors, the number of bunches is limited by the electron-cloud
instability [19] in the LER. We expect that, as the effects
of electron-cloud reduce while more solenoids are added
into the ring, the maximum luminosity should increase as
the number of bunches increase according to the figure.
As tabulated in Table II, the result of the simulation has
been reasonably followed since April, 2000, after which
the configuration of the machines was kept fixed to the
values listed in Table I.

The luminosity tabulated in the table is in the unit of
1033 cm22 s21. Note that the ratio of beam currents I1:I2

actually used in the operations is not always exactly 2:1 as
used in the simulation. For example, when the design lu-
minosity was reached, I1 � 1550 mA and I2 � 800 mA.

If this trend continues, the luminosity allowed by the
beam-beam interaction with the design bunch pattern
(1658 bunches) should reach 6.5 3 1033 cm22 s21 with
I1 � 3500 mA and I2 � 1750 mA, unless longitudinal
effects such as the hourglass effect set in earlier than we
presently expect.

E. Damping time

Historically, the damping time is typically not consid-
ered to be an important parameter for the beam-beam ef-
fects. For this reason we make an attempt to reduce the
011001-7
FIG. 5. (Color) Peak luminosity affected by the damping time
of the LER with 605 bunches. The circles represent the simu-
lation result and the dashed line represents the fitted curve of
2081�t1

t �20.75.

damping time artificially for the LER to speed up the com-
putation. The result is shown in Fig. 5.

The only difference of the parameters used in the simu-
lation is the damping time in the LER. In particular, the
damping time of the HER is fixed at t2

t � 5014. In-
deed, at low currents, the difference of the luminosity
is rather small, which is consistent with the simulation
performed when the change of the wiggler was made.
But the difference grows larger as the current increases.
Near the peak luminosity for the PEP-II operation I1 �
1400 mA, the luminosity difference between t1

t � 5014
and t1

t � 9740 is about 40% according to Fig. 5, which is
significant.

This result shows for the first time that the damping time
is a rather important parameter for the computation of the
peak luminosity at high beam currents. Secondly, it points
out a way to improve the peak luminosity of the PEP-II
without the increase of the beam currents, namely, to install
another wiggler in the LER to reduce the damping time to
the original design value.

F. Routine operation

To make a direct comparison between simulation and
experimental observation, we have recorded the luminos-
ity during a typical delivering operation of PEP-II. The
data in a period of 2 h on September 15, 2000 are shown in
Fig. 6. The duration of each measurement was 3 min. The
first and second plots in the figure present the total decay-
ing beam current of positron and electron beams, respec-
tively. The third plot shows the measured luminosity and
simulated luminosity at the same beam current displayed
in the figure. The other parameters used in the simulation
are the same as in Table I. At these beam intensities, there
are no lost particles in the simulation.
011001-7
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FIG. 6. (Color) Luminosity of a routine operation of PEP-II. The crosses represent measurement and the circles represent simulation.
The number of bunches was 605.
The agreement of the simulation and measurement was
within 10%, and the simulated luminosity was actually
lower than the measured one. Since the longitudinal ef-
fects of the beam-beam interaction are not yet included
in the simulations, three-dimensional simulation could re-
duce further the simulated luminosity. For example, the
hourglass effect should reduce the simulated luminosity
by 12% given sz � 1.3 cm and b�

y � 1.25 cm.
The disagreement between the measurement and the

simulation reflects also the uncertainty of those parame-
ters relevant to the beam-beam interaction. For instance,
the b functions are known to within only about 10% in the
machines. The fact that the measured luminosity is larger
than the simulated one could be a consequence of the tun-
ing bias toward the highest luminosity within the boundary
of the parameters when the machines are tweaked by the
operators.

VI. COLLECTIVE BEAM-BEAM EFFECTS

It was shown in the previous section that the beam-beam
simulations of the PEP-II with an aspect ratio 30:1 agrees
with the experimental measurements at about the 10%
level. As in many cases, it is difficult to know exactly the
causes of the difference between simulation and measure-
ment since the real machines are often much more com-
plicated than the simple model used in the simulation. As
a useful and practical method, it is very important to first
make sure that the simulation results are correct given the
011001-8
input parameters and then to find which input parameters
describe the real machines.

We have shown that the beam-beam kick given by a
Gaussian beam using this method of mesh reduction agrees
well with the analytical solution. To check dynamics ef-
fects of the beam-beam interaction, we chose to simulate
the effects of coherent resonance because they are more
stringent and distinctive phenomena. As we know, Krish-
nagopal and Siemann [6] have found period-n solutions
due to the collective beam-beam interaction near the tune
of 0.79. We made two simulations with the parameters
tabulated in Table III. These parameters give an aspect
ratio of 8:1 and are the same as those used by Krishna-
gopal [20].

The results of the simulation are shown in Fig. 7. They
are essentially the same as the published results using the

TABLE III. Parameters for the coherent resonance.

Parameter Description LER �e1� HER �e2�

E (GeV) Beam energy 3.1 or 3.0 9.0
b�

x (cm) Beta X at the IP 12.0 12.0
b�

y (cm) Beta Y at the IP 1.50 1.50
tt (turn) Transverse damping time 1000 1000

ex (nm rad) Emittance X 50.0 50.0
ey (nm rad) Emittance Y 6.25 6.25

nx X tune 0.79 0.79
ny Y tune 0.79 0.79

I (mA) Bunch current 6.0 2.0
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FIG. 7. (Color) Beam size vs turn number. As shown in the left-hand plot, a flip-flop solution is found with E1 � 3.1 GeV and
E2 � 9.0 GeV when the energy transparency condition is violated, and in the right-hand plot the period-3 solution [6] is found with
E1 � 3.0 GeV and E2 � 9.0 GeV when the energy transparency condition is preserved.
code CBI [20]. The small differences in the flip-flop solu-
tion are probably due to the different smoothing schemes
used in the codes. These simulations make a benchmark
against one of the existing codes under the same set of pa-
rameters and conditions.

VII. DISCUSSION

We have developed a hybrid method of solving the po-
tential with an open boundary by using Green’s function to
fix the potential on a finite boundary and then to solve the
Poisson equation for the potential inside the boundary. The
method is applied to the simulation of strong-strong inter-
action of beam-beam effects in PEP-II. The preliminary
results of this simulation show a very good quantitative
agreement with the experimental observations. Given the
simplicity of the two-dimensional model used, the achieve-
ment is surprising and remarkable. We have demonstrated
that the present code has a highly reliable predictive capa-
bility of realistic beam-beam interaction. To further bench-
mark the code, we need to extend the simulation to include
the finite length of the bunch and compare the simulation
results directly to controlled experiments.

This method is quite general. It can be applied to the
problem of space charge in three dimensions. It can also
be used in the beam-beam interaction of a linear collider,
aside from the additional bremsstrahlung effects. Finally,
it can be applied to any boundary condition to reduce the
region of the mesh if Green’s function is known.
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