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The soft-Gaussian approximation is often employed in computer simulations of strong-strong
beam interactions in storage rings. Its defect on the coherent oscillation frequency is pointed ou
possible remedy using Hermitian polynominals is discussed.

PACS numbers: 29.20.Dh, 29.27.–a
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I. INTRODUCTION

The beam-beam interaction in storage rings is one
the subjects of beam physics to which analytic theor
cannot provide sufficiently useful information for actu
machines. In particular, for the strong-strong phenom
we have to use computer simulations. Although full d
tails of interaction should in principle be obtained by t
so-called particle-in-cell (PIC) simulation, it is very tim
consuming and suffers from numerical noises due to th
nite number of macroparticles and to the finite mesh s

Soft-Gaussian approximation is often used instead
PIC in order to overcome these problems. When p
ticles come to a collision point, their center-of-mass p
sition and the rms beam size are computed and the
beam-beam force is approximated by the force from
Gaussian charge distribution having the computed posi
and the rms size. This approximation greatly reduces
computation noise and the computing time.

However, the question of whether the soft-Gaussian
proximation can replace PIC has not yet been answe
systematically. Obviously, the soft-Gaussian approxim
tion cannot express complicated distribution which mig
be encountered in extremely strong interactions well ab
the beam-beam limit, but they are not practically imp
tant for normal operations of colliders. In this report w
consider an aspect of soft-Gaussian approximation in r
tively weak cases and compare it with analytic theories

The strength of beam-beam interaction is characteri
by the parameterj defined by

ji �
bi

2pg

Nrp

si�sx 1 sy�
, �i � x, y� , (1)

wherebi andg are the beta function and the Lorentz fa
tor of the relevant beam,N andsi are the population and
the beam size of the on-coming bunch, andrp is the clas-
sical radius of the particle (normally electron or proto
Whenj is sufficiently small, the incoherent tune shift of
particle with small betatron amplitude is given byj.

On the other hand, the tune shift of the coherent os
lation (p mode) is given by

Dni � lji , (2)

where the coefficientl is theoretically known to be slightly
larger than unity and is dependent on the beam as
1098-4402�00�3(12)�124401(8)$15.00
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ratio R � sy�sx [1,2]. More specifically,lh � 1.33 and
lv � 1.24 for the horizontal and vertical oscillations of
flat beam (R � 0), respectively, andlr � 1.21 for a round
beam. (In the following references, the “flat beam” do
not mean a beam with zero height, butR is sufficiently
small.)

Many results of measurements and computer sim
tions are available about this factorl.

An old result at KEK [3] agrees well with the theor
for flat beams, and a recent result [4] also seems to a
although not very accurately. On the other hand, the va
lv � 1.1 quoted in [5] at VEPP-2M contradicts the theor

However, a comparison with measurements is not e
because the theory predicts the value only when2pj ø 1
(e.g., j , 0.01, otherwise, the dynamic beta effect ca
easily changel by, say, 10%), the bunch length is muc
shorter than the beta function, and the oscillation amplit
is much smaller than the beam size.

Because of this, a comparison with a strong-stro
simulation is not easy either sincej , 0.01 requires a
long-term tracking (*105 turns). Recent PIC simulations
however, can accurately compute the factor owing to
improvement of algorithms and computer speed. Oh
[6] found a good agreement for horizontal oscillations
flat beams althoughj is still large. Zorzano and Jone
[7] found lr � 1.2, in good agreement with the theor
by using the so-called Hybrid-FMM algorithm for a sma
value ofj � 0.0034.

Zorzano [8] obtainedlh � 1.3, which also agrees with
the theory, by a totally different method, i.e., by solvin
the Vlasov equation numerically.

On the other hand, simulations by the soft-Gaussian
proximation, which should be easier than PIC, seem
show smaller values systematically. The old results by K
[9] are poor in statistics due to the limited computer pow
but the curve forj � 0.01 in Fig. 2 of [9] seems to show
a value aroundlv � 1.1 (note that there are two collisio
points in his simulation). A much more accurate compa
son is possible now owing to the computer improveme
In particular, the recent study of a detailed simulation
the Large Hadron Collider (LHC) by Zorzano and Zimme
mann [10] quotes values between 1.09 and 1.15, dep
ing on the aspect ratio. These values clearly disagree
the theory. Another soft-Gaussian simulation for the LH
© 2000 The American Physical Society 124401-1



PRST-AB 3 KAORU YOKOYA 124401 (2000)
by Furman [11] also shows a disagreement lr � 1.1. The
above two studies adopt j � 0.003 for the LHC, which is
small enough for comparison with the theory.

The first subject of the present report is this discrep-
ancy between soft-Gaussian and PIC codes. It will be at-
tributed to the nature of the soft-Gaussian approximation
in Sec. II. Section III discusses a possible effect in the
Landau damping due to this tune-shift error for the case
of unequal-beam collision. Section IV studies an improve-
ment of soft-Gaussian approximation by using the Hermi-
tian polynomial.

II. TUNE SHIFT OF COHERENT p MODE IN
SOFT-GAUSSIAN APPROXIMATION

In this section we consider the frequency of small-
amplitude coherent oscillation, analytically simulating the
algorithm of the soft-Gaussian approximation.

Let us consider the simplest case when two counter-
rotating bunches having the same beam intensity and shape
collide at one interaction point (IP) in the ring. We assume
the two beams are electron and positron, but the conversion
of the results to other species is obvious.

We normalize the horizontal/vertical coordinate and mo-
mentum by their unperturbed rms value and introduce the
action-angle form

x �
p

2Jx cosfx, px � 2
p

2Jx sinfx (3)

(similarly for y). Note that the canonical variables are
�Jx ,fx, R2Jy, fy� because of the different emittances in
horizontal and vertical planes. We choose the machine
azimuth u as the independent variable. Then, the single-
particle motion of the positron is described by the Hamil-
tonian

H � nx0Jx 1 ny0R2Jy 1 V �2��x,y� . (4)

Here, nx0 and ny0 are the unperturbed tunes, and the po-
tential V �2� due to the electron beam is given by

V �2��x,y� � jx�1 1 R�
Z

dx0 dy0

3 log��x 2 x0�2 1 R2�y 2 y0�2�
3 r�2��x0,y0� , (5)

where R is the aspect ratio (s�
y�s�

x ) at the IP and r

is the distribution function of the electron normalized asR
r dx dy � 1.
The phase-space distribution function consists of two

parts, the unperturbed distribution C�0��J� and the oscillat-
ing part c�6��J,f� [J,f are the shorthand notations for
�Jx ,Jy� and �fx, fy�]. We approximate the unperturbed
part by a Gaussian distribution

C�0��J� �
1

�2p�2 e2Jx2Jy . (6)

The linearized Vlasov equation for the positron beam
distribution c�1� is written as
124401-2
≠c�1�

≠u
1 nx0

≠c�1�

≠fx
1

≠V �0�

≠Jx

≠c�1�

≠fx
2

≠V �0�

≠fx

≠c�1�

≠Jx
2

≠y�2�

≠fx

≠C�0�

≠Jx
� 0 , (7)

where we omitted the terms related to the vertical oscil-
lation. V �0� and y�6� are the potentials coming from C�0�

and c�6�, respectively,

V �0��x, y� � jx�1 1 R�
Z

log��x 2 x0�2 1 R2�y 2 y0�2�

3
e2�x0 21y0 2��2

2p
dx0 dy0, (8)

y�6��x, y� � jx�1 1 R�
Z

log��x 2 x0�2 1 R2�y 2 y0�2�

3 c�6��x0, p0
x , y0, p0

y� dx0 dp0
x dy0 dp0

y . (9)

We consider the horizontal dipole oscillation

c�6� � Re
X
m

ei�mfx2nu�c�6�
m �J� (10)

and take only the dipole mode m � 1. Then Eq. (7) be-
comes

�n 2 nx0�c�1�
1 � i

Z df
�2p�2 e2ifx

3

Ω
2

≠V �0�

≠Jx

≠c̃�1�

≠fx
1

≠ỹ�2�

≠fx

≠C�0�

≠Jx

æ
,

(11)

where the tilde indicates that the factor e2inu is to be taken
off. The contribution of the first term in the curly brackets
on the right-hand side is jxQ�J�c�1�

1 where

Q�J� �
≠

≠Jx

Z df

�2p�2

V �0�

jx
(12)

� �1 1 R�
≠

≠Jx

Z df

�2p�2

Z
dx0 dy0

3 log��x 2 x0�2 1 R2�y 2 y0�2�

3
e2�x 0 21y 02��2

2p
. (13)

Now consider the second term, where the soft-Gaussian
approximation comes in. From the algorithm of the soft-
Gaussian approximation,

y�2��x, y� � V �0��x 2 X�2�, y� 2 V �0��x, y� , (14)

where X�2� is the center-of-mass position of the second
beam,

X�2� �
Z

xc�2� dJ df � e2inu
Z

xeifxc
�2�
1 dJ df .

(15)
124401-2
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FIG. 1. (Color) p-mode eigenvalue as a function of the as-
pect ratio. kmax is the truncation of the Hermitian polynomial.
kmax � 0 corresponds to the soft-Gaussian approximation and
kmax � ` is the exact theory.

(In actual soft-Gaussian approximation the rms size is also
adjusted every turn, but this does not contribute to the
infinitesimal dipole oscillation due to the symmetry.) Since
we consider infinitesimal oscillation,

y�2��x, y� � 2X�2� ≠V �0�

≠x
, (16)

X�2� � 2p2e2inu
Z p

2Jx c
�2�
1 dJ . (17)

After some manipulation, the contribution of the second
term is found to be

2jxe2Jx 2Jy

Z q
JxJ 0

x Q�J�c �2�
1 �J 0�dJ 0 .

Thus, by introducing f�6� defined by

c
�6�
1 �J� � e2�Jx1Jy��2f�6��J� (18)

we obtain an integral equation

lf�1��J� � Q�J�f�1��J� 2
Z

G�J, J 0�f�2��J 0� dJ 0 ,

(19)

where

l � �n 2 nx0��jx , (20)
124401-3
G�J, J 0� �
q

JxJ 0
x e2�Jx1Jy1J 0

x 1J 0
y��2Q�J� . (21)

The p mode f � f�1� � 2f�2� equation is

lf�J� � Q�J�f�J� 1
Z

G�J,J 0�f�J 0� dJ 0. (22)

Since the kernel G is degenerate (i.e., a product of a func-
tion of J and a function of J 0), one can easily obtain an
eigenvalue equation

1 �
Z

dJ
Q�J�

l 2 Q�J�
Jxe2Jx2Jy . (23)

The eigenvalue l is plotted in Fig. 1, where six curves
are shown. The dashed curve at the top labeled kmax � `

is the result from the exact theory, and the solid curve
at the bottom labeled kmax � 0 is from the soft-Gaussian
approximation (the other four curves are explained later).

One finds that the soft-Gaussian approximation gives a
considerably different result from the exact theory. In-
terestingly, the soft-Gaussian eigenvalue is nearly at the
middle between the exact value and that of the rigid-
Gaussian model (l � 1) [12] for any aspect ratio.

Numerical values are summarized in Table I for the three
important cases, namely, R � 0 (horizontal oscillation of
very flat beams), R � 1 (round beams), and R � ` (ver-
tical oscillation of horizontally flat beams). The values ob-
tained in an actual soft-Gaussian simulation [10] are listed
in the bottom row, which is to be compared with the top
row (the flat beam used in [10] is for R � 1�16). They
agree quite well with our theoretical values. The remain-
ing small differences may be attributed to the dynamic beta
effect. We can thus conclude that the discrepancy between
soft-Gaussian simulations and the simple theory is due to
the nature of the Gaussian form.

The physical reason for the difference is the follow-
ing. Figure 2 schematically shows the beam profile
during coherent oscillation. The dotted curve is the equi-
librium distribution and the dashed curve is the real distri-
bution in oscillation. One sees only the core oscillates, as
found in the theory (Fig. 1 in [2]) and simulation (Fig. 3
in [10]). When this profile is approximated by a Gaussian
form shown by the solid curve, the oscillation amplitude
of the core becomes smaller, which underestimates the
beam-beam restoring force. Thus, the eigenvalue appears
smaller.
TABLE I. Eigenvalues for the equal-beam case.

Aspect ratio
R � 0 R � 1 R � `

kmax lh lr lv

Soft-Gaussian 0 1.148 1.103 1.110
Third-order Hermitian 1 1.257 (1.257) 1.181 (1.186) 1.195 (1.199)
Fifth-order Hermitian 2 1.296 (1.296) 1.203 (1.205) 1.220 (1.223)
Exact theory ` 1.330 1.214 1.238
Simulation [10] 1.15 1.10 1.09
124401-3
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FIG. 2. (Color) Beam profile during coherent oscillation. The
horizontal axis is the horizontal coordinate x. The dotted curve
is the equilibrium distribution, the dashed curve the real distri-
bution in oscillation, and the solid curve its Gaussian approxi-
mation.

III. LANDAU DAMPING

As we have seen in the previous section, the distance
between the p-mode frequency and the edge of the in-
coherent frequency band 0 , l , 1 (continuum) in soft-
Gaussian simulation appears to be about half of what it
should be. A question may arise as to whether soft-
Gaussian simulation correctly expresses the Landau damp-
ing, which is expected when a mode frequency falls in the
incoherent frequency band. This is not an easy question
because the Landau damping does not necessarily occur
near the edge of the band, but whether the mode goes into
the band is still a good criterion for the damping to occur.

In this section we consider a collision of beams of un-
equal intensity (but the same beam size). A new parame-
ter is the ratio of the beam-beam parameters j�2��j�1�

(we take j�2� # j�1�). In the limit j�2��j�1� ! 0, there
can be no coherent oscillation because it is the weak-strong
case. It is known [13] that the p mode goes into the contin-
uum when the ratio of the beam-beam parameter j�2��j�1�

is less than about 0.6 for round beams.
The integral equation is easily obtained from Eq. (19):

n 2 nx0

j
�1�
x

f�1� � Qf�1� 2 G ± f�2�, (24)

n 2 nx0

j
�2�
x

f�2� � Qf�2� 2 G ± f�1�, (25)

where ± indicates the integral operation with the kernel G.
The eigenvalue equation is
124401-4
FIG. 3. (Color) p-mode eigenvalue as a function of the intensity
ratio j�2��j�1� for various values of the aspect ratio.

Z `

0
dJ

Q�J�Jxe2Jx2Jy

�n 2 nx0��j
�1�
x 2 Q�J�

3

Z `

0
dJ

Q�J�Jxe2Jx2Jy

�n 2 nx0��j
�2�
x 2 Q�J�

� 1 . (26)

When j�2� , j�1�, n can go into the continuum of the
positron beam (weaker beam). Therefore, Landau damp-
ing is expected when l � �n 2 nx0��j

�1�
x , 1.

The eigenvalue is plotted in Fig. 3 as a function of the
intensity ratio j�2��j�1� for various values of the aspect
ratio. The upper group of curves is the result of the exact
theory and the lower group the soft-Gaussian approxima-
tion. One finds that, in the round beam case, for example,
the p mode goes into the continuum at j�2��j�1� � 0.8
in the soft-Gaussian approximation.

IV. HERMITIAN POLYNOMIAL EXPANSION

As we saw in Sec. II, the reason for the disagreement
in the tune shift is that the Gaussian approximation can-
not take into account asymmetric distribution. A natural
extension from the Gaussian model as a remedy to this
disagreement is to include higher order moments.

Consider a Gaussian distribution with rms size (sx , sy)

rG�x, y; sx, sy� �
1

2psxsy
e2x2�2s2

x 2y2�2s2
y , (27)

and denote its potential by FG�x, y�. The latter satisfies the
two-dimensional Poisson equation DFG � rG . In actual
simulation the derivative of FG is needed, which can be
expressed using the complex error function [14].

When a distribution is expanded with Hermitian poly-
nomials as

r�x, y� �
X
k,l

ak,lHk�x�sx�Hl�y�sy�rG�x, y; sx , sy� ,

(28)
124401-4
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where the Hermitian polynomial is defined by

Hn�x� � �21�nex2�2 dn

dxn
e2x2�2, (29)

the corresponding potential is given by

F �
X
k,l

�21�k1lak,ls
k
x sl

y
≠k

≠xl

≠l

≠yl
FG , (30)

and, therefore, the force is also computed from derivatives
of the complex error function (the derivatives can also be
represented by the complex error function).

Owing to the orthogonality of the Hermitian polynomi-
als, the coefficient ak,l can be computed from r by

ak,l �
1

k!l!

Z
Hk�x�sx�Hl� y�sy�r�x, y� dx dy , (31)

and, when the distribution is given in the form of macropar-
ticle coordinates �xj, yj � (j � 1, 2, . . . , N),

ak,l �
1

k!l!
1
N

NX
j�1

Hk�xj�sx�Hk�yj�sy� . (32)

There are possible variations of Hermitian expansion
with respect to the treatment of the first two moments.
124401-5
Usually, in the soft-Gaussian approximation, the distribu-
tion is approximated by rG�x 2 X, y 2 Y ; sx , sy�. If one
starts expansion from this form, the first two coefficients
ak,l vanish. But, instead, we can use the initial origin and
the initial beam size as the base Gaussian distribution. In
the latter case, the center-of-mass position and the rms size
are represented by a10, a01, a20, and a02. These two dif-
ferent ways of expansion give different results in actual
simulations, but they are equivalent when one considers
infinitesimal oscillation analytically (e.g., e2�x2a10�2�2 and
�1 1 a10x�e2x2�2 are equivalent if a10 is infinitesimal). In
actual simulations the former will be better for expressing
finite-amplitude oscillations and considerable amount of
beam size change. In this report we adopt the latter form
for mathematical simplicity.

Now, let us go back to Eq. (11) and compute the coher-
ent tune in the Hermitian expansion model. The perturbed
potential y�2� is given by

ỹ�2��x, y� �
X̀

�k,l�fi�0,0�
�21�k1l ã

�2�
k,l

≠k

≠xk

≠l

≠yl V �0��x, y�

(33)

and the coefficients ã
�2�
k,l by
ãk.l �
1

k!l!

Z `

2`
Hk�x�Hl�y�r̃�2��x, y� dx dy

�
1

k!l!

Z `

2`
Hk�

p
2Jx cosfx�Hl�

q
2Jy cosfy� cos�fx�c�2�

1 df dJ . (34)
Because of the even-odd property of Hn, only odd k and
even l contribute to the horizontal dipole oscillation. Thus,

ã2k11,2l �
1
2

�2p�2
p

2Jx

Z
dJ Lk,l�J�c�2�

1 �J� , (35)

where Lk,l�J� is a known polynomial of J (see the
Appendix).

Putting Eq. (33) into Eq. (11), one finds the contribution
of the second term on the right-hand side to be

2jxe2Jx2Jy

Z
dJ 0

q
JxJ 0

x

X̀
k,l�0

Kk,l�J�Lk,l�J 0�c�2�
1 �J 0� ,

(36)

where

Kk,l�J� �
≠

≠Jx

Z dfx dfy

�2p�2

≠2k

≠x2k

≠2l

≠y2l

V �0��x, y�
jx

.

(37)

Kk,l�J� is a complicated function of J and has to be com-
puted by numerical integration except for the case R � 0
(see the Appendix). In any case, K0,0�J� � Q�J�.

Thus, again using f defined in Eq. (18), we finally ob-
tain an integral equation
lf�1��J� � Q�J�f�1��J�

2
X̀

k,l�0

Z
dJ 0Gk,l�J, J 0�f�2��J 0� , (38)

where

Gk,l � e2�Jx1Jy 1J0
x1J 0

y��2
q

JxJ 0
x Kk,l�J�Lk,l�J� . (39)

The kernel G is again degenerated if the Hermitian expan-
sion is truncated at a finite order. The eigenvalue equation
for the p mode is

det �M�l� 2 I� � 0 , (40)

where I is the identity matrix and

Mk,l;k 0,l 0�l� �
Z

dJ
Jxe2Jx2Jy

l 2 Q�J�
Lk,l�J�Kk 0,l 0�J� . (41)

The eigenvalue of Eq. (41) is plotted in Fig. 1 as a func-
tion of the aspect ratio for two cases of kmax � 1, 2. Two
curves, close to each other, are drawn for each kmax. They
are from different methods of truncation of Hermitian ex-
pansion. The ones above come from square truncation
(k # kmax and l # kmax), and the ones below from trian-
gular truncation (k 1 l # kmax). The triangular truncation
124401-5
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FIG. 4. (Color) The index of amn to be taken in the triangular
truncation for kmax � 1 and 2. The open circles indicate the
terms already taken in the soft-Gaussian approximation, and the
filled circles (triangles) indicate the terms needed to describe
horizontal (vertical) oscillations in the triangular truncation.

is illustrated in Fig. 4, which shows the index range of amn

to be taken for the triangle truncation for kmax � 1, 2.
Some of the numerical values for round and very flat

beams are listed in Table I. The numbers in brackets for
kmax � 1 and 2 are from square truncation, others from
triangular truncation.

One finds the following: (i) the eigenvalue approaches
the value of exact theory as kmax increases; (ii) The
difference between square and triangular truncations
is extremely small (therefore, triangular truncation is
better in practice due to the smaller number of terms);
and (iii) kmax � 2 (fifth order polynomial times Gaussian
distribution) already gives satisfactory results. Even
kmax � 1 (third order polynomial) may be enough de-
pending on the purpose.

As described in the Appendix, the function Kk,l�J� is
a simple elementary function of J when R � 0 so that

FIG. 5. (Color) The first p-mode eigenvalue for R � 0 as a
function of the truncation of Hermitian expansion.
124401-6
FIG. 6. (Color) The second p-mode eigenvalue for R � 0 as a
function of the truncation of Hermitian expansion.

higher order can easily be computed. To see the conver-
gence with respect to kmax the eigenvalues for large kmax
for R � 0 were computed and plotted in Fig. 5. The ap-
proach to the limit is exponential with kmax rather than
polynomial.

When kmax is large enough, one also finds the second
eigenvalue close to the continuum, which was first found
by Alexahin [13]. It is plotted in Fig. 6 as a function of
kmax for the case R � 0. It converges to the value 1.026
found in [13] although the convergence is very slow.

V. CONCLUSIONS

We have studied the nature of the soft-Gaussian ap-
proximation for beam-beam simulation with respect to the
ratio l of the coherent oscillation frequency shift to the
incoherent and found that (i) the soft-Gaussian approxi-
mation gives somewhat lower l, namely, lsoft-Gaussian �
�1 1 lexact��2, (ii) this might, in some cases, cause the
Landau damping to occur more easily than it should, and
(iii) this can be cured by using a distribution of the form
Hermitian polynomials times Gaussian.

Since the soft-Gaussian approximation is a very useful
tool for studying the strong-strong interaction, in particular
that of hadron beams, it is highly desired to confirm its
validity in other respects.
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APPENDIX

We summarize some mathematical expressions used in
the text.

First, the polynomial Lk,l�J� introduced in Eq. (35) is
defined by
124401-6
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Lk,l�J� �
1

�2k 1 1�!�2l�!

Z dfx dfy

�2p�2

2 cosfx
p

2Jx

3 H2k11�
p

2Jx cosfx�H2l�
q

2Jy cosfy�
(A1)

� Lx,k�Jx�Ly,l�Jy� . (A2)

Here, Lx,k (Ly,l) is a polynomial of Jx �Jy� of order k (l)
and is given explicitly by

Lx,k �
1
2k

kX
i�0

�21�k2i

i!�i 1 1�!�k 2 i�!
Ji

x , (A3)

Ly,l �
1
2l

lX
j�0

�21�l2j

�j!�2�l 2 j�!
Jj

y . (A4)

The first few of them are

Lx,0 � 1, Lx,1 �
1
4

Jx 2
1
2

,

Lx,2 �
1
48

J2
x 2

1
8

Jx 1
1
8

,

Ly,0 � 1, Ly,1 �
1
2

Jy 2
1
2

,

Ly,2 �
1
16

J2
y 2

1
4

Jy 1
1
8

.

The function Kk,l�J� defined in Eq. (37) is obtained by
the integration

Kk,l�J�
1 1 R

�
≠

≠Jx

Z df

�2p�2

Z
dx0 dy0 H2k�x0�H2l�y0�

3 log��x 2 x0�2 1 R2�y 2 y0�2�

3
e2�x0 21y 0 2��2

2p
. (A5)

In the case R � 0, only Kk,0 is relevant and is given ex-
plicitly by

Kk,0 �
dk,0

Jx
2

e2Jx

Jx

kX
j�0

kX
r�j

3
�21�k2r �2k�! �2r 2 2j 2 1�!!

2r2j�2k 2 2r�!! �2r 2 1�!! �r 2 j�!
J

j
x

j!
.

(A6)

The first few are

K0,0 � Q � �1 2 e2Jx ��Jx , (A7)

K1,0 � 22e2Jx , K2,0 � e2Jx �8 2 4Jx� . (A8)
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In general cases one has to obtain by numerical integrations
(or by Taylor expansion for small J). The most convenient
form for numerical integration is presumably

Kk,l �
1 1 R

p

Z 2p

0
du

3
�21�k1l cos2k12u sin2lu

R cos2u 1 R21 sin2u

3 Ak1l�
p

2Jx cosu,
q

2Jy sinu� , (A9)

where

An�a, b� �
Z `

0
dv v2n J1�av�

a
J0�bv�e2v2�2.

(A10)

An (n $ 1) can be expressed by the modified Bessel func-
tions

An�a, b� � �fnI0�ab� 2 gnI1�ab��
e2�a21b2��2

a
,

(A11)

where fn and gn are polynomials of a and b. The first
few of them are

f1 � a, g1 � b, f2 � 4a 2 a3 2 3ab2,

g2 � 2b 2 3a2b 2 b3.

A0 cannot be written in the form Eq. (A11). Instead, for
K0,0�J� � Q�J� we have the formula

Q�J� �
Z 1

0
dt

1 1 Rp
R2 2 1 1 1�t2

3

∑
Ĩ0

µ
t2

2
Jx

∂
2 Ĩ1

µ
t2

2
Jx

∂∏

3 Ĩ0

µ
1
2

R2

R2 2 1 1 1�t2 Jy

∂
, (A12)

where Ĩn�x� � e2xIn�x�.
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