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Estimates of random field-shape errors induced by cable mispositioning in superconducting magnets
are presented and specific applications to the Large Hadron Collider (LHC) main dipoles and quadrupoles
are extensively discussed. Numerical simulations obtained with Monte Carlo methods are compared to
analytic estimates and are used to interpret the experimental data for the LHC dipole and quadrupole
prototypes. The proposed approach can predict the effect of magnet tolerances on geometric components
of random field-shape errors, and it is a useful tool to monitor the obtained tolerances during magnet
production.

PACS numbers: 85.25.Ly, 85.70.Ay, 41.85.Lc, 29.27.Bd
I. INTRODUCTION

The magnetic field generated by superconducting mag-
nets used in particle accelerators [1] is affected by devia-
tions from the ideal shape, which must be kept within a
few 1024 times the main field to avoid accelerator perfor-
mance limitations. Field quality is determined mainly by
three contributions: namely, the geometric part given by
the positioning of the conductors inside the ferromagnetic
yoke [1], a persistent current effect due to cable magneti-
zation [1–3], and the yoke saturation at high field [1]. In
order to obtain an acceptable field quality, conductor posi-
tions must agree with the nominal design within less than
0.1 mm [4]. Indeed, a strong feedback between magnet
designers and magnet producers is needed, both in the de-
sign phase [5] and during the production [6].

Field shape is expanded in a power series in the coordi-
nates of the magnet cross section plane. The coefficients
of this expansion, called normal and skew multipoles, fea-
ture random variations along the longitudinal axis of the
magnet. These variations are usually neglected in beam dy-
namics analysis, where each magnet is characterized by the
average of its multipoles along the axis. A set of magnets
features a systematic component (average of the magnet
averages) and a random part (rms of the magnet averages).

A correct estimate of the random errors due to the geo-
metric part has been considered a challenging and relevant
issue for both beam dynamics and quality control during
the magnet production [7–9]. In this paper we disregard
multipole variations due to the random fluctuations of the
cable or yoke magnetization, and we focus on the spread in
the multipoles induced by the geometric part. In previous
works [7,8], random geometric errors have been modeled
through random variation of coil positions and dimensions:
the amplitude of the random variations was fixed by a
priori considerations, and experimental data were used to
work out fitting parameters that describe the degree and
the type of asymmetries found in built magnets. In this
paper we develop a complementary approach, where all
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the asymmetries are considered equally probable, and the
amplitude of the random displacement becomes the main
fitting parameter. This leads to the same estimate for the
normal and skew components of the same order.

The proposed approach allows us to analytically de-
rive very simple scaling laws for geometric random errors,
based on simplifying assumptions on the coil geometry.
This provides a useful explicit dependence of the scaling
law parameters on the coil characteristics, such as the mag-
net type, the cable thickness, and the magnet aperture. The
analytical method is cross-checked with numerical simu-
lations based on a Monte Carlo, using a detailed model
of the coil cross section. We then compare our estimates
with the experimental data at room temperature, where the
cable magnetization and yoke saturation are not present.
These data agree with the multipole decay foreseen by our
scaling law, thus validating the way of modeling random
errors.

The main fitting parameter of the scaling law is the am-
plitude of the random displacement. The analysis of ex-
perimental data in this framework provides an estimate of
the actual tolerances reached during magnet manufactur-
ing. We also investigate the relationship between random
variations along the axis of one magnet and random varia-
tions among the averages of a set of magnets.

The obtained scaling laws for the random geometric
multipoles have two main applications. On the one hand,
they provide a solid estimate that can be input in tracking
codes to evaluate beam stability. Moreover, they can be
used during magnet production to monitor the actual tol-
erances and to trace back specific features of a particular
magnet. Here we give estimates and applications to three
magnet designs (two dipoles and one quadrupole), but this
approach can be used for any type of coil layout.

The structure of the paper is the following. The main
Large Hadron Collider (LHC) dipoles are analyzed in
Sec. II. Numerical simulations to work out the scaling
law are given in Sec. II A. Experimental data are analyzed
within this framework in Sec. II B, where we distinguish
© 2000 The American Physical Society 122403-1
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random variations along the axis of a single dipole
(Sec. II B 1), and random variations from magnet to mag-
net (Sec. II B 2). The main LHC quadrupole is analyzed
in Sec. III, which is structured in the same way as Sec. II.
Analytical estimates and parametric dependence of ran-
dom multipoles due to random block displacements for
a generic magnet are given in Sec. IV. Conclusions are
drawn in Sec. V. The analysis of the previous five-block
design of the LHC dipole coil is given in Appendix A.
Detailed analytical computations of random errors are
given in Appendix B.

II. ANALYSIS OF THE LHC MAIN DIPOLE

A. Scaling law for random block displacements

Random fluctuations of cable positioning can be ana-
lyzed through Monte Carlo methods. A very simple ap-
proach [10] is to assume that the blocks of conductors are
rigid, and that they can freely move in the magnet cross
section plane. A block of conductors is characterized by
3 degrees of freedom: for instance, one can choose two
coordinates for the baricenter and an angle to fix the in-
clination of the block with respect to the horizontal axis.
A cross section of the six-block design of the LHC dipole
[11] is shown in Fig. 1.

Each block baricenter is shifted in the cross-section
plane by two orthogonal vectors whose amplitudes belong
to a Gaussian distribution with rms d�

p
3. Moreover, the

block is rotated around its baricenter by an angle such that
the block corners move according to the same Gaussian
distribution with d�

p
3 rms amplitude. With respect to

Refs. [7,8], we neglect block deformations, but we also
include the possibility of block rotations around the bari-
center. The multipolar expansion coefficients bn and an,

By�x, y� 1 iBx�x, y� � B0

X
n

�bn 1 ian�
µ

x 1 iy
Rref

∂n21

,

(1)
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FIG. 1. (Color) Cross section of the six-block LHC dipole coil.
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of the obtained coil cross section are then evaluated. Here
B0 is the main field of the magnet. In this way, random
displacements with rms amplitude d, equally shared by
the block degrees of freedom, generate a distribution bn

and an; the obtained multipole distributions are close to
Gaussian, and the sigmas of normal and skew components
bn and an are rather similar. Numerical results are given
in Fig. 2 (markers) for three different values of the rms
amplitude d (0.1 to 0.006 mm). Throughout this paper,
multipoles bn and an are given in 1024 units at the refer-
ence radius Rref � 17 mm. One can see that very regular
patterns emerge from the numerical simulations; indeed,
in a semilogarithmic scale numerical data are well fitted
by a one-parameter family of second-order polynomials in
the multipole order n; i.e.,

log�sn�d�� � a�d� 1 bn 1 cn2, (2)

where the parameter a contains all the dependence on the
rms displacement d. Equation (2) can be rewritten to the
explicit dependence on d,

sn�d� � dabngn2

; (3)

i.e., the sigma of the random multipoles is proportional to
the rms amplitude of the block displacement d, to a simple
power law bn and a quadratic power law gn2

. The fitting
constants for the five analyzed rms amplitudes, and their
averages, are given in Table I.

The power law bn is due to the Biot-Savart law: a cur-
rent line at a distance r generates a magnetic field of or-
der 1�r. This means that the magnetic field B diverges
on the position of the first conductor of the coil, whose
distance from the magnet center is in the LHC dipole

FIG. 2. Numerical estimate (markers) and parabolic fit (solid
line) of the geometric random multipoles due to random block
displacements of different amplitudes d for the six-block coil of
the main LHC dipole.
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TABLE I. Fitting constants a, b, and g [see Eq. (3)] for
random multipoles generated by random block displacements
for the six-block coil of the main LHC dipole

d (mm) a �mm21� b g

0.1 75.9 0.6180 0.9947
0.05 73.6 0.6324 0.9933
0.025 74.5 0.6209 0.9945
0.0125 72.1 0.6281 0.9939
0.006 25 73.5 0.6339 0.9932

Average 73.9 0.6266 0.9939

r0 � 28 mm. For this reason, the multipolar expansion
of the field is convergent for jrj � jx 1 iyj , r0 and the
field intensity has the following upper bound:

jBy 1 iBxj , k
X
n

jx 1 iyjn

rn
0

. (4)

Substituting it in Eq. (1) we obtain the upper bound for the
harmonic n

jbn 1 ianj , k0

µ
Rref

r0

∂n

. (5)

Assuming that this convergence condition on the mul-
tipolar coefficients holds also for their rms s�bn� and
s�an�, one obtains a rough estimate of the parameter
b � Rref�r0 � 17�28 � 0.607 that is indeed rather close
to the numerical value 0.626 (see Table I).

The nonlinear term gn2
provides a correction to the

power law that gives a faster decrease of the higher order
terms (g , 1). In general, the larger the blocks, the faster
the reduction of the high order multipoles with respect to
the power law (this can also be seen by a direct compari-
son of the five-block design with the six-block design of
the LHC dipole; see Appendix A).

In Sec. IV we develop an analytical model based on a
simplified geometry of the coil; in this case one can derive
analytical estimates for the random errors that agree well
with the numerical results and that give some analytical
insight on the dependence of random errors on magnet
parameters.

B. Analysis of experimental data

Several prototypes of the LHC dipoles have been con-
structed and tested in the past 10 years [12]. Here we
analyze the experimental data relative to four 15 m long
final prototypes [13]. Field quality is measured at room
temperature in the collared coils and in the assembled cold
mass, with a low current (10 A). The sensitivity of these
measurements is of the order of 1027 with respect to the
main field (i.e., 0.001 units in 1024). Measurements are
taken along 20 consecutive positions with a 750 mm ro-
tating coil. The first and last are discarded in our analysis
since they are affected by end effects. Therefore, one has
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18 data along the magnet axis: we compute the best es-
timates of the average and of the rms. With 18 data, the
rms estimate has a relative error of 30% (with a 95% con-
fidence limit).

One has two sets of data for each aperture, which are
analyzed independently. Sigmas of corresponding normal
and skew multipoles are then averaged, thus reducing the
error estimate to 17%. One can check that the variation of
the multipoles along the axis is not affected by the yoking
procedure, since the main contribution comes from the
collared coil. Data relative to four collared coils of the
LHC dipole prototypes are analyzed.

1. Multipole variations along the axis

We first analyze the variation of the multipoles along
the axis. The sigmas of these variations for the first final
prototype MBP2N2 are shown in Fig. 3. We consider the
average between the two apertures, normal and skew com-
ponents, separately. One can see that experimental data
agree extremely well with the decay worked out through
the Monte Carlo method, up to multipoles of order 10 and
higher. This means that the hypothesis of the random dis-
placements of the blocks is a very good approximation to
modelize random geometric errors. On the other hand, ex-
perimental data prove to be extremely sensitive. In our
case, the feed down of b11 on b10 and a10 is used to work
out the magnetic center, and therefore the sigmas of the
multipole of order 10 are zero (see Fig. 3). Experimen-
tal data are consistent with rigid random displacements of
blocks with rms of the order of 0.025 mm [see Eq. (3)].
This agrees with the specified tolerances on mechanical
components.

FIG. 3. rms of the multipoles along the axis for the LHC dipole
prototype MBP2N2 (markers) and scaling law for different am-
plitudes of random displacements d (solid line).
122403-3
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FIG. 4. rms of the multipoles along the axis for the LHC dipole
prototype MBP2O1 (markers) and scaling law for different am-
plitudes of random displacements d (solid line).

Our approach also allows detection of specific features
of the assembled magnet: for example, in Fig. 4 we show
the data of the prototype MBP2O1 that was assembled
[14] with shims between collars and coils whose thickness
varies along the axis up to 60.06 mm. This specific shim-
ming was used to follow the shape of the coil, to keep the
azimuthal prestress as homogeneous as possible along the
axis. Shimming usually affects the allowed multipoles if
the dipole symmetry is preserved. In this case, shimming
mainly affects the sextupole component b3, as can be seen
in a graph where experimental data are compared to the
scaling law (see Fig. 4).

2. Multipole variations between different magnets

If each magnet were composed by cross sections that
belong to a same distribution, with each multipole charac-
terized by an average and a sigma, the variation of the
multipoles along the axis of a single magnet would be
larger than the variation of the averages of each magnet.
Indeed, assuming a Gaussian distribution and a magnet
composed by N uncorrelated sections, the sigma of the
averages would be 1�

p
N times the sigma along the axis.

Therefore, the sigma along the axis would overestimate the
random component relevant for beam dynamics.

On the other hand, magnets produced with different
tooling, components, and assembling procedures would be
composed by cross sections belonging to different distri-
butions, characterized by different averages and sigmas.
In this case the sigma of the averages of all magnets can
be higher than the sigma along the axis. This could hap-
pen also to magnets belonging to the same production line,
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due to drifts in components induced by the wear of the
tooling.

Here we analyze the sigma of the averages of four col-
lared coils (eight apertures) of the first LHC dipole final
prototypes. The collared coils have been produced by three
factories (two by Alstom-Jeumont and one by Noell and
Ansaldo), using different tooling and components. The
sigma of these averages is plotted together with our scal-
ing law in Fig. 5. One observes much higher values, espe-
cially for the allowed multipoles b3, b5, b7, and b9, that are
on the curve corresponding to a random displacement of
0.1 mm. This is due mainly to relevant differences in the
thickness of the coil shims used to impose the azimuthal
prestress. Indeed, such shims determine the coil azimuthal
length, which is strongly correlated to allowed multipoles.
The other multipoles, with the exception of a2 and a4, have
values that agree with a random displacement of approxi-
mately 0.025 mm rms amplitude. More dispersion is ob-
served since a small number of apertures is considered.

One should conclude that, at this early stage of the
dipole production, the random component is larger than
the variation of the multipoles along the axis of a single
magnet. In particular, our graphs indicate that an improved
control of the coil azimuthal length should be employed to
reduce the allowed multipoles.

The experimental data of the rms of the multipole aver-
ages show relevant differences between normal and skew
components of the same order. This means that random
movements are not equally shared by all the symmetries.
One could include this effect, introducing additional fit-
ting parameters as proposed in Refs. [7,8], but statistics
on a wider set of magnets should be available.

FIG. 5. rms of the multipole averages for the first four LHC
dipole prototypes (markers) and scaling law for different ampli-
tudes of random displacements d (solid line).
122403-4
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III. ANALYSIS OF THE LHC MAIN QUADRUPOLE

A. Scaling law for random block displacements

The main LHC quadrupole is characterized by a four-
block coil, disposed on two layers (see Fig. 6). Also in this
case, we carried out a Monte Carlo analysis of the effect of
small rigid random displacements of the block positions,
assuming a Gaussian distribution of rms amplitude d. The
sigmas of the obtained multipole distributions are shown
in Fig. 7 (markers). Also in this case, one observes a very

0 10 20 30 40 50 60

FIG. 6. (Color) Cross section of the four-block LHC quad-
rupole coil.

FIG. 7. Numerical estimate (markers) and parabolic fit (solid
line) of the geometric random multipoles due to random block
displacements of different amplitudes d for the four-block coil
of the main LHC quadrupole.
122403-5
TABLE II. Fitting constants a and b [see Eq. (6)] for random
multipoles generated by random block displacements for the
four-block coil of the main LHC quadrupole.

d (mm) a �mm21� b

0.1 316 0.5495
0.05 269 0.5559
0.025 274 0.5546
0.0125 283 0.5546
0.006 25 285 0.5534

Average 285 0.5536

regular pattern, and a linear interpolation in the semiloga-
rithmic scale takes into account numerical data. The best
fit shown in Fig. 7 (solid lines) corresponds to a simple
power law

sn�d� � dabn; (6)

fitting constants worked out for different values of the am-
plitude rms d are given in Table II. In this case the power
law provides a good fit of experimental data. Moreover,
one has a factor of 4 higher value of the constant a with
respect to the dipole case: this means that the same dis-
placements produce 4 times higher variations of the rms
multipoles. This feature can be explained by our analyti-
cal model given in Sec. IV. This is not a concern for beam
dynamics since multipolar errors have to be integrated over
the quadrupole length (3.2 m) that is nearly 5 times smaller
than the dipole length.

B. Analysis of experimental data

Three quadrupole prototypes have been built at Saclay
[15]. Magnetic measurements at room temperature and
low current (12.5 A) have been carried out using a rotating
coil of 750 mm length. Multipole coefficients are mea-
sured in five consecutive positions along the magnet axis
[16]. The first and last are discarded since they are affected
by end effects. The obtained rms are affected by a large
error (70% with 2s confidence level, 40% when the aver-
age rms between two apertures is considered), but can still
be used in our analysis.

1. Multipole variations along the axis

The rms of the multipoles along the axis of the first
quadrupole prototype SSS3 versus the scaling law [Eq. (6)]
is shown in Fig. 8. One observes that the measured sigmas
are consistent with rigid random movements of the blocks
of 0.025 mm, such as in the case of the LHC dipoles.
The observed difference between experimental data and
scaling laws in the slope of the multipole decay could
be statistically nonsignificant, and should be verified by
a larger sample of data.
122403-5
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FIG. 8. rms of the multipoles along the axis for the LHC
quadrupole prototype SSS3 (markers) and scaling law for dif-
ferent amplitudes of random displacements d (solid line).

2. Multipole variations between different magnets

Contrary to the dipole case, all the quadrupole proto-
types were produced in the same laboratory. The analysis
of the rms of the averages of the six apertures (see Fig. 9)
shows that variations from magnet to magnet are somewhat
larger than the variations along the axis. This effect is par-
ticularly relevant in b6 and a4. Indeed, the values are much
closer to the sigma along the axis than in the case of the

FIG. 9. rms of the multipole averages for the first three LHC
quadrupole prototypes (markers) and scaling law for different
amplitudes of random displacements d (solid line).
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dipoles, where different factories were producing different
prototypes. With the exception of the aforementioned mul-
tipoles, the sigmas of the averages correspond to random
displacements of around 0.035 mm. The multipole decay
agrees well with our scaling law. The unexpectedly large
values of a4 and b6 correspond to small values of b4 and
a6, respectively. This means that a particular symmetry/
antisymmetry of the magnet is excited, and the correspond-
ing antisymmetry/symmetry for the same multipolar order
is not. Therefore, our hypothesis of a complete random-
ization of the coil displacements is not verified in this case.
Indeed, one has to point out the rather high error associ-
ated with the rms estimate due to poor statistics.

IV. ANALYTICAL ESTIMATE OF MULTIPOLES
DUE TO RANDOM DISPLACEMENTS

Here we give analytical formulas for multipoles gener-
ated by random displacements, assuming simple geome-
tries for the magnet coil. We analyze a generic 2N pole
magnet (N � 1 for a dipole, N � 2 for a quadrupole,
and so on), consisting of 4N poles. We make the fol-
lowing assumptions: (i) Each pole is a sector of radii
r1 and r2, and whose aperture is p��3N�: in this way
the first allowed multipole b3N is zero (see, for instance,
Ref. [1]); (ii) the current density in each pole is constant;
(ii) the contribution of transport currents only is consid-
ered (no iron yoke); (iv) the sector can undergo only rigid
translations.

The first assumption neglects the coil geometry that is
usually made of more than one layer, and the presence of
copper wedges that separate conductor blocks. The second
one neglects the small radial gradient in the current density
that is due to the cable keystoning. The contribution of
iron can be considered in the usual mirror approximation:
explicit formulas can be found in Refs. [10,17], where we
also prove that rotations of the sectors can be neglected in
a first approximation.

Under these simplifying hypotheses (see Appendix B for
detailed computations), one obtains the following estimate
of the rms sn of the multipole of order n due to a random
displacement of rms d:

sn ~ d
r1p
Nm

N 2 2

RN
ref�r

22N
1 2 r22N

2 �

µ
Rref

r1

∂n

F

µ
n 1 1
6mN

∂
,

(7)

where N denotes the magnet type (N � 1 for a dipole,
N � 2 for a quadrupole, and so on), Rref is the reference
radius where the multipoles are rescaled, r1 and r2 are
the inner and the outer radii of the coil, and m is the
number of subsectors that can move independently (i.e., the
number of blocks). The function F is defined as F�x� �
sin�px���px�.

The main dependence of s versus n is a power law
bn where b � Rref�r1, which corresponds to the power
122403-6
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law that can be naively derived from upper bounds on
the Taylor series of the multipoles (see Sec. II A). The
constant in front of the power law

a�N � ~
r1

p
Nm

N 2 2

RN
ref�r22N

1 2 r22N
2 �

(8)

features an interesting explicit dependence on the magnet
type: for instance, for a dipole, N � 1, one has

a�1� ~
r1

p
m1

1
Rref�r1 2 r2�

, (9)

while, for a quadrupole, performing the limit N ! 2, one
has

a�2� ~
r1p
2m2

1

R2
ref�logr1 2 logr2�

. (10)

The ratio between the dipole and the quadrupole term is

a�2�
a�1�

�

s
2m2

m1

r1 2 r2

Rref�logr1 2 logr2�
; (11)

for the LHC case one finds a ratio of around 3, in agree-
ment with the numerical estimate a�2��a�1� � 3.9 (see
the previous section).

The last term, F��n 1 1���6Nm��, in Eq. (7) is an oscil-
lating term whose absolute value is bounded by 1, and that
decreases for high multipoles with 1�n: therefore, it be-
comes negligible for high n with respect to the main term
bn . Indeed, for low n one can make a Taylor expansion
for x ø 1,

logF�x� � log
sinpx

px
� log

µ
1 2

p2x2

6

∂
� 2

p2x2

6
,

(12)

and, therefore,

F

µ
n 1 1
6Nm

∂
� exp

µ
2

p2

6
�n 1 1�2

36N2m2

∂
� g�n11�2

. (13)

For the LHC dipole one can take Nm � 6 and, therefore,
g � 0.997 in agreement with the numerical value g �
0.994 given in Sec. II A. For the quadrupole one can use
Nm � 8, obtaining g � 0.9994 to be compared to g �
1.0000 found with numerical simulations.

V. CONCLUSIONS

In this paper we have modeled random errors in super-
conducting magnets due to the geometric component, i.e.,
to small discrepancies in the coil position with respect to
the nominal design. Under the hypothesis that blocks un-
dergo random movements that preserve their shape, we use
a Monte Carlo method to work out a numerical estimate of
the rms values of the multipoles. The obtained numeri-
cal values show very simple patterns that can be fitted
122403-7
by scaling laws. We propose a power law plus a nonlin-
ear correction for the main LHC dipole coil, and a simple
scaling law for the main LHC quadrupole. An analytical
estimate based on simplifying assumptions supports these
scaling laws, also providing a useful analytical insight on
the parametric dependence.

The outlined methods can be used to provide a realis-
tic estimate of the geometric part of the random errors.
Moreover, it gives a link between random errors and the
corresponding rms amplitudes of the random block dis-
placements. Therefore, it can be used as a tool to monitor
the actual tolerances in the coil cross section during mag-
net production.

Comparison with experimental data for the first pro-
totypes confirm the estimated decay of the random mul-
tipoles. The rms of the multipoles along the axis of a
same magnet agree with random block displacements of
0.025 mm rms, for both the dipole and the quadrupole.
The rms of the averages of the analyzed magnets are
higher, especially in the case of the dipoles produced by
three different manufacturers at the very early stage of the
production. The relationship between the variation of the
multipoles along the axis and the variation of the multi-
poles over a set of magnet is also discussed. Our approach
can be generalized to other coil cross sections.
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APPENDIX A: FIVE-BLOCK LHC DIPOLE

The case of the five-block coil cross section previously
used in the LHC dipole prototypes has also been analyzed,
using the same techniques described in Sec. II A. The
result of the Monte Carlo simulation is showed in Fig. 10,
where data relative to three rms amplitudes d are shown.
Also in this case, numerical results (markers) are very well
fitted by a second-order polynomial in a semilogarithmic
scale. The same power law with a nonlinear correction [see
Eq. (3)] holds, with rather similar values of the constants
a, b, and g (see Table III).

The main difference is in the constant g that in the
five-block coil provides a more rapid decay of the high
order multipoles; we already pointed out in Sec. II A that
this is due to the larger size of the coil blocks. Indeed, this
effect is totally irrelevant from the point of view of beam
122403-7
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FIG. 10. Numerical estimate (markers) and parabolic fit (solid
line) of the geometric random multipoles due to random block
displacements of different amplitudes d for the five-block coil
of the main LHC dipole.

dynamics: the two designs can be considered equivalent as
far as random multipoles are concerned.

The comparison of the scaling law for the five-block coil
with experimental data relative to the 10 m long magnet
prototype MBL1N2 is given in Fig. 11. Also in this case,
the rms of the multipoles along the axis are consistent with
random displacements of the block with an rms amplitude
of around 0.025 mm.

FIG. 11. rms of the multipoles along the axis for the LHC
dipole prototype MBL1N2 (markers) and scaling law for differ-
ent amplitudes of random displacements d (solid line).
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TABLE III. Fitting constants a, b, and g [see Eq. (3)] for
random multipoles generated by random block displacements
for the five-block coil of the main LHC dipole

d (mm) a �mm21� b g

0.1 79.6 0.6397 0.9907
0.05 75.9 0.6353 0.9911
0.025 71.3 0.6457 0.9903
0.0125 70.5 0.6295 0.9917
0.006 25 79.1 0.6281 0.9919

Average 75.3 0.6353 0.9912

APPENDIX B: ANALYTICAL ESTIMATE OF
RANDOM ERRORS

Let us first consider the case of a line current of intensity
I, located at the point zc � xc 1 iyc; this generates a field
at the point z � x 1 iy corresponding to the Biot-Savart
law,

By 1 iBx �
m0I
2p

1
z 2 zc

� 2
m0I
2p

X̀
n�1

zn21

zn
c

, (B1)

where we expanded the fraction as a Taylor series. This
has to be compared to the standard multipolar expansion

By 1 iBx �
X̀
n�1

Cnzn21 � BNRN21
ref

X̀
n�1

cn
zn21

Rn21
ref

,

(B2)

where BN � CN is the component of the main field and
Rref is the reference radius that defines cn � bn 1 ian.
One gets the expression for cn:

cn � 2
1

BNRN2n
ref

m0I
2p

1
zn

c
. (B3)

A small variation of the conductor position Dzc leads to a
variation in cn,

Dcn �
n

BNRN2n
ref

m0I
2p

Dzc

zn11
c

. (B4)

We now assume that the magnet is composed by 4N sec-
tors of angular amplitude p��3N �, so that the first order
allowed multipole is set to zero (see, for instance, [1]). We
now integrate all the Dcn contributions over the sector that
carries a constant current density J,Z

Dcn ds �
nDzc

BNRN2n
ref

m0J
2p

3
Z r2

r1

Z p�3N

0

e2if�n11�

rn11
c

r dr df , (B5)

where we assumed that the block undergoes a rigid transla-
tion and therefore Dzc is the same for all the sector points.
We also assume that Dzc has zero average and standard
deviation d, and performing the integral we obtain the rms
of the multipoles
122403-8
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s�cn� �
n

BNRN2n
ref

m0J
2p

r12n
1 2 r12n

2

n 2 1
F

µ
n 1 1

6N

∂
pd
6N

,

(B6)

where we defined

F�x� �
sinpx

px
. (B7)

We now assume a constant current density J, replacing it
by the total current I flowing in the sector divided by the
sector area p�r2

2 2 r2
1 ���3N�,

s�cn� �
n

n 2 1
1

BNRN2n
ref

m0I
2p

r12n
1 2 r12n

2

r2
2 2 r2

1

3 F

µ
n 1 1

6N

∂
d . (B8)

The main field BN can be evaluated in a similar way by
performing the integral over the sectors of the expression
given in Eq. (B2),

BN � 3
p

3 N
m0I

p2�r2
2 2 r2

1 �
r22N

1 2 r22N
2

N 2 2
. (B9)

Substituting in Eq. (B8) we finally obtain for a single sec-
tor

s�cn� �
r1

3
p

3

N 2 2

RN �r22N
1 2 r22N

2 �

µ
R

r1

∂n

F

µ
n 1 1

6N

∂
.

(B10)

We now assume that each sector is made up of m blocks,
each of them moving independently; the final sigma for the
magnet is

p
4N�m the above sigma,
122403-9
s�cn� �
r1

3RN
ref

s
4

3Nm
N 2 2

r22N
1 2 r22N

2

µ
R
r1

∂n

F

µ
n 1 1

6N

∂
.

(B11)
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