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Residual vertical dispersion can be a significant performance limitation for the LEP collider be
the associated vertical emittance increase reduces the luminosity of the machine. To make the se
orbits yielding small vertical emittances fast and deterministic, a simultaneous correction of the
orbit and the residual dispersion was implemented at LEP. The principle of the correction a
resulting performance gains are discussed.
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I. INTRODUCTION

In lepton storage rings, small beam sizes at collis
points or in insertion devices are required for highest
minosity or brightness. In colliders, the luminosityL can
be expressed as

L �
kbI2

b

4pe2frevs�
xs�

y
, (1)

with kb the number of bunches per beam,Ib the current per
bunch, andfrev the revolution frequency. In the absen
of local coupling, the horizontal and vertical beam size
the collision pointss�

x ands�
y are given by (u � x, y)

�s�
u�2 � �D�

usd�2 1 b�
u´u , (2)

where D�
u is the dispersion,sd is the relative energy

spread,b�
u is the betatron function, and́u is the beam

emittance. In the presence of weak local coupling,
beam size receives an additional contribution proportio
to the emittance of the orthogonal plane and to the coup
factor. The number of bunches, the betatron functionsb�

x
andb�

y , and the horizontal emittancéx are given by the
machine and optics design. Optimization of the lumin
ity with those parameters is possible but limited by ot
constraints (e.g., the dynamic aperture, momentum a
ture, …). For example, the horizontal beam emittance
be optimized by a proper choice of the machine opt
a higher phase advance per cell yielding a smaller n
ral horizontal emittance. Dynamic aperture requireme
may, however, limit the increase of phase advance.

The vertical emittancé y is a powerful parameter fo
luminosity optimization. Neglecting beam-beam effec
it can be written approximately as

´y � ´y0 1 k´x 1 rE2�Drms
y �2, (3)

with E the beam energy andr a numerical coefficient
For an ideal planar storage ring the vertical rms dispers
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Drms
y and the global couplingk vanish, and the emittanc

is given by´y0, the limit from quantum excitation due t
the finite emission angle of synchrotron radiation photo
In general,́ y0 is many orders of magnitude smaller th
practically achievable emittances. Residual coupling
tween the planes and a nonzero vertical dispersion,
due to unavoidable machine imperfections, lead to a fi
vertical beam emittance. The global coupling parametek

is a function ofDQ, the distance of the tunes to the diffe
ence coupling resonance, and can be expressed to a
approximation by

k �
D2

g

D2
g 1 2D

2
Q

. (4)

HereDg is the width of the stop band around the coupli
resonance where the horizontal and vertical tunes bec
“undefined” due to the orientation of the normal mod
axes [1,2]. The stop band width or “closest tune approa
can be measured by sweeping the betatron tunes a
each other.

We note that optimization of the vertical emittance
not critical for a machine operated well above the bea
beam limit where it is determined by the strength of
beam-beam interaction. This is, for example, the cas
LEP when it is operated at beam energy of 45 GeV.

LEP operation at high energy

The Large Electron Positron collider (LEP) is a 26.7 k
circumference storage ring [2]. The two beams circulat
the same vacuum chamber and collide at four interac
points. Each beam consists of four equidistant bunc
The 500 beam position monitors installed in LEP m
sure the beam position in both planes. 261 horizontal
312 vertical orbit correctors are available for orbit ste
ing. At LEP, the best performances were traditionally o
tained with the help of so-called golden orbits [3]. Su
orbits were found empirically with global and local orb
corrections and with knobs generating specific pattern
dispersion waves over the ring. By continuously reus
and improving the corrector settings and steering of
© 2000 The American Physical Society 121001-1
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golden orbits, peak performances are achieved by “natu-
ral” selection on the time scale of a few weeks to a few
months. Choosing as a target for the orbit correction the
flattest possible orbit does not give good results, even for
a well aligned machine and for beam position monitor off-
sets smaller than 0.1 mm.

After 7 yr of operation at beam energies around 45 GeV,
LEP started running above 80 GeV in 1996. At those high
energies the beam-beam limit is increased significantly due
to the stronger radiation damping, and beam-beam tune
shifts above 0.08 have been observed [2,4]. The beam-
beam limit is not reached even at the highest bunch cur-
rents. The strong increase of the horizontal emittance with
energy, ´x ~ E2, is compensated by shifting the horizon-
tal damping partition number from 1.0 to 1.6 and by in-
creasing the horizontal phase advance per arc cell from
90± to 102±. Though some beam-beam blowup is ob-
served, the vertical emittance is mainly given by the beam
tuning.

Coupling is generated at LEP by misaligned machine
elements and by the four large experimental solenoids. At
high energy the contribution of the latter becomes weaker
since ksol ~ 1�E. Imperfections of the solenoid coupling
corrections are therefore less critical, but they may still
contribute to local coupling around the collision points.
Four pairs of skew quadrupoles around each of the four
collision points are used for coupling correction.

When all solenoids and skew quadrupoles are switched
off, the measured stop band width is Dg � 0.02. It is
mainly generated by rolled quadrupoles and vertical orbit
offsets in the sextupoles. For a typical vertical closed orbit
rms of 0.6 mm, the orbit offsets in the sextupoles contribute
to the total coupling with Dg � 0.006. At a beam energy
of 100 GeV the stop band produced by the four solenoids
is Dg � 0.019. After correction of the coupling, the width
of the stop band is reduced to Dg # 0.002. The correction
is first performed with the solenoids off to compensate the
machine coupling and in a second step with the solenoids
switched on. For Dg # 0.002, the contribution of coupling
to the vertical emittance is negligible for the operating
betatron tunes of Qx � 98.35 and Qy � 96.18; see Fig. 1.
The coupling correction is regularly checked to track varia-
tions from orbit changes.

At high energy the vertical rms dispersion becomes the
main ingredient to the vertical beam emittance and beam
size at the collision points because of its strong depen-
dence on energy; see Eq. (3) [5]. To improve the LEP
performance, work on dispersion correction was started
in 1998. Both empirical optimization with dispersion
bumps and a deterministic correction algorithm were stud-
ied. The best results were achieved with a deterministic or-
bit and dispersion correction scheme developed at SLAC,
the so-called dispersion free steering (DFS) [6–9]. The
dispersion free steering scheme implemented for LEP is
described, and the impact on the machine performances is
presented.
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FIG. 1. (Color) Simulated dependence of the vertical emittance
´y for LEP as a function of the distance DQ of the tunes
from the difference coupling resonance. The beam energy is
100 GeV and the horizontal emittance is ´x � 44 �nm�. The
LEP working point corresponds to DQ � 0.17 with horizontal
tune Qx � 98.35 and vertical tune Qy � 96.18.

II. DISPERSION FREE STEERING PRINCIPLE
AND FORMALISM

The principle of dispersion free steering consists of a si-
multaneous correction of the orbit and the dispersion using
one of the standard orbit correction algorithms. This guar-
antees that the beam orbit is flat while at the same time
minimizing the residual dispersion.

In most machines the beam position is measured with
a set of N beam position monitors (BPMs) which are dis-
tributed over the ring. The orbit is corrected with a set of
M dipole magnets (correctors). The beam position at the
BPMs can be represented by a vector �u

�u �

0
BB@

u1
u2
· · ·
uN

1
CCA , (5)

and the corrector strengths (kicks) by a vector �u

�u �

0
BB@

u1
u2

· · ·
uM

1
CCA . (6)

A response matrix A (dimension N 3 M) is used to de-
scribe the relation between corrector kicks and beam po-
sition changes at the monitors. The element Aij of the
response matrix corresponds to the orbit shift at the ith
monitor due to a unit kick from the jth corrector.

The task of the orbit correction is to find a set of correc-
tor kicks u that satisfy the following relation:

�u 1 A�u � 0 . (7)

In general, the number of BPMs (N) and the number of
correctors (M) are not identical and Eq. (7) is either over
121001-2
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(N . M) or under (N , M) constrained. In the for-
mer and most frequent case, Eq. (7) cannot be solved
exactly. Instead, an approximate solution must be found,
and commonly used least square algorithms minimize the
quadratic residual

S � k �u 1 A �uk2. (8)

Dispersion free steering is based on the extension of
Eq. (7) to include the dispersion at the BPMs. The ex-
tended linear system is

µ
�1 2 a��u

a �Du

∂
1

µ
�1 2 a�A

aB

∂
�u � 0 , (9)

where vector �Du (dimension N) represents the dispersion
at the BPMs. B is the N 3 M dispersion response matrix,
its elements Bij giving the dispersion change at the ith
monitor due to a unit kick from the jth corrector. The
weight factor a is used to shift from a pure orbit (a �
0) to a pure dispersion correction (a � 1). In general,
the optimum closed orbit and dispersion rms are not of
the same magnitude and a must be adjusted for a given
machine. a can, in principle, be evaluated from the BPM
accuracy and resolution. Applied to Eq. (9), a least square
algorithm will minimize

S � �1 2 a�2 k �u 1 A �uk2 1 a2k �Du 1 B �uk2. (10)

Singular response matrices are a well-known problem of
orbit corrections. The singularities are related to redundant
correctors, i.e., areas of the machine where the sampling
of the orbit is insufficient. Such situations yield numeri-
cally unstable solutions where large kicks are associated
to minor changes in the orbit. A standard cure consists in
disabling a subset of correctors and removing the corre-
sponding lines from the linear systems of Eqs. (7) and (9).
Regularization can also be obtained by extending Eq. (9)
to constrain the size of the kicks,

0
B@

�1 2 a� �u
a �Du

�0

1
CA 1

0
@ �1 2 a�A

aB
bI

1
A �u � 0 . (11)

Here �0 is a null vector of dimension M, I is a unit matrix of
dimension M 3 M, and b is a kick weight. The quadratic
residual now contains the rms strength of the corrector
kicks,

S � �1 2 a�2 k �u 1 Auk2 1 a2k �Du 1 B �uk2

1 b2k �uk2, (12)

and large kicks are suppressed since they receive a penalty
which can be adjusted with b.

Various other constraints can be added to the linear sys-
tem to be solved, for example, to maintain a constant or-
bit length or to stabilize the beam at given locations in
the ring. Adequate weight factors can be used to control
121001-3
the importance of such constraints. It is also possible to
correct the machine coupling using a similar scheme. The
orbit coupling of horizontal corrector kicks into the ver-
tical plane is then minimized using skew quadrupoles as
correcting elements [10]. To simplify the expressions in
the following sections, vector �d and matrix T are defined
as

�d �

0
@ �1 2 a� �u

a �Du
�0

1
A, T �

0
@ �1 2 a�A

aB
bI

1
A , (13)

with

�d 1 T �u � 0 . (14)

A. Singular value decomposition (SVD) and orbit
eigenvectors

Dispersion free steering is particularly interesting in
conjunction with the singular value decomposition (SVD)
algorithm [11,12], because it allows a simultaneous limi-
tation of the corrector kick strength. The SVD algorithm
is a powerful tool to handle singular systems and to solve
them in the least square sense. For M $ N the singular
value decomposition of matrix T has the form

T � UWVt � U

0
BB@

w1 0 · · · 0
0 w2

· · · · · · 0
0 · · · 0 wM

1
CCAVt, (15)

where W is a diagonal M 3 M matrix with non-negative
diagonal elements and Vt is the transpose of the M 3 M
orthogonal matrix V,

VVt � VtV � I , (16)

while U is an N 3 M column-orthogonal matrix

UtU � I . (17)

The vector �q �i�, corresponding to the ith column of
matrix V,

�q �i� �

0
BB@

V1i

V2i

· · ·
VMi

1
CCA , (18)

is an eigenvector with eigenvalue w2
i $ 0 of the M 3 M

symmetric matrix TtT [12,13],

TtT �q �i� � w2
i

�q �i�. (19)

It follows from Eq. (16) that the M vectors �q �i� form an
orthonormal base of the corrector space since

� �q �i� ? �q �j�� � �q �i�t �q �j� � dij . (20)
121001-3
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FIG. 2. Orbit eigenvalue spectrum for LEP in the vertical plane
with a � 0.2 and b � 0. The last four eigenvalues correspond
to singular solutions in the low-beta sections around the inter-
action points.

Each eigenvector �q �i� is a linear combination of the usual
physical correctors. The orbit and dispersion response
�y�i�associated to the kick eigenvector �q �i�

�y�i� � T �q �i� � UWVt �q �i� � wi

0
BB@

U1i

U2i

· · ·
UNi

1
CCA (21)

corresponds (modulo a factor wi ) to the ith column of ma-
trix U. The M vectors �y�i� are orthogonal but not normal-
ized,

� �y�i� ? �y� j�� � �y�i�t �y�j� � �q �i�tTtT �q � j� � w2
i dij .

(22)

The eigenvalues (or weights) wi are a quantitative measure
of the orbit and dispersion response to a given �q �i�, since
� �y�i� ? �y�i��1�2 is proportional to the orbit and dispersion
rms associated to �y�i�. The higher the eigenvalue, the
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FIG. 3. Example of normalized orbit eigenvectors (w1 �y�i��wi)
for the vertical plane at LEP with a � 0.2 and b � 0. Only the
orbit component of the eigenvector is shown here. The harmonic
content of the first eigenvectors reflects the machine symmetries.
The main harmonics are Q (the machine tune) for eigenvector
1, Q 6 1 for eigenvector 9, and Q 6 4 for eigenvector 21. The
eigenvectors associated to small eigenvalues (bottom right) often
correspond to long “bumps” over some section of the machine.
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FIG. 4. Normalized orbit (w1 �y�9��w9) and kick ( �q �9�) eigen-
vector for eigenvalue number 9 (see also Fig. 3). The orbit (top
left) and dispersion (top right) components of �y�9� are shown to-
gether with the corrector setting corresponding to �q �9� (bottom).

larger the response. Very small eigenvalues correspond to
singular solutions where combinations of correctors lead to
essentially no response on the measured orbit or dispersion.

Examples of eigenvalue spectra and eigenvectors for
LEP are shown in Figs. 2–4. By default, the eigenvalues
and eigenvectors are always ordered by decreasing eigen-
value. The eigenvectors associated to the largest eigen-
values correspond to orbit and dispersion responses that
contain only few and strong harmonics close to the ma-
chine tune. Those eigenvectors are combinations of a large
number of small corrector kicks, but their effect on the or-
bit and dispersion is large because the kicks add up reso-
nantly due to favorable phase relations, as can be seen in
Fig. 4. It can be shown that the harmonics of the eigenvec-
tors with the largest eigenvalues always reflect the machine
(super) symmetries [13]. Such a spectrum of harmonics is
shown for LEP in Fig. 5. For small eigenvalues, the solu-
tions often correspond to orbit and dispersion bumps over
some section of the machine.

Orbit Harmonic

E
ig

en
va

lu
e 

N
um

be
r

0

10

20

30

40

50

70 80 90 100 110 120 130

FIG. 5. Harmonics of the normalized vertical orbit eigenvec-
tors �w1 �y�i��wi� for the 50 largest eigenvalues as a function of
the eigenvalue number (ordered by decreasing eigenvalue). The
strength of the harmonics increases from white to black. The
vertical integer tune is 96.
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B. Orbit corrections with eigenvectors

Provided that all wi are nonzero, the SVD decomposi-
tion can be used to invert matrix T and solve Eq. (14),

�u � 2VW21Ut �d . (23)

For M � N , Eq. (23) is the solution of the linear system,
and, for M $ N , it is the result of the least square mini-
mization. Singular elements, corresponding to values of
wi that are very small or zero, can be regularized by setting
1�wi to 0 in matrix W21.

In practice, the eigenvector decomposition yields a
simple way of handling Eq. (23), in particular, when the
orbit is corrected with only the k eigenvectors associated
to the largest eigenvalues [13]. The measured orbit and
dispersion vector �dm and the corresponding corrector
settings �um are decomposed in terms of orbit and kick
eigenvectors

Ci � � �dm ? �y�i�� and Cc
i � �um ? �q �i�� . (24)

The vector �do, defined as

�do �
NX

i�1

Ci �y�i�, (25)

corresponds to the correctable part of the orbit and disper-
sion. The residual orbit and dispersion given by �dm 2 �do

cannot be corrected given the correctors that are installed
in the machine. This residual is generated by the corrector
density, the BPM errors, and the machine alignment. A
correction based on the k largest eigenvalues corresponds
to the following corrector setting increments:

�uc �
kX

i�1

2
Ci

wi

�q �i�. (26)

For k � N , Eqs. (26) and (23) are identical. For a bare
orbit correction, where the effect of already used correctors
is first unfolded, the new absolute corrector settings are

�uc �
kX

i�1

µ
2

Ci

wi
1 Cc

i

∂
�q �i�. (27)

Figure 6 gives an example of the prediction for orbit, dis-
persion, and corrector strengths in the case of a vertical
bare orbit correction at LEP. Good corrections for the
dispersion and the orbit are already obtained with approxi-
mately 80 eigenvectors. Since the rms strength of the cor-
rectors increases smoothly with the number of eigenvalues,
the corrector kicks can be controlled by limiting the num-
ber of eigenvectors for the correction.

The SVD algorithm is also suited to identify suspicious
monitor readings. Because corrections based only on the
largest eigenvalues act principally on the main harmonics
of the orbit and the dispersion, local structures and particu-
larly suspicious data become more visible. The simultane-
ous correction of the dispersion is also a protection against
spurious local bumps, since such bumps generate local or-
bit distortions but global dispersion waves.
121001-5
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FIG. 6. (Color) Predicted rms of the vertical orbit (y), dispersion
(Dy), and corrector kicks (u) for a bare orbit correction as a
function of the number of used eigenvectors (for a � 0.2 and
b � 0).

C. Orbit corrections with MICADO

MICADO [14] is a least square algorithm based on House-
holder transformations which is widely used for orbit cor-
rections. It is a fast algorithm which performs an iterative
search for the most effective corrector. MICADO is, together
with SVD, one of the most common orbit correction al-
gorithms. For a nonsingular matrix, a MICADO correction
with all N correctors and an SVD correction with all N
eigenvectors yield identical solutions. For corrections with
a limited number of correctors or eigenvectors, and for sin-
gular matrices, the two algorithms behave differently.

A major difference between SVD and MICADO is the
corrector strength distribution, MICADO using fewer but also
much stronger kicks. The corrector strength rms can be
easily controlled with SVD over the number of eigenvalues
that are included in a correction; see Fig. 6.

A correction of a small number of localized kicks is
handled very effectively by MICADO, particularly when the
response matrix is accurate, in which case MICADO can be
used to identify the sources of the kicks. On the other
hand, corrections based on a few eigenvectors with the
largest eigenvalues are similar to corrections of the main
harmonics. Such a scheme spreads out the correction of a
few kicks over the whole machine which can be an asset
when the strength of correctors is limited. To compensate
an isolated kick locally, a large number of eigenvectors
must be included in the correction such that the linear
combination forming �uc yields a single nonzero corrector.

To correct a large number of small imperfections and
misalignments, for example, in the case of a well aligned
machine, the SVD algorithm may provide a more natural
solution by distributing a large number of small kicks over
the machine. The concentration of the correction onto a
limited number of correctors by MICADO is very efficient
but may not always be natural.
121001-5
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Singularities of the response matrix, associated to very
small eigenvalues, are handled more easily with SVD,
since it is sufficient to avoid using the corresponding eigen-
vectors in the corrections procedure. There is no need
to disable correctors to regularize the response matrix. A
nonzero kick strength weight b can also be used to avoid
disabling correctors with MICADO.

III. EXPERIMENTAL RESULTS OF DISPERSION
FREE STEERING AT LEP

Dispersion free steering was tested in 1998 and imple-
mented in the LEP control system for the 1999 run. The
response matrices are evaluated from the machine model
with the MAD program [15]. The large energy loss per turn
at high energy (�2%), which affects the response matri-
ces of the two beams differently, is taken into account. The
machine model is accurate enough to converge extremely
well, even when all corrector settings are unfolded in the
case of bare corrections. Corrections can be evaluated for
the individual beams, for both beams at the same time, or
for the average of the two beams (the most frequent case).
Since the size of matrix T can be as large as �2300 3 300,
the SVD algorithm is not applied directly to matrix T but
to the symmetric N 3 N matrix TtT of Eq. (19). The
eigenvalue problem of Eq. (19) can be solved by a vari-
ety of other mathematical algorithms other than SVD; see
Ref. [11]. A comparison of different algorithms confirmed
the numerical stability of the results. The optimum value
for a ranges between 0.1 and 0.3 and, in general, a is set
to 0.2 (for an orbit rms expressed in mm and a dispersion
rms expressed in cm). This value is in agreement with esti-
mates based on the machine alignment and the accuracy of
the dispersion measurement. Results are not very sensitive
to the precise value of a. b is usually set to 0.1 to avoid
problems with singular solutions localized in the low-beta
insertions.

A. Dispersion correction with single beams

A small vertical dispersion is obtained with DFS us-
ing base line corrections on bare orbit and dispersion in
both planes. Only 80 to 120 eigenvectors are used to
limit the rms kick strengths to �5 6 mrad. This num-
ber matches the typical quadrupole kick of approximately
6 mrad due to the vertical rms quadrupole misalignment of
150 mm, although only 312 out of over 800 quadrupoles
are equipped with a nearby vertical orbit corrector. In-
creasing the number of eigenvalues does not, in general,
improve the performance. DFS corrections based on the
MICADO algorithm yield a good rms dispersion and orbit but
larger emittances and worse luminosity performance. This
observation may indicate that, by using a large number
of weak correctors, the SVD algorithm compensates the
closed orbit kicks more locally than MICADO, which con-
centrates the correction over fewer correctors.
121001-6
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FIG. 7. (Color) The vertical orbit (y), dispersion (Dy), and cor-
rector kick strengths (u) after a traditional bare correction of the
LEP orbit using MICADO (i.e., a � 0) are shown on the three
top figures (a), (b), and (c). The same quantities are shown after
a correction with the DFS procedure on the bottom figures (d),
(e), and (f). This experiment was performed with a single beam.

A traditional bare orbit correction using MICADO (a � 0)
is compared to a DFS correction with SVD in Fig. 7.
While the orbit rms is not affected significantly, the
rms vertical dispersion is reduced from typically 5 to
1.0–1.5 cm, which corresponds to the smallest achievable
residual rms dispersion at LEP. For the available mo-
mentum range of Dp�p � 0.15%, a dispersion of 1 cm
corresponds to a measured beam position shift of only
15 mm, at the limit of the LEP BPM resolution. The rms
kick strength is reduced by almost a factor of 2.

Once a good orbit is established, the corrector settings
are reused in subsequent runs and the orbit is corrected to-
wards the reference using a few correctors with the MICADO

algorithm. The dispersion is stable over time. Small drifts
with respect to the optimum are easily corrected using DFS
with a MICADO correction.

B. Dispersion correction with two beams

When LEP is operated above 80 GeV, each beam con-
sists of four equidistant bunches. There are eight beam
encounters along the circumference, but experiments are
installed around only four of the eight collision points.
At the four other interaction points the beams are locally
separated in the vertical plane. The separation bumps are
made with electrostatic elements and produce vertical dis-
persion of opposite sign for the two beams, which can be
reduced only through the design of the separation bumps
and the local optics. For the 1999 LEP run the local optics
was modified to reduce the rms dispersion generated by
those bumps from 2.5 to 1.5 cm. This guarantees that their
contribution to the vertical emittance is negligible. The
smallest rms dispersion of 1.5 cm obtained during LEP
operation in 1999 corresponds to the minimum originat-
ing from the separation bumps. The separation bumps and
the resulting dispersion difference between the beams are
shown in Fig. 8.
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FIG. 8. (Color) Design (left) and measured (right) vertical orbit
difference Dy and dispersion difference DDy between the e1

and e2 beam. The four separation bumps are clearly visible on
the closed orbit difference. The measured rms orbit difference
outside the separation bumps is 0.2 mm. The residual vertical
dispersion difference of 3.1 cm is generated by the separation
bumps. This corresponds to a dispersion of 1.5 cm for each
beam, but of opposite sign for e1 and e2.

C. Performance improvements

The vertical emittance extracted from the measured lu-
minosity for 1998 and 1999 is shown in Fig. 9. At LEP the
strong beam-beam effect, with values of the beam-beam
parameter exceeding 0.08, blows up the vertical beam size
and prevents a linear increase of the beam-beam parame-
ter with bunch current. To avoid strong biases due to
beam-beam blowup, the emittances are compared for a
similar range of bunch currents. The vertical emittance is
extracted from the measured luminosity using the design
vertical betatron function at the collision point and the de-
sign horizontal emittance. Measurements of the horizontal
beam spots at the collision points using beam-beam de-
flection scans [16] indicate that the blowup in the horizon-
tal plane is small at the currents that are considered here.
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FIG. 9. (Color) Average vertical beam emittance in collision for
bunch currents of 500 to 550 mA for each LEP fill in 1998 and
1999. The emittance is extracted from the measured luminosity.
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FIG. 10. (Color) Simulated dependence of the vertical emittance
´y on the rms vertical dispersion. The typical vertical dispersion
rms for 1998 and 1999 are indicated by the two bands.

From Fig. 9 it is clear that with the help of DFS the ver-
tical emittance in 1999 was rapidly pushed below the best
values of the 1998 run. Contrary to previous years where
the search for good (golden) orbits was done empirically,
in 1999 the base line performance was established deter-
ministically with DFS. The best emittance values were
reduced by almost a factor of 2. They correspond to emit-
tance ratios of 0.6% (´x � 25 nm). This ratio is often
quoted as an indicator for the beam quality, but it is im-
portant to note that the concept of emittance ratio is not
adequate for our case since ´y is not dominated by cou-
pling. At LEP the emittance ratio can be changed artifi-
cially by varying ´x, and ratios below 0.5% can be obtained
for larger ´x.

The dependence of the vertical emittance ´y on the rms
vertical dispersion was simulated with the MAD program
and is shown in Fig. 10. ´y scales with the square of the
rms vertical dispersion [see Eq. (3)], albeit with a spread
that depends on the details of the orbit and dispersion
pattern. The simulated and measured emittances agree
quite well. Since the rms dispersion was reduced from
3–4 cm in 1998 down to 1.5–2 cm in 1999 with DFS, an
emittance improvement by a factor of 4 would be expected,
while only a factor of 2 was observed. The difference may
be explained by a larger beam-beam blowup for smaller
´y [17]. It is also possible that the beam sizes at the
interaction points were limited by local coupling between
the two planes, in which case the determination of the
emittance from the luminosity overestimates the true value.
Attempts to improve the performance by tuning the local
coupling did not yield important gains.

IV. CONCLUSION

Dispersion free steering, a deterministic and simultane-
ous correction of the closed orbit and the dispersion, was
implemented in LEP. The correction scheme is relying
mainly on the SVD algorithm to solve the least square
problem. The vertical dispersion in LEP was reduced to
the expected minimum, only limited by residual dispersion
121001-7
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generated from separation bumps and by the measure-
ment noise. With DFS the empirical search for golden
orbits yielding peak performance could be made determin-
istic and a significantly smaller residual dispersion was
obtained. This resulted in a vertical emittance gain of
approximately 50%.
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