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Cavity longitudinal loss factor measurement by means of a beam test facility
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A new method for the measurement of loss factor for an rf cavity is presented. The method consists
of measuring the above quantity by means of the detection of both the rf voltage induced by an electron
bunch in the device under test and the bunch charge. The device to be investigated is a copper reentrant
T-shaped cavity. The experimental results and their comparison with analytical and numerical results
are presented.

PACS numbers: 29.27.Bd
I. INTRODUCTION

Improvement of beam cooling techniques such as laser
cooling allows the achievement of very cold ion beams
inside storage rings. Moreover, with the appropriate cool-
ing force, ordered ion structures, the so-called Coulomb
crystals [1] can be obtained. One of the most important
requirements that an ion ring devoted to such a purpose
should fulfill is to avoid every kind of coherent instability
that may cause beam losses [2]. One of these instabilities
is related to beam-environment interaction by means of the
longitudinal coupling impedance (LCI ) and the loss factor
(LF) [3]. Therefore, a precise knowledge of such a quan-
tity allows a more accurate estimation of instability growth
rate and, in turn, the cooling rate needed.

Usually CI and LF measurements are performed in a
laboratory using short current pulses propagating on a
wire inside the accelerator element under test (coaxial wire
method ) [4], but this method is questionable for two rea-
sons: (i) the electromagnetic properties of an empty cham-
ber differs from a chamber with a wire inside and (ii) the
coaxial wire method is not straightforward to use for ve-
locities b , 1, as in the case of cooled ion beams.

The main feature of our experiment is the indirect mea-
surement of LF with an electron beam whose energy varies
in the range 18–65 keV (0.37 # b # 0.69). The device
under test is an rf reentrant T-shaped copper cavity.

In this article, we will compare experimental results with
those coming from a theoretical formulation. In fact, an
analytical method for the LF calculation has been devel-
oped for any particle velocity and for some relevant accel-
erator structures [5].
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II. THE EXPERIMENTAL METHOD:
A DESCRIPTION

Let us consider a resonant rf cavity inserted on a vacuum
chamber and excited by a charged particle beam, passing
through the cavity, whose current is supposed to be fre-
quency modulated. The energy lost by the beam due to the
field induced by the beam itself can be described in terms
of the LF k:

k �
1
p

Z 1`

0
Zr�v� dv , (1)

with Zr the real part of the longitudinal coupling
impedance (see the Appendix).

In the neighborhood of a cavity resonant frequency vn,
the interval of integration is reduced to a small region
around the resonance, leading to the following formulation
for k (as shown in the Appendix):

kln �
vnRn

2Qn
, (2)

where Rn is the cavity shunt resistance and Qn is the qual-
ity factor of the nth mode.

It can be shown (see the Appendix) that, for a bunch
of charge q and spectral density jF�v�j, the LF is related
to the energy stored in the nth mode Wn after the bunch
passage by means of the relation

Wn � q2klnjF�vn�j2. (3)

For a Gaussian particle distribution we can write
jF�vn�j � exp�2v2

ns2�2� where s is the rms temporal
bunch width.
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Let us now consider an external measurement line con-
nected to the cavity. The energy balance for the nth mode
gives us the following relation, valid for a mode slowly
decaying with respect to the beam transit time:

dWn

dt
� 2

Wn

tn
� 2�Pln 1 Pext� , (4)

where tn �
QLn

vn
is the decay time of the nth mode, Pin is

the power dissipated inside the cavity, Pext is the power ra-
diated in the measurement line. QLn is the “loaded quality
factor” which takes into account the power flowing towards
the measurement line; it turns out to be

QLn � vn
Wn

Pin 1 Pext
.

The peak voltage Urf induced in the measurement line with
impedance R is Urf �

p
2RPext. Using Eqs. (3) and (4)

we get

Urf�q� �

s
2RklnanjF�vn�j2

�1 1 an�tn
q � rnq , (5)

where we have introduced the coupling coefficient an de-
fined as an �

Pext

Pin

Equation (5) shows a linear dependence between the
rf voltage and the beam charge. It is very important to
point out that this linear relationship holds as far as the
time bunch length stays constant. If that is not the case,
Eq. (5) must be modified in order to take into account
bunch lengthening due to space charge forces and laser
instability. If we assume that space charge effects are
a first-order correction with respect to the “unperturbed”
bunch duration s0, we obtain

s � s0 1 aq , (6)

where the angular coefficient a takes into account the way
in which bunch duration is modified by the space charge.

Therefore, by substituting into Eq. (5), we get

Urf�q� �

s
2klnan exp�2v2

ns
2
0 �R

�1 1 an�tn

3 q exp

∑
2

v2
n

2
aq�2s0 1 aq�

∏

� rnq exp

∑
2

v2
n

2
aq�2s0 1 aq�

∏
. (7)

This equation tells us that the dependence of the induced
rf voltage on the charge q can be described by means of
two parts: the first one, linear, containing in the coefficient
rn the loss factor and so the “interaction” beam cavity; a
second one, exponential, due to the effect of space charge
on the bunch length and on the time spent in the cavity.

The LF can be extracted from rn as follows:

kln � r2
n

�1 1 an�tn

2RanjF�vn�j2
. (8)
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The relations (7) and (8) give us the base for the setting up
of the experimental measurement method.

The induced rf voltage in the cavity can be measured
as a function of the incoming beam charge by varying its
value. At the same time and separately the beam charge
has to be measured. In this way, an experimental rela-
tion between the two quantities can then be found. By
means of Eq. (7), the data �q,Urf� are interpolated varying
the two parameters rn and an; the LF can then be cal-
culated from the coefficient rn [see Eq. (8)] once an and
tn have been measured. Therefore, we get the loss fac-
tor for a given resonant mode frequency and for a fixed
beam energy.

Changing the beam energy, the couple of data �q,Urf�
is measured again as before and a new value of LF can be
found. The same has to be done to study the behavior of
kn as a function of the frequency.

III. EXPERIMENTAL APPARATUS AND
TECHNIQUE

From the above discussion it is clear that, as far as
Eq. (7) holds, by measuring several times, independently,
the induced rf voltage in the cavity and the amount of
beam charge passing through the cavity, it is possible to
interpolate the data and to extract the required LF from the
coefficient rn.

The experimental setup is shown in Fig. 1.
A bunched electron beam is emitted by a GaAs pho-

tocathode excited by a frequency doubled Nd:YLF laser.
The measured rms pulse duration of photon bunch is
s0photon � �70 6 10� ps. The photocathode is installed
in a Pierce type electron gun. A voltage applied between
anode and cathode accelerates the bunch. By varying
the anode-cathode voltage it is possible to perform mea-
surements for different values of the particle energy and
therefore of the velocity, b.

A Faraday cup (FC), put at the end of the measurement
line, is used to collect and measure the bunch charge q
passing through the cavity.

The beam transport to the device under test (DUT)
(rf cavity in our case) and then to the FC is accomplished
by using a magnetic lens system.

By varying the laser intensity by means of polaroid
filters the photoemitted current changes; in correspon-
dence of this, beam charge intensity varies from �1.2 6

0.06� 3 107 electrons (minimum photoemitted charge)
to �4.2 6 0.21� 3 108 electrons (maximum photoemitted
charge). Following our assumption [Eq. (6)], the rms
“unperturbed” electron bunch duration s0 is equal to
s0photon.

Since the proposed experimental technique is valid only
around cavity resonances, as a first step we must mea-
sure the cavity resonance frequencies and relative loaded
quality factors without beam flowing. For our experiment
we chose two TM resonant frequencies whose measured
112001-2
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FIG. 1. The experimental setup for the longitudinal loss factor (LLF) measurement.
values, corresponding loaded quality factors, and relative
decay time are shown in Table I.

The induced rf voltage in the cavity and the charge col-
lected on the FC are measured with two separated lines at
the same time, as shown in Fig. 2. For this purpose, high
voltage (HV) and laser triggers are synchronized by means
of a pulse generator with a repetition rate of 0.5 Hz.

In order to properly reconstruct the rf signal from
the cavity, we need to acquire its entire frequency band.
Looking at Table I it is clear that the filters usually in-
stalled inside the spectrum analyzer (maximum bandwidth
of 3 MHz) are not sufficient. For this reason we had to
properly customize a second intermediate frequency (IF)
output on our spectrum by inserting a 30 MHz bandwidth
filter. In this way we were able to acquire the entire rf
signal inside the cavity at the working frequencies. The
output signal amplified by an rf amplifier is then read out
on a LeCroy oscilloscope.

The output signal u0
rf�t�, measured on the oscillo-

scope, is

u0
rf�t� � Urf exp�2G0

nt�
∑

cos�v0
nt� 2

G0
n

v0
n

sin�v 0
nt�

∏
,

with v0
n � 2pf0

µ
1 2

1
4Q2

n

∂
and G0

n �
pf0

Qn
.

(9)

From this equation, Urf can be obtained and introduced
in Eq. (7).

TABLE I. Loaded Q’s, coupling factors, and decay times for
the two resonant frequencies.

n fn (GHz) QLn an tn (ns)

1 0.8567 1178 0.2 438
2 2.361 595 0.5 80
 FIG. 2. Scheme for the simultaneous determination of Urf

and UFC.
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FIG. 3. Scheme for the reflection coefficient measurement.

The charge q can be calculated by measuring the volt-
age UFC induced on FC by the electron bunch through the
relation q � CFCUFC, where CFC � 667 pF is the capac-
itance of the Faraday cup.

The coupling an appearing in Eq. (7) can be deter-
mined from the measurement of the reflection coefficient
rn through the relation [6]

an �

8>><
>>:

1 2 jrnj

1 1 jrnj
, if an , 1 ,

1 1 jrnj

1 2 jrnj
, if an $ 1 .

(10)

For both working frequencies, the reflection coefficients
have been measured according to the scheme shown in
Fig. 3. an values are reported in Table I.

As the final step, we need to know the frequency re-
sponse of the Urf measurement line without beam flowing
according to the scheme shown in Fig. 4, in order to take
into account cable attenuation and amplification.

The frequency response is given by

H�f� �
Vout�f�
Vin�f�

.

For each resonant frequency, the “true” value of rn is
related to the measured value by means of the relation
rtrue
n � rmeasured

n �H�fn�.
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FIG. 4. Scheme of the frequency response measurement line.
TABLE II. Response of the q-Urf measurement line at the
operating frequencies.

n fn (GHz) H�fn�

1 0.8567 2.068
2 2.361 1.312

The measured values of H�fn� are shown in Table II.

IV. EXPERIMENTAL RESULTS AND
COMPARISON WITH THEORY

We have measured the values of q and Urf�q� for differ-
ent values of beam energies and for two resonant frequen-
cies. For each of the beam energies, the couples [q-Urf�q�]
have been interpolated according to Eq. (7).

We can write Eq. (7) as

y�x� � x exp�ax2 1 bx 1 g� , (11)

with x � q, y � U, a � 2
v2

na
2

2 , b � 2v2
nas0, g �

ln�rn�.
Provided x . 0 and y . 0, we can linearize Eq. (11)

with respect to the fitting parameters obtaining

Y � ln�y�x� � ax2 1 bx 1 g . (12)

Therefore, by fitting with the least squares method the
couples (Y , x) according to Eq. (12), we can obtain the
best value for g and then for rn.

A comparison between experimental and theoretical data
for each measured frequency is shown in Figs. 5 and 6 as
a function of beam energy. The first theoretical curve is
the result of a simulation performed by using a modified
version of the URMEL code. The second is the result of
the calculation of LF for our T-shaped lossy cavity with
a new formulation of mode matching technique [7]. The
error bars, calculated by means of error propagation, are
of 15% for the first frequency and 14% for the second one.
In the evaluation of these errors we have considered the
dependence of kln on an, tn, rn, and F�vn�, as shown in
Eq. (8).
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FIG. 5. Loss factor as a function of bunch energy; com-
parison between theoretical and experimental results at
f � 856.73 MHz.

FIG. 6. Loss factor as a function of bunch energy; comparison
between theoretical and experimental results at f � 2361 MHz.

V. CONCLUSIONS AND PERSPECTIVES

The experimental results and the theoretical evaluations
turned out to be in good agreement. As a consequence, the
proposed measurement method is reliable and useful for
possible future applications. In particular, under certain
circumstances it has been confirmed that nonrelativistic
beams are favored in the case of coherent instabilities due
to beam-environment interaction. At the same time we
have to point out that further improvements are possible,
especially with regard to measurement implementation. In
particular, error bars can be reduced, in order to obtain
more precise data. This can be achieved by using shorter
and more stable laser pulses. In fact, for a fixed frequency
and beam energy, in the case of laser intensity stability,
the effect of space charge forces can be easily recognized
[8]. Indeed, laser pulse duration stability reduces the error
112001-5
in the measurement of F�vn�. Moreover, the shorter the
laser pulse duration, the wider the region in which a linear
relation between Urf and q is fulfilled. Consequently, the
estimate of rn will be more accurate.

APPENDIX: THE LONGITUDINAL LOSS FACTOR

The dynamics of a particle beam traveling inside an ac-
celerator is affected by the electromagnetic (e.m.) fields
induced (wakefields) by the beam itself in the interac-
tion with the vacuum chamber. This interaction can be
described by means of the wake functions (potentials) in
time domain or the longitudinal coupling impedance in fre-
quency domain.

For a charged particle q1, traveling with constant ve-
locity y (y � bc) along the axis z of an arbitrary shape
vacuum chamber, the electromagnetic energy lost is given
by

U�r1� � 2
Z 1`

2`
F�r1, z1, t�ẑ dz , (A1)

with t � z1�y and F the Lorentz force due the e.m. fields
induced by the charge in the presence of discontinuities.
The quantity U takes into account both the energy lost in
the resistive walls and the energy from the diffracted fields.

Let us define the LLF [9] as the energy lost by the charge
q1 per unit charge squared,

k�r1� �
U�r1�
q2

1
. (A2)

Consider now a second particle q, displaced apart from q1;
its energy will change as a consequence of the interaction
with the e.m. fields produced by the first particle by an
amount

U21�r1, r, t� � 2
Z 1`

2`
F�r1, r, z1, z, t�ẑ dz , (A3)

where t � t 2 z1�y is the time delay between the two
particles.

We define the longitudinal wake function as follows:

w�r, r1,t� �
U21�r, r1, t�

q1q
. (A4)

Let us notice that if b , 1 and in the limit of zero distance
between the two particles, then

k � wz�0� . (A5)

In the frequency domain let us define the longitudinal
coupling impedance as the Fourier transform of the longi-
tudinal wake function

Z�r1, r, v� �
Z 1`

2`
wz�r1, r, t�e2jvt dt . (A6)

For simplicity, we will consider only the case r1 � r � 0,
thus omitting the radial dependence.

It is possible to relate k and Z�v� in the following way:
112001-5
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k �
1
p

Z 1`

0
Zr�v� dv . (A7)

Let us consider now a resonant cavity. In the neighbor-
hood of a resonance frequency vn, the cavity behaves like
a RLC parallel circuit for the particles; in this frame the
longitudinal coupling impedance can be written as [10]

Z�v� �
Rn

1 1 jQn� v

vn
2

vn

v �
, (A8)

where Rn and Qn are the cavity shunt resistance and the
unloaded quality factor of the nth resonant mode. Rn is
defined (see circuit theory) as the ratio of the accelerating
voltage on the cavity axes to the power loss in the cavity
walls.

If we are very close to the resonance vn, by combining
Eqs. (7) and (8), it is possible to write the longitudinal LF
for the nth mode as

kn �
vnRn

2Qn
. (A9)

Consider now, instead of a point charge exciting the cavity,
a distribution of particles i�t� such that

q1 �
Z 1`

2`
i�t� dt . (A10)

For this distribution, the longitudinal wake function W �t�
is simply the convolution product of w�t� and i�t�,

W �r, t� �
1
q1

i�t� � w�r, t� . (A11)

As a consequence, the bunch loss factor K of this distri-
bution is given by

K�r� �
1
q1

Z 1`

2`
W �r, t�i�t� dt . (A12)
112001-6
In analogy with Eq. (2), we can express the energy lost
by a charge distribution i�t� as

U � q2
1K . (A13)

Therefore, recalling Eq. (12) and the definition of LCI we
can write

U �
1
p

Z 1`

0
ZR�v� jI�v�j2 dv . (A14)

Let us assume now a bunch with a spectral distribution
I�v� � qF�v� which is nearly constant around the reso-
nance frequency vn. In this case, the e.m. energy lost in
the nth mode can be expressed as a function of the loss
factor, remembering Eq. (9),

Un � q2
1knjF�vn�j2. (A15)
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