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Vlasov simulation of the microwave instability in space charge dominated coasting ion beams
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Advanced storage ring concepts for intense ion beams often require operation far outside the stability
boundaries provided by Landau damping. Whether a machine can be operated in such a regime depends
on the phase space dilution after saturation of the microwave instability. A Vlasov simulation model
is employed to analyze the saturation mechanisms in space charge dominated coasting beams. The
stabilizing effect of space charge [I. Hofmann, Laser Part. Beams 3, 1 (1985)] is addressed to fluidlike
mode coupling effects.

PACS numbers: 29.20.Dh, 29.27.Bd, 52.65.–y
I. INTRODUCTION

Intense beams in storage or accumulator rings operated
below transition are an integral part of many advanced
accelerator applications, such as, e.g., heavy ion driven
inertial fusion (HIDIF) [1] and proton drivers for neutrino
factories. The success of these applications depends
crucially on the conservation of longitudinal beam qual-
ity during the required storage time. The longitudinal
resistive microwave instability is regarded as one of the
main limiting factors. Most of the theoretical as well
as experimental work has been done mainly for high-
energy machines operating at or above transition (see, e.g.,
[2]). It has been pointed out by several authors that below
transition nonlinear space charge phenomena can be of
fundamental importance. Based on the hydrodynamic
equations for a cold beam, the relevance of nonlinear
wave phenomena, such as wave steepening and solitary
waves, was pointed out in Ref. [3]. Steepening of long-
wavelength modes (wavelengths much longer than the
beam pipe circumference) observed in the heavy ion cooler
experimental storage ring (ESR) was found in agreement
with the cold fluid theory (see Ref. [4]). A kinetic simu-
lation based on the Vlasov-Fokker-Planck equation was
employed in Ref. [5] to analyze space charge induced long-
lived hole structures observed in the ESR experiment. The
possibility of a nonlinear stabilization of the microwave
instability in a space charge dominated beam was first
studied by particle-in-cell (PIC) computer simulations in
Ref. [6]. Using beam parameters relevant for a storage
ring in a heavy ion fusion driver scenario, it was demon-
strated that a sufficiently strong space charge impedance
stabilizes the microwave instability. The stabilization was
related to mode coupling and Landau damping provided
by a self-generated thin tail of the velocity distribution. A
detailed understanding of the stabilizing mechanisms and
their range of validity in the impedance plane is crucial
for high current ring design studies. In the present work
we perform a detailed parameter study inside and outside
the stability boundary. Our study is based on the direct
numerical integration of the Vlasov equation (“Vlasov
simulation”). For the purpose of resolving space charge
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induced long-time phenomena, the direct integration has
the advantage of being “noiseless.” Another advantage
compared to a PIC code is the homogeneous resolution in
phase space. Vlasov simulations are now routinely used
in the analysis of nonlinear kinetic plasma phenomena
(see, e.g., [7,8]).

The structure of the paper is as follows. In Sec. II we
give the kinetic equation describing the time evolution in
longitudinal phase space. In Sec. III we review the results
of the linearized Vlasov theory for an intense beam. In
Sec. IV we describe our Vlasov simulation model. A de-
tailed discussion on the collective mechanisms leading to
the damping of a finite perturbation in an intense ion beam
is presented in Sec. V. In Sec. VI the Vlasov simulation
code is applied to the microwave instability.

II. KINETIC DESCRIPTION

Let �u0 � v0 be the angular frequency, y0 the velocity
of the synchronous particle, and �u0 1 D �u and y0 1 yz

the angular frequency and velocity of a nonsynchronous
particle in a ring of radius R. The coordinates in a system
comoving with the synchronous particle are

z � RDu, yz � �z � RD �u . (1)

The relative velocity yz is related to the momentum
spread s � Dp�p0 by yz � 2hb0cs, with the fre-
quency slip factor h � 1�g2

t 2 1�g2, the relativistic
factor g0 � 1��1 2 b

2
0 �1�2, and b0 � y0�c. For the

initial state we assume a coasting beam and a Maxwellian
velocity distribution f0�yz� with the initial FWHM mo-
mentum spread s0. The time evolution of the distribution
f�z, yz , t) is governed by the Vlasov equation

≠f

≠t
1 yz

≠f

≠z
2

qh

g0m
Ez

≠f

≠yz
� 0 , (2)

with the total longitudinal electric field Ez�z, t�, the ion
charge q, and the ion mass m. The line charge density rL

and the rms momentum spread s are given through

rL�z, t� � q
Z `

2`
f dyz , (3)
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s2 �
1

�hy0�2

Z 2pR

0

Z `

2`
y2

z f dyz dz . (4)

Fluctuations in the line density of a coasting beam cause
a longitudinal electric field acting on the beam ions. In
accelerator physics the concept of ring impedances is used
to obtain the electric field amplitude resulting from a line
density perturbation at the nth harmonic of the revolution
frequency v0,

En � 2
1

2pR
ZnIn . (5)

Here, In � b0crL,n and En denote the amplitudes of the
beam current and the resulting longitudinal electric field.
Zn is the total ring impedance acting at the nth harmonic.
At low beam energies the space charge impedance is usu-
ally dominant. For the case of a transversely uniform beam
of radius a in a circular beam pipe of radius b, it was shown
in Ref. [3] that the longitudinal space charge impedance
can be approximated as

Zsc
n

n
� 2i

gZ0

b0g
2
0

1
1 1 �n�nc�2 , (6)

with Z0 � 377 V, g � 1 1 2 ln�b�a�, and the cutoff har-
monic nc � 2pR�lc determined by the length scale pa-
rameter lc � g

21
0 pa

p
g. The space charge impedance

is proportional to the harmonic number in the long wave-
length regime and vanishes at wavelengths of the order
of lc due to the image charges on the inner side of the
beam pipe.

In addition to the purely reactive space charge
impedance [Eq. (6)], many of the vacuum chamber ele-
ments through which the beam travels have a cavitylike
structure whose individual contributions to the total ring
impedance can be represented as (shunt impedance Rs,
quality factor Q)

Zcav
n �

Rs

1 1 iQ�vn�vr 2 vr�vn�
, (7)

with the eigenfrequency vr and vn � nv0. Often the to-
tal impedance due to imperfections of the ring environment
is described in terms of a broadband impedance �Q � 1�
of Zbb�n & 10 V at resonance, with vr in the GHz range.

III. REVIEW OF THE LINEARIZED THEORY

The linear modes following from the linearization of the
Vlasov equation are characterized by a complex frequency
shift Dv � v 2 nv0 (harmonic number n). The real
part DvR determines the coherent frequency shift and the
imaginary part DvI the damping or growth rate. It is
convenient to introduce scaled impedances according to

Vn 2 iUn �
2I0q

pmc2b
2
0g0jhjs

2
0

3

∑
Re

µ
Zn

n

∂
1 i Im

µ
Zn

n

∂∏
, (8)
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with the average current I0 and the ring impedance Zn.
For general operating points in �Un, Vn� space one evalu-
ates the dispersion function for Dv following from the
linearized Vlasov equation. This determines the corre-
sponding region of stability (DvI # 0) that is provided by
Landau damping. Figure 1 shows the stability boundary
evaluated for a Maxwellian distribution function. We de-
fine Vbb as the scaled broadband impedance at resonance.

For the beams inside the HIDIF storage rings, for ex-
ample, one typically assumes that their longitudinal prop-
erties are dominated by the space charge impedance. In
the limit of a space charge dominated beam (Un ¿ 1 and
Un ¿ Vn), we can use the dispersion relation for a cold
beam to obtain the coherent frequency shift explicitly as

DvR

nS
� U1�2

n , (9)

with the incoherent frequency shift S � 2hv0s�2. By
using the space charge impedance Eq. (6) in the long
wavelength approximation we define the space charge
parameter,

Usc � Unønc �
2I0qgZ0

pmc2b
3
0g

3
0 jhjs

2
0

. (10)

The phase velocity of long-wavelength modes is c0 �
RSU1�2

sc . A small initial current perturbation can be repre-
sented as a superposition of slow (c0 , 0) and fast (c0 .

0) modes. The space charge parameter Usc, defined in
Eq. (10), is a measure of the magnitude of the coherent ve-
locity c0 relative to the incoherent thermal velocity of the
beam ions RS. As the space charge impedance approaches

FIG. 1. (Color) The stability boundary provided by linear Lan-
dau damping (solid black line) together with the area (red) of
“stabilization due to space charge induced mode coupling.”
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wavelengths around lc, the phase velocity of these modes
cn � RSU1�2

n decreases.
For the imaginary part of the frequency shift in the limit

of a space charge dominated beam we obtain

DvI

nS
� 6

1
2

Vn

U
1�2
n

1
p

2
U3�2

n �RS�2

µ
df0

dyz

∂
yz�cn

.

(11)

The first term on the right-hand side (rhs) of Eq. (11)
follows from the dispersion relation for a cold beam and
leads to the growth of slow modes and the damping of
the fast modes due to a resistive impedance (Vn . 0).
The second term on the rhs of Eq. (11) accounts for Lan-
dau damping due to resonant ions with yz � 6cn in the
limit of weak damping (DvI ø DvR). Landau damping
causes the damping of small amplitude modes provided
that df0�dyz , 0.

IV. SIMULATION MODEL

In order to analyze the nonlinear mechanisms leading
to the saturation of the microwave instability we have to
integrate the Vlasov equation [Eq. (2)], together with the
self-consistent electric fields, numerically. The integration
(Vlasov simulation) is performed on a grid in �z, yz� space
using the time splitting scheme described in Ref. [9] and
more recently in Ref. [10]. At each time step the elec-
tric space charge field is calculated from a Poisson solver
on a grid in (r, z) space, assuming a transversely uniform
beam of radius a [r�r, z� � rL�z���pa2�] in a conduct-
ing beam pipe of radius b. The longitudinal field is found
from averaging the r dependence over the homogeneous
distribution function. Other possible contributions to the
total electric field are calculated each time step using their
impedance representation. The relevant numerical parame-
ters are the number of points in z and yz (respectively, Nz

and Ny), the cutoff velocity ymax, and the time step Dt.
The simulation of long-time phenomena in space charge
dominated beams is complicated by the smallness of the
cutoff wavelength lc relative to typical ring circumfer-
ences. For the grid spacing along the z axis we have to
require Dz , lc also to prevent numerical instabilities. In
our simulations we choose a beam pipe with b � 0.05 m
and a�b � 0.5 resulting in lc � 0.12 m. To limit the
number of points along the z axis to Nz � 512 we re-
strict our numerical study to a periodic beam pipe of the
length L � 5 m leading to a cutoff harmonic nc � 41 in
our simulation model. The mesh in velocity space must
be dense enough to resolve the initial Maxwellian veloc-
ity distribution (FWHM width 2RS) and large enough for
the coherent velocity c0 ¿ RS. We typically chose the
cutoff velocity at ymax � 4c0 and the number of points as
Ny � 400. Actually, the choice of Ny is more difficult if
we are interested in the long-time evolution of nonlinear
phenomena involving small electric fields, such as, e.g.,
104202-3
nonlinear Landau damping. In this case the particle mo-
tion is close to free streaming. If the grid spacing is Dy

and n is the initially exited mode number, there is a recur-
rence occurring at TR � 2pR��nDy�, that can be easily
detected when simulating linear Landau damping (see also
[7]). The recurrence time should always exceed the simu-
lation time T . Taking n � nc we obtain TR � lc�Dy. Fi-
nally, the time step is determined through Dt , Dz�ymax.

V. NONLINEAR COLLECTIVE PHENOMENA IN
STABLE BEAMS

In this section we ignore any resistive impedance �Vn �
0� and account for the effect of space charge only. By
analyzing the damping of an initial current modulation dI
of the form

I�z, t� � I0 1 dI � I0 1 In cos�nz�R 2 DvRt� (12)

we can isolate the mechanisms relevant for the saturation
of the longitudinal instability in space charge dominated
beams. The knowledge of the damping rate in the presence
of space charge is important for the prediction of instability
thresholds and saturation levels.

A. Nonlinear Landau damping

Landau damping is commonly regarded as the major
mechanism responsible for the damping of coherent modes
and thus for beam stability. The concept of Landau damp-
ing is the assumed basis of “overshoot” theories (see, e.g.,
Refs. [11]) formulated in the framework of quasilinear
theory. Quasilinear theory predicts the saturation level
of an unstable mode, assuming that stability is reestab-
lished by Landau damping due to formation of a quasilin-
ear plateau (see, e.g., [12]). However, from the nonlinear
theory of electron plasma waves it is well known that the
concept of Landau damping fails for sufficiently large ini-
tial wave amplitudes (“nonlinear Landau damping”). This
was confirmed in Ref. [7] by means of Vlasov simulations.
Experimental results on nonlinear Landau damping in a
high-energy proton beam were reported in Ref. [13].

Here we analyze the validity of Landau damping for a
beam current modulation [Eq. (12)] at a harmonic n close
to the cutoff harmonic (microwave regime). The break-
down of Landau damping is due to beam ions trapped
in the self-excited space charge field of amplitude En �
InjZscj��2pR�. Ions trapped in the space charge field per-
form synchrotron oscillation with the so called bounce fre-
quency

DvB

nS
�

µ
In

I0

∂1�2 DvR

nS
�

µ
In

I0

∂1�2

U1�2
n . (13)

The concept of Landau damping fails if the damping
time exceeds the trapping time. In terms of the frequency
shifts the range of validity is DvB ø DvI . The con-
dition DvB � DvI determines a “threshold” current
perturbation
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FIG. 2. Time evolution of the current amplitude obtained from
the Vlasov simulation in comparison with Landau damping
[Eq. (11)].

dIth � I0

µ
DvI

DvR

∂2

. (14)

For initial perturbations exceeding dIth, one can expect
the breakdown of the linearized Vlasov theory and thus
of the concept of Landau damping. This is demonstrated
using our Vlasov simulation model for a space charge pa-
rameter Usc � 10 and an initial modulation at n � 12
(corresponding to a wavelength of 0.42 m) with dI�I0 �
0.01, exceeding dIth�I0 by a factor of 10. Figure 2 shows
the time evolution of the current amplitude obtained from
the simulation. For t � 0.5ttrap �ttrap � Dv

21
B �, the cur-

rent amplitude decreases exponentially with the Landau
damping rate

t21
L �

p

2
U3�2

n �RS�2 df0

dyz

Ç
yz�cn

� 2pU2
n �ln2�3�2 exp�2Un ln2� , (15)

FIG. 3. (Color) Contour plot of the asymptotic distribution
function lnf�z, yz� together with the corresponding line density
rL�z� and the velocity distribution lnf�yz� obtained from the
Vlasov simulation by starting with a current modulation at
n � 12 and Usc � 10.
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following from Eq. (11) with Vn � 0. For times ex-
ceeding ttrap we observe amplitude oscillations with the
bounce frequency. The asymptotic state shown in Fig. 3
is characterized by a strong local deviation of the velocity
distribution from the initial Maxwellian (around yz �
21.2c0) and by a persistent current amplitude determined
by the ions trapped in the self-consistent space charge
field. Such a state is commonly called a Bernstein-Green-
Kruskal mode [14] in plasma physics.

Summarizing the discussion on nonlinear Landau damp-
ing we can say that in space charge dominated beams even
small perturbations of the order of a few percent do not
damp to zero, although resonant ions are present. There-
fore, the concept of Landau damping (e.g., due to the for-
mation of a quasilinear plateau) is at least questionable
in order to predict the saturation amplitudes of unstable
modes.

B. Wave steepening and breaking

So far we assumed that mode coupling is irrelevant and
focused on the time evolution at an isolated harmonic.
For sufficiently large amplitudes this assumption fails due
to the broadband nature of the space charge impedance
[Eq. (6)], leading to a coupling of all harmonics up to
n � nc. The most simple manifestation of mode coupling
towards higher harmonics is represented by the phenome-
non of wave steepening that can be described in the cold
fluid limit (s0 � 0) of the Vlasov equation. If we use
the space charge electric field resulting from a general line
density modulation in the long wavelength approximation

Esc
z � 2

g

4pe0g
2
0

≠rL

≠z
, (16)

the equations for the evolution of the line density and the
fluid velocity �u � �yz�� are

≠rL

≠t
1

≠

≠z
�rLu� � 0,

≠u

≠t
1 u

≠u

≠z
� 2

c2
0

rL0

≠rL

≠z
,

(17)

with the average line density rL0 and the phase velocity
c0 � RSU1�2

sc . By choosing appropriate initial conditions
we can either excite a backward (slow) c0 , 0 or a for-
ward (fast) c0 . 0 running wave. The analytic solution
of the nonlinear cold fluid equations (see Ref. [4]) shows
that an initial harmonic line density perturbation develops
into a nonlinear wave with a steep gradient, causing the
generation of higher order harmonics, that is, of shorter
wavelength harmonics. The time instant tbreak at which
≠rL�≠z becomes infinite (“wave breaking”) is given by

t21
break �

3
2

In

I0
DvR . (18)

In Ref. [4] it was shown that the cold fluid model de-
scribes very well the wave steepening observed in ESR
experiments for t , tbreak. The time evolution for t *

tbreak cannot be obtained by means of Eqs. (17) because
104202-4
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of the long wavelength approximation for the space charge
field. Nevertheless, one can regard tbreak as the time
scale for mode coupling towards higher order modes. If
linear Landau damping is suppressed by particle trap-
ping (tL . ttrap), mode coupling due to wave steepen-
ing becomes the dominant decay mechanism (“decay rate”
tbreak) for an initial harmonic perturbation with n ø nc.

C. Solitons

The nonlinearity in the fluid equations [Eqs. (17)] leads
to wave steepening. On the other hand, if the phase ve-
locity depends strongly on wavelength (dispersion), steep
gradients will tend to smooth out. A solitary wave re-
sults when the nonlinear steepening is balanced by the dis-
persive spreading, yielding a localized disturbance which
propagates without distortion. Solitary waves of different
heights propagate with different velocities cs. The term
soliton describes solitary waves which maintain their iden-
tity and shape after collisions with other solitary waves
traveling at different speeds. Based on the cold fluid equa-
tions including dispersion the possibility of solitary waves
in particle beams was pointed out in Ref. [3]. Dispersion
is introduced by the shielding provided by the beam pipe,
causing the phase velocity to drop according to

cn �
c0p

1 1 �n�nc�2
. (19)

By comparing Eq. (19) with the phase velocity of ion-
acoustic waves in plasmas (see, e.g., [12]) we see that both
expressions are exactly the same if we exchange the Debye
length lD by k21

c � R�nc. In fact, there is an analogy
between the shielding by the beam pipe and the Debye
shielding of ion-acoustic waves in plasmas, where soliton
solutions exist. For weak dispersion ion-acoustic solitons
are governed by a Korteweg–de Vries (KdV) equation
(see, e.g., [12]). By using the analogy with ion-acoustic
waves, exchanging kD by kc, we obtain the stationary so-
lution of the KdV equation for a particle beam

drL

rL0
� 3dM sech2��dM�2�1�2kc�z 2 Mc0t�� , (20)

with dM � M 2 1 (Mach number M � cs�c0). A more
rigorous treatment would start from the standard small
parameter expansion (dM ø 1) of the cold fluid equa-
tions [Eqs. (17)] in the limit of weak dispersion [correc-
tion 	≠3rL�≠z3 to Eq. (16)].

The question of whether or not solitons can be generated
from an arbitrary current perturbation cannot be answered
easily. One condition is that the perturbation must be
sufficiently strong to provide the energy for the creation
of a soliton. Kinetic effects that lie beyond the cold fluid
approximation can cause the decay of solitons.

We use the Vlasov simulation to see whether solitons
can be generated from an initial current modulation.
104202-5
Unlike our treatment of Landau damping in Sec. V A, we
start from a long-wavelength modulation at the lowest
harmonic (n � 1) of our simulation model, corresponding
to a wavelength of 5 m. The space charge parameter
is Usc � 10, and the initial amplitude is dI�I0 � 0.1.
Figure 4 shows the time evolution of the distribution func-
tion together with the velocity distribution and the line
density. At t � tbreak we clearly observe the steepening
of the wave. Subsequently, a train of localized structures
develops on the crest of the wave. The localized structures
are of the sech2 type. Their width is of the order of
several cutoff wavelengths, but they are not stationary.
Later in time (t � 18tbreak) we observe (see Fig. 5) the
formation of a single solitonlike structure of the form
Eq. (20). Also, this structure finally decays, probably due
to the exchange of energy with reflected ions, but similar
structures keep on appearing and disappearing. Exchange
of energy decelerates a small fraction of the beam ions
towards yz � 22c0.

It is worth noting that line density profiles similar to
Fig. 4 were observed in a cooled Ca201 beam in the ESR
interacting with the rf cavity impedance tuned to the sec-
ond harmonic, corresponding to a wavelength of 55 m. In
Ref. [15] the observed train of localized structures on the
crest of the steepened wave was related to possible higher
order resistive impedances in the ESR. Our work shows
that these structures can develop due to space charge only.

FIG. 4. (Color) Contour plots of the distribution function
lnf�z, yz� together with the corresponding line density rL
and the velocity distribution lnf�yz� obtained from the Vlasov
simulation by starting with a current modulation at n � 1 and
Usc � 10.
104202-5
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FIG. 5. (Color) Line density obtained from the Vlasov simula-
tion at t � 18tbreak (black line) and Eq. (20) with dM � 0.037
(red line).

VI. STABILIZATION OF THE MICROWAVE
INSTABILITY

We simulate the microwave instability in a space charge
dominated beam (Usc � 10) caused by a broadband
impedance [Eq. (7)] with Q � 1 centered at nr � 12,
corresponding to a wavelength of 42 cm. Figure 6
shows the time evolution of the current amplitudes for
Vbb � 1. The exponential growth of the amplitude of
the n � 12 mode is initiated by a harmonic line density
modulation of 0.5%. Relative to the exponential growth
predicted by linear theory (instability growth rate t

21
I )

the growth slows down at t � 3tI and In�I0 � 5% as
the mode turns nonlinear and coupling towards higher
harmonics becomes effective. The dominating current
amplitude (n � nr ) reaches a peak value of In�I0 � 40%
at t � 7tI before it decreases and finally vanishes as
the bulk velocity distribution shifts towards yz � 2c0
(see Fig. 7). The saturation of the instability leads to a
broadening (“heating”) and to a shift (deceleration) of

FIG. 6. (Color) Time evolution of the current amplitudes ob-
tained from the Vlasov simulation for Usc � 10, Vbb � 1, and
nr � 12.
104202-6
the velocity distribution relative to the initial distribution.
Because of the observation (Fig. 6) that mode coupling is
relatively weak, the relevant saturation mechanism is the
trapping of ions in the potential created by the growing
current perturbation. Ion trapping causes formation of
hole structures in phase space and corresponding localized
line density dilutions that can both be seen in Fig. 7
(t � 7tI). Similar trapped particle hole structures were
also observed in Ref. [5] during the saturation of the
longitudinal instability in the long-wavelength regime.

The destructive effect of the microwave instability on
the beams distribution function is strongly reduced if
the resistive impedance is lowered below Vbb � 0.15.
Figure 8 shows the evolution of the current amplitudes for
Vbb � 0.1. Again, the exponential growth predicted by
linear theory for the n � 12 mode starts to overestimate
the current amplitude at t � 3tI and In�I0 � 5% as
coupling towards higher harmonics becomes effective.
The growth stops at In�I0 � 11% and t � 5tI due to
the generation of subharmonics, such as nr�2 and nr�3,
and a corresponding sudden reduction in the number of
line density peaks (see Fig. 9). The localized line density
peaks coalesce into a single solitonlike structure. Later in
time the localized structure decays, but similar structures
keep on appearing and disappearing. The energy supplied
by the instability at n � nr is transformed via space
charge induced mode coupling into a persistent amount
of coherent energy and into a relatively small amount of

FIG. 7. (Color) Contour plots of the distribution function
f�z, yz � together with the line density rL�z� and the velocity
distribution f�yz� obtained from the Vlasov simulation for
Usc � 10, Vbb � 1, and nr � 12.
104202-6
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FIG. 8. (Color) Time evolution of the current amplitudes ob-
tained from the Vlasov simulation for Usc � 10, Vbb � 0.1, and
nr � 24.

decelerated ions forming a bump around yz � 22c0. To
make sure that the instability saturation is not affected by
the reduced length of our simulation model or by the grid
spacing, we performed various test runs using larger L
and smaller grid spacing. Figure 10 shows, e.g., that the
observed phenomena are the same for L � 10 m.

Below Vbb � 0.15 the destructive effect of the insta-
bility is strongly reduced, therefore the description “space
charge induced stabilization” seems appropriate. Below

FIG. 9. (Color) Contour plots of the distribution function
lnf�z, yz� together with the line density rL�z� and the velocity
distribution f�yz� obtained from the Vlasov simulation for
Usc � 10, Vbb � 0.1, and nr � 12.
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Vbb � 0.15 we still observe exponential growth, but the
peak current amplitude at n � nr is effectively limited by
space charge induced mode coupling, thereby inhibiting
the phase space “blowup.” The shape of the final veloc-
ity distribution differs from the initial distribution only
because of a bump around yz � 22c0. So far we have
not been successful in providing an analytical explana-
tion for the sudden decay into subharmonics observed in
the simulation. Unlike the simple manifestation of mode
coupling towards higher harmonics through wave steep-
ening (Sec. V B), an accurate explanation of the observed
coupling towards subharmonics and the final generation
of a single localized structure is more complex. Analytic
as well as experimental work on parametric three-wave
coupling and solitary wave generation in high energy ma-
chines was presented in Refs. [13,16]. The extension of
this work to low energy, space charge dominated beams is
presently under investigation and will be the topic of future
publications.

By tuning the eigenfrequency of the cavity to different
harmonics of our Vlasov simulation model,we study the
saturation mechanisms for 1 # nr # 36. For Usc � 10
and Vbb & 0.15, we find that the sudden decay towards
subharmonics is the dominant saturation mechanism for
6 & nr & 36, corresponding to wavelengths of the order
of 1 m down to 10 cm. Below nr � 6 (“long-wavelength
regime”), wave steepening as shown in Fig. 4 becomes the

FIG. 10. (Color) Contour plots of the distribution function
lnf�z, yz� together with the line density rL�z� and the velocity
distribution f�yz� obtained from the Vlasov simulation (with
L � 10 m) for Usc � 10, Vbb � 0.1, and nr � 24.
104202-7



PRST-AB 3 O. BOINE-FRANKENHEIM AND I. HOFMANN 104202 (2000)
dominant saturation mechanism. For nr * nc and initial
perturbations of the order of 1%, we find that modes are
stabilized by Landau damping for Vbb & 0.5.

From our simulation we find that, for a given nr &

nc and Usc ¿ 1, the “stability boundary” provided by
space charge induced mode coupling scales according to
	Usc�Vbb (or equivalently 	Zsc�Zbb), meaning that for
increased Usc a higher Vbb can be tolerated. In the lin-
ear theory (Sec. III), the stability boundary is determined
by equating the instability rise time tI 	 U1�2

sc �Vbb with
the Landau damping time tL [see Eq. (9)]. For space
charge dominated beams, the Landau damping time must
be replaced by a characteristic time scale for mode cou-
pling like the wave breaking time tbreak 	 U21�2

sc [see
Eq. (18)]. The resulting stability boundary, determined by
tI � tbreak, shows the Usc�Vbb scaling obtained in the
simulations. Figure 1 shows a simplified sketch of the
space charge stabilized region found within our simula-
tion model for the microwave instability.

VII. CONCLUSIONS

By means of Vlasov simulations we showed that, for
sufficient amplitudes (tL * ttrap), the decay of an ini-
tial current modulation due to Landau damping can be
strongly inhibited in the presence of space charge (nonlin-
ear Landau damping). Therefore, linear Landau damping
cannot serve as a possible saturation mechanism for the
microwave instability in space charge dominated beams.
Instead, space charge induced mode coupling phenom-
ena are the dominant saturation mechanisms. In the long-
wavelength regime, wave steepening efficiently causes the
decay of an initial current modulation. The corresponding
damping rate is of the order of tbreak. In the microwave re-
gion we find that the sudden merging of line density peaks
is the dominant mode coupling mechanism that limits the
growth of the current amplitudes in space charge domi-
nated beams for Usc�Vbb � Zsc�Zbb * 60. Inside this
boundary we still observe exponential growth, but the de-
structive effect of the microwave instability (phase space
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blowup) is strongly reduced. The long-time evolution is
governed by the decay of the unstable mode into solitonlike
structures. In addition to the persistent amount of coherent
energy in solitonlike structures, kinetic energy is stored in
a relatively small amount of decelerated ions forming a low
velocity bump. A question that requires further work con-
cerns the mechanism behind the observed long-time sta-
bility of the final distribution function.
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