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Numerical simulation of the pinching of partially neutralized relativistic electron beams
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The compression of relativistic electron beams resulting from partial space charge neutralization by
thermal ions is simulated to obtain self-consistent solutions. The numerical modeling is based on a finite
difference approach, using under-relaxation to assure convergence in solving this nonlinear problem. The
results show a nonuniform fraction of neutralization, increasing as a function of radius. Neutralization
on axis is higher for colder compensating ions and for lower electron energy. In general, the tempera-
ture of the ions turns out to be higher than that of the electrons. With respect to the non-neutralized,
not-thermally-dispersed beam, higher compression factors result at higher beam energies. The analytic
solutions, known as the Bennett pinch, are well matched at corresponding settings of the parameters.

PACS numbers: 41.75.Ht, 41.20.Cv, 41.85.Ew, 07.05.Tp
I. INTRODUCTION

Electron beams without external focusing are found in
several applications: electron beam welding, x-ray tomog-
raphy scanners, and special kinds of electron beam ion
sources and traps (EBIS and EBIT). The propagation of
these beams is determined by their self-electric and self-
magnetic fields, causing beam spreading by space charge,
its reduction by ion neutralization, and additional focusing
by pinching at relativistic energies. For the modeling of
the behavior of thermal electrons and thermal ions, self-
consistent solutions are required for the radial distribution
functions. In general, it is necessary to find these by ap-
plying numerical techniques, although some simple cases
can be solved analytically.

As early as 1934, Bennett [1] gave the classical treat-
ment for the neutralization of a relativistic electron beam
by ions, with transverse Maxwellian distribution of veloci-
ties for both kinds of particles. He found particular solu-
tions for the radial variation of charges, based on a constant
(as a function of radius) degree of neutralization f. In a
paper by Budker [2] the stability of pinched beams is dis-
cussed. Lawson [3] is reporting more analytic approaches
to other configurations, still based on a constant f. A
nonuniform radial neutralization resulted from the treat-
ment by Rand et al. [4], neglecting, however, thermalizing
collisions between the ions. This is restricted to the case
where the thermalization time is much longer than the time
for neutralization. Only more recently, thermal distribu-
tions for electrons and ions have been taken into account
in numerical calculations of neutralization [5] and over-
neutralization [6], leading to a radially increasing function
f. For electron beam welding applications, the loss of ion
neutralization by fast beam deflection and its influence on
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the focusing properties have been investigated by Dilthey
et al. [7]. An arbitrary radial distribution of electrons has
been used by Zapalac [8] to study the change of beam
profiles by transport and focusing. The initial distribu-
tion used, however, is not a self-consistent solution of the
problem.

In this paper we present self-consistent solutions that are
particularly useful in the area of EBIS and EBIT devices,
especially for those working without magnetic field [9,10].
These solutions will be used in a forthcoming paper to
investigate the matching conditions for the beam entering
into the pinched ion trap region.

II. NUMERICAL MODELING

We consider an electron beam in which the beam spread-
ing by space charge and finite emittance is balanced by
the inward forces due to the self-magnetic field and the
presence of ions. The beam is propagating through a con-
ducting tube polarized—with respect to the cathode—to
the accelerating potential. We also assume that the tube
contains per unit of length the same amount of beam and
neutralizing particles, which is met by Bennett’s analytic
solution only for very low energies. In our more general
and realistic case, the electrical field strength vanishes to-
wards the tube wall. This may be called full neutralization
(or compensation), although there still exist radial fields
inside the beam and between the beam and the tube, due
to the different radial distribution of electrons and ions.

A. Parameters and equations

Two components will be considered: fast electrons and
slow ions. The first ones are emitted by a uniform circu-
lar cathode with current I, accelerated to an axial velocity
nz � bc, and creating a charge density distribution re�r�
of cylindrical symmetry for which a Maxwellian distribu-
tion of transverse velocities, characterized by a tempera-
ture Te, is a good approximation. As a result of ionizing
© 2000 The American Physical Society 104201-1
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collisions with gas molecules, positive ions are born in
the radial potential well of the electron beam. Oscillat-
ing in this well, the ions thermalize by mutual collisions
much faster than neutralization occurs. By the increas-
ing amount of ions, the electronic space charge becomes
partially compensated and the radial potential decreases,
ending in a stationary state characterized by a temperature
Ti and an ion density distribution ri�r�, in which the gen-
eration of ions is balanced by their radial loss to the wall.
In the present treatment Ti is taken as a free parameter be-
cause it is dependent on many experimental details, such
as vacuum pressure, gas composition, electron current den-
sity, electron energy, potential on trapping electrodes, etc.,
which need to be considered in applying our results.

The amount of ions lost in the time of thermalization
is considered to be much lower than the amount trapped,
which permits one to apply the Boltzmann assumption for
the spatial adjustment of thermal ions to the potential. Sec-
ondary electrons generated by ionization are expelled from
the beam region by the radial electric field as well as by
the “Coulomb wind” of the primary beam in the axial di-
rection as found in the operation of many EBIS devices.
The steady-state potential distribution U�r� and the par-
ticle densities are related through Poisson’s equation

DU�r� �
≠2U

≠r2 1
1
r

≠U

≠r
� 2

re 1 ri

´0
, (2.1)

where ´0 is the vacuum permittivity. The Boltzmann as-
sumption for either type of particles gives

re � re0 exp

∑
2

qe�Ue�r� 2 Ue�0��
kTe

∏
, (2.2a)

ri � ri0 exp

∑
2

qi�U�r� 2 U�0��
kTi

∏
, (2.2b)

where re0 and ri0 are the charge densities at the beam
center, qe � 2e, where e denotes the elementary charge,
and qi � q�e for q times charged positive ions. Ue is the
effective potential for the electrons, explained below.

An analytic solution can be readily obtained for the case
of a cold beam and in absence of ions, which we quote for
reference. Thus, for the distribution
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re�r� �

Ω
r0, 0 # r # rb ,
0, rb , r # rt , (2.3)

the potential difference between the center and the beam
edge is given by

dU � U�rb� 2 U�0� � 2
r0r2

b

4´0
�

I

4p´0bc
. (2.4)

From this solution we define fe and fi to relate to the axial
densities in Eqs. (2.2) as

re0 � fer0 , (2.5a)

ri0 � 2fir0 (2.5b)
and introduce further dimensionless parameters to describe
the temperatures of electrons and ions,

me � 2
qedU
kTe

, (2.6a)

mi �
qidU
kTi

, (2.6b)

which provide a convenient normalization to our problem.
me may have a wide range of values depending on the
current, energy, and temperature of the electron beam, as
seen in Table I. The beam temperature generally differs
from the cathode temperature due to compression or de-
compression taking place in between. We can now write
the Boltzmann assumptions as

re � fer0 exp

∑
me

Ue�r� 2 Ue�0�
dU

∏
, (2.7a)

ri � 2fir0 exp

∑
2mi

U�r� 2 U�0�
dU

∏
. (2.7b)

Values of fe greater than 1 would imply a compression of
the beam with respect to the uniform beam, a feature that
is especially interesting in the application of neutralized
relativistic electron beams.

A particular solution of Eq. (2.1) with distributions ac-
cording to Eqs. (2.2) has been given by Bennett in the form

re,i�r� �
re,i�0�

�1 1 r2�a2�2 , (2.8)

where a is the width parameter. The general feature
of this solution is a constant degree of neutralization
TABLE I. Values of the temperature parameter me [Eq. (2.6b)] of the electrons in dependence
of beam current and energy. At kTe � 1 eV these values correspond to the potential depression
dU of the uniform beam [Eq. (2.4)].

Ut �keV�

-
I �A�

0.0625 0.125 0.25 0.5 1 2

25 6.208 12.415 24.830 49.661 99.321 198.642
50 4.540 9.081 18.161 36.322 72.644 145.288

100 3.418 6.836 13.671 27.342 54.685 109.369
200 2.695 5.390 10.779 21.558 43.116 86.232
400 2.263 4.527 9.053 18.106 36.212 72.425
800 2.035 4.069 8.138 16.277 32.554 65.108
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fB � 2ri�r��re�r� throughout the beam that, for ions at
rest or with low axial velocity, can be expressed as

fB �
mi 1 me

mi 1 g2me
, (2.9)

where g � �1 2 b2�21�2. It is seen that this quantity will
always be less than 1, and, hence, Eq. (2.8) will not apply
to completely neutralized electron beams.

B. The effective potential equation

The equation for the effective potential acting on a
Boltzmann distribution of the beam particles is obtained
from the radial force exerted on an electron of that beam,

mr̈ � 2qe
≠Ue

≠r
. (2.10)

Electrons and ions establish a radial electric field by
their space charge, and an azimuthal magnetic field is cre-
ated by the axial movement of the electrons,

mr̈ � qe�Er�r� 2 nzBw�r�� , (2.11)

so that

Ue�r� � 2
Z r

0
�Er 2 nzBw� dr 0. (2.12)

The expressions for the electric and magnetic field dis-
tributions are easily obtained by applying the laws of Gauss
and Ampère, respectively. Hence, the effective potential at
any radial position r can be calculated as

Ue�r� � 2
1
´0

Z r

0

1
r 0

∑Z r 0

0
�re�1 2 b2� 1 ri�r 00 dr 00

∏
dr 0

� 2
1
´0

Z r

0

1
r 0

∑Z r 0

0
�re�1 2 b2 2 f��r 00 dr 00

∏
dr 0,

(2.13)

where f�r� � 2ri�r��re�r� represents the local degree of
space charge neutralization. It is worth noting that we can
write a similar expression for the electrostatic potential by
eliminating the term b2, as inferred from Eq. (2.12).

C. Numerical algorithm for searching solutions

In solving Eq. (2.1) we are dealing with a steady-state
problem which is, in essence, nonlinear. A considerable
number of mathematical approaches can be used in its so-
lution [11]. We have chosen a finite difference scheme that
proved to be very efficient, provided some well-defined
strategies were applied in the iteration process. The suc-
cessive steps to obtain a self-consistent solution can be
summarized as follows.

(i) Define, as input parameters and starting values, the
beam current I, the axial velocity nz , the radii of the beam
rb and of the tube rt , the applied accelerating potential Ut ,
and the temperatures of the electrons and of the compen-
sating ions through parameters me and mi. Provide a grid
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to define potentials and space charges in 1000, 2000, 4000,
and 8000 radial positions, and prescribe control parameters
to assure convergence.

(ii) Solve Poisson’s equation by iteration, using under-
relaxation, performing the following substeps:

(a) Initialize densities with approximate distributions.
[Sometimes, box-shaped solutions of the type given in
Eqs. (2.3) were accepted to start the iteration, but, also, for-
mer solutions of neighboring parameters could be loaded
from a file.]

(b) Determine the potential distribution U�r� and the
corresponding ri �r�. (To solve the linear tridiagonal
system of equations resulting from the finite difference
scheme, a fast solver based on Crout reduction was used.)

(c) Sum the total positive charge and adjust ri to get the
required degree of neutralization.

(d) Repeat (b) and (c) until differences in the potential
at all points of the grid compared to the values of the pre-
vious iteration are less than a pre-fixed tolerance (typically
1026).

(e) Calculate the effective potential Ue�r�, as given in
Eq. (2.13), and the corresponding electron density r�

e �r�.
(f) Compute new re using the under-relaxation formula

rk
e �

rk21
e 1 wr�k

e

1 1 w
, (2.14)

where w is a factor controlling the weight of r�
e in the

construction of the new distribution, being increased con-
tinuously from 0.01 to 1 as the number of iterations k
increases.

(g) Correct the new re in order to keep I constant.
(h) Repeat steps ( b) to (g) until the desired convergence

is achieved.
We found a great variety of solutions in dependence of

the most relevant parameters to our problem, that is, the
energy of the beam and the temperature of both kinds of
particles. Emphasis has been given to explore the range of
parameters where the region of convergence is neighbor-
ing the region for nonconverging solutions. In addition,
we also succeeded in reproducing the analytic solution of
Bennett [1] in the appropriate range of parameters, which
may be considered as a valid test for the developed numeri-
cal procedures.

III. RESULTS AND DISCUSSION

In this section we present some typical solutions of the
Poisson equation for a cylindrical electron beam subjected
to the boundary condition U�rt� � Ut and to full neu-
tralization by singly charged ions Er �r ! rt� ! 0. In
all cases the beam current has been set to I � 1 A and
rb � 0.1rt. Results of the calculations are given in Figs. 1
and 2. For each set of parameters, the corresponding so-
lutions are presented in two panels: Figs. 1(a) and 2(a)
show the normalized electrostatic and effective potentials,
and Figs. 1(b) and 2(b) show the spatial distribution of
104201-3
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FIG. 1. Radial functions for (a) electrostatic and effective po-
tentials and (b) space charge of electrons and ions, calculated
for a 50 keV electron beam and neutralizing ions with a tem-
perature related to mi � 11.5. Full lines correspond to hotter
(me � 114) electrons and dashed lines to colder (me � 201)
electrons.

electrons and ions, both normalized to the density of the
uniform beam. The parameters have been selected to ex-
hibit solutions with low (solid lines) and high (dashed
lines) compression. The general shape of the space charge
functions reflects the action of the potentials on the Boltz-
mann distribution. Full neutralization provides the van-
ishing derivative of the potentials at the tube wall and the
crossing of electronic and ionic space charges at an inter-
mediate radius. This crossing radius is smaller for higher
compressions and higher energy and corresponds to the
differences of fe and fi. Near the axis, these functions
seem to be parallel in the logarithmic presentation resem-
bling the feature of Bennett’s analytic solutions.

Figures 3(a)–3(c) illustrate the dependence of the elec-
tron compression at the axis fe and of the central degree
of neutralization f�0� � fi�fe, for three different ener-
gies and for different combinations of the parameters me

and mi. We observe at all energies a similar behavior: for
constant me an increase of mi leads to higher values of
both quantities, which is explained by a higher neutraliza-
tion, because the ions become colder, allowing the electron
beam to pinch more. Increasing me at constant mi, how-
ever, will give a higher value of fe, caused by the reduced
emittance of colder beams, and slightly diminishes fi�fe.
It is also important to note that, as we go to the left and up-
104201-4
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FIG. 2. Radial functions for (a) electrostatic and effective po-
tentials and (b) space charge of electrons and ions, calculated for
a 200 keV electron beam and neutralizing ions with a tempera-
ture related to mi � 4. Full lines correspond to hotter (me � 20)
electrons and dashed lines to colder (me � 31) electrons.

per regions in these figures, the regime is becoming more
and more nonlinear up to the point that either it is not pos-
sible to reach convergence (left region) or any small varia-
tion of the parameter me is producing an enormous change
in the value of fe (upper region). For these cases, meshes
with 8000 points were provided to assure a correct solu-
tion, which was also confirmed by extrapolating the results
from calculations with 1000, 2000, and 4000 points.

An overview on the regions of the fundamental parame-
ters (Ut, me, and mi) in which we have found solutions of
interest is presented in Fig. 4. The lower curves (dashed)
belong to fe � 1, and the upper ones (solid) belong to
points for which convergence due to the nonlinear behav-
ior became troublesome. Below the dashed lines are re-
gions of low compression, and to the right end of each
pair, me * mi, no solutions can be obtained, because our
requirement of full neutralization forces the ions to be hot-
ter than the electrons in order to be more abundant at larger
radii, as seen in Figs. 1(b) and 2(b). We also notice that
higher values of me and mi are needed to obtain compres-
sion by pinching at lower energies. In experiments it will
become more and more difficult to observe this effect at
values of b ø 1.

We have further looked for the reproduction of Bennett’s
analytic solution as given in Eq. (2.8). In this case it will be
necessary to relax the condition of full neutralization. We
104201-4
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FIG. 3. Variation of the central electron compression fe (thick
lines) and of the central degree of neutralization fi�fe (thin
lines), as functions of the parameters me and mi for beam
energies of (a) 50 keV, (b) 100 keV, and (c) 200 keV. For
colder beams (increasing me), higher compression at lower cen-
tral neutralization becomes possible. At lower energies, where
the pinching is less effective, colder electrons and ions are re-
quired to obtain self-consistent solutions.
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FIG. 4. Range of temperature parameters me and mi for which
stable solutions can be found at the studied energies. The solid
curves are at the limit of stability with high beam compres-
sion; below the dashed curves the beam will be decompressed
(fe , 1).

first calculated three cases for 50, 100, and 200 keV, choos-
ing mi and me such that fe � 5 resulted for the neutralized
beam (any other choice will lead to similar conclusions).
Next, the total amount of beam neutralization was reduced
in small steps until no crossing was found in the radial
falloff of the particle distribution functions. In Table II
data are listed in order to compare our numerical results
with Bennett’s solutions. The computed distributions can
be well fitted to functions as described by Eq. (2.8) with
larger width for higher energies, coinciding within 1026%
near the axis and 0.2% near the tube wall. At lower ener-
gies, Bennett’s relation (2.9) for fB is well reproduced by
the ratio fi�fe of our solutions, while at higher energies
the discrepancy gets larger. This may be due to the in-
crease of the width parameter a, by which the differences
between Bennett’s unbounded and our bounded solutions
are becoming more apparent at these energies.

Finally, we note that when nz is also small compared
with the velocity of light, both approaches will lead to

TABLE II. Comparison of Bennett’s solutions with numerical
solutions at arbitrarily selected parameters: a�rt is the rela-
tive width obtained by fitting the space charge distributions to
Eq. (2.8). The values of fe indicate decompression, and the cen-
tral neutralization factor fi�fe should be compared to Bennett’s
fB in Eq. (2.9).

Energy (keV) 50 100 200
mi 11.5 8.0 4.0
me 201 25.7 24.8

Preset parameters

a�rt 0.282 0.300 0.448
fe 0.138 0.121 0.060Numerical results

fi�fe 0.839 0.771 0.584

Bennett fB 0.837 0.753 0.554
104201-5
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a “complete solution” of the Poisson’s equation giving
the same amount of negative and positive charges along
the radial direction, fB � f � 1. This solution, however,
has lost all appealing features of compensated relativistic
beams.

IV. SUMMARY

We have reported a method and presented the results on
self-consistent solutions of the radial functions of space
charge and potential for a relativistic electron beam with
transverse thermal velocities neutralized by ions with a
thermal energy distribution. In a wide range of parame-
ters we have found well converged solutions but also limits
of existence, for energies of 50, 100, and 200 keV. High
compressions of the electron beam are obtained for higher
energies and colder electron beams. A unique feature of
all solutions is the radial increase of the neutralization fac-
tor. In contrast to the well-known analytic solution of the
Bennett’s pinch, we have assumed a complete neutraliza-
tion, i.e., same amount of positive and negative charges per
unit beam length. By relaxing this condition, a reasonable
agreement of our numerical simulations with Bennett’s re-
sults is found, the discrepancies being due to the imposed
boundary condition in our case.

Work is in progress to use these results for ray-tracing
simulations from the neutralized to the non-neutralized re-
gion, thus providing (in reversed direction) the injection
conditions for initiating this kind of flow.
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