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The presence of quadrupole errors in a storage ring will lead to errors in the Twiss parameters and/or
errors in the horizontal-vertical coupling. This in turn can lead to degradation of machine performance,
such as a decrease in the luminosity. At the Cornell Electron /Positron Storage Ring, the measurement of
the betatron phase along with the horizontal-vertical coupling has led to the ability to locate the position
of any quadrupole errors and to calculate its strength. This is analogous to using orbit data to locate the
source of a kick. Once the source of the error is known, steps can be taken to remove it or to nullify
its effect.

PACS numbers: 29.20.Dh, 29.27.Fh, 29.40.Gx
I. INTRODUCTION

The presence of quadrupole errors in a storage ring will
lead to errors in the Twiss parameters and/or errors in the
horizontal-vertical coupling. This in turn can lead to degra-
dation of machine performance, such as a decrease in the
luminosity. At the Cornell Electron/Positron Storage Ring
(CESR), a technique for measuring the betatron phase and
coupling has been developed [1] which involves shaking
the beam at the horizontal and vertical betatron resonant
frequencies and measuring the response at the 100 or so
beam position detectors in the ring. To actually find a
quadrupole error, an analysis program has been developed
that can locate isolated errors from the measurement data.
This analysis is analogous to the technique of using or-
bit data to find isolated steering kicks. The analysis is
presented below for use with beta, betatron phase, and
coupling data. While direct beta measurements are not cur-
rently done in standard practice at CESR, the beta analysis
is given since it may be of general interest and since there
is a close connection between the beta analysis and the
betatron phase analysis.

II. BETA ANALYSIS

Consider one-dimensional motion and the 2 3 2 trans-
fer matrix T12 from some point s1 to some point s2,

T12 �

µ
m11 m12
m21 m22

∂
, (1)

where the mij are given in terms of the Twiss parameters
by [2]

m11 �

s
b2

b1
�cosf12 1 a1 sinf12� ,

m12 �
p

b1b2 sinf12 ,

m21 �
�a1 2 a2� cosf12 2 �1 1 a1a2� sinf12

p
b1b2

,
(2)

m22 �

s
b1

b2
�cosf12 2 a2 sinf12� ,
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with f12 being the phase advance from s1 to s2. By using
Eq. (2), b2 can be written in terms of the Twiss parameters
at s1 via

b2 � m2
11b1 2 2m11m12a1 1 m2

12g1 , (3)

where the following relation has been used:

bg � 1 1 a2. (4)

It will be assumed that the strength of any quadrupole
error is small so that terms that are second order in the
perturbation can be ignored. Assume for the moment that
there are no quadrupole errors between s1 and s2 so the
mij are constant. In this case, the variation of b2 due to
any quadrupole errors is given from Eq. (3) to be

db2 � m2
11db1 2 2m11m12da1 1 m2

12dg1 . (5)

Here, and in all equations below, mij , b, f, etc., re-
fer to the unperturbed values and db, da, and dg, etc.,
are the variation from the unperturbed values due to any
quadrupole errors. Using Eqs. (2) and (4) in Eq. (5) shows
that, in a region where there are no quadrupole errors, db
can be written in the form

db�s�
b�s�

� l sin2f�s� 1 r cos2f�s� , (6)

where l and r are constants. A “free beta wave” thus
oscillates as 2f�s�—at twice the frequency of an orbit
wave.

For the purposes of this analysis, a quadrupole error will
be modeled as having zero length. If the error has zero
strength, the transfer matrix across the error is just the unit
matrix µ

m11 m12

m21 m22

∂
�

µ
1 0
0 1

∂
. (7)

If s1 is taken to be just before the error, and s2 is taken to
be just after the error, then using this with Eq. (2) gives

a2 � a1, b2 � b1, and f12 � 0 . (8)

If the error has a nonzero strength of dkl, the perturbation
of the transfer matrix across the error is
© 2000 The American Physical Society 102801-1
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µ
dm11 dm12
dm21 dm22

∂
�

µ
0 0

dkl 0

∂
, (9)

with the convention here that a positive dk represents a
defocusing perturbation. Using Eqs. (2) and (8) in Eq. (9)
gives

da2 � da1 2 b1dkl, db2 � db1, df12 � 0 .
(10)

Given a quadrupole error at some point s0, it is assumed
that the perturbation is “isolated” so that it is the only error
in some local region. From Eq. (6), the general solution in
this local region is

db�s�
b�s�

�

Ω
la sin2f�s� 1 ra cos2f�s�, s , s0 ,
lb sin2f�s� 1 rb cos2f�s�, s . s0 ,

(11)

where la, ra, lb , and rb are constants. Since the problem
has been linearized by using first-order perturbation theory,
the general solution db�s� is the sum of a homogeneous
part dbh plus an inhomogeneous part dbi,

db�s� � dbh�s� 1 dbi�s� . (12)

The homogeneous part is the solution when there is no
error present and is of the form given by Eq. (6). The
inhomogeneous part is the solution with the error and with
a boundary condition which we are free to choose. The
boundary condition will be chosen so that dbi�s� � 0 for
s , s0. From Eqs. (6) and (10), along with the relations
2a � 2db�ds and df�ds � 1�b, the inhomogeneous
solution is

dbi�s�
b�s�

�

Ω
0, s , s0 ,
dkl sin�2���f�s� 2 f0����, s . s0 , (13)

where f0 � f�s0� is the phase at the error. The procedure
for locating a quadrupole error is as follows: Given a
putative location for an error, a region labeled “a” is chosen
that is just before this location and a region labeled “b” is
chosen that is just after the location, as shown in Fig. 1.
By using Eq. (11) and the db data in the a region, a linear
least squares fit is used to determine la and ra. Similarly,
lb and rb are obtained from a linear least squares fit to the
data from the b region. The inhomogeneous part of the fit
is now obtained by subtracting out the homogeneous part
of Eq. (11) to give

dbi�s�
b�s�

�

Ω
0, s , s0 ,
lba sin2f�s� 1 rba cos2f�s�, s . s0 ,

(14)

where

lba � lb 2 la and rba � rb 2 ra . (15)
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FIG. 1. Schematic diagram of the analysis to find a quadrupole
error using a b measurement. Fits to db in regions a and b
give sinusoidal-like “free waves.” Pictorially, the possible error
locations (labeled s1 and s2 in this example) can be found by
extending the two fits into the region between a and b. The
error locations are where the fits cross.

The phase at the error is found by comparing Eq. (13) with
Eq. (14),

tan2f0 � 2
rba

lba
. (16)

The magnitude of the error is also found by comparing
Eq. (13) with Eq. (14),

dkl � lba cos2f0 2 rba sin2f0 � 6Ab , (17)

where the amplitude Ab is defined by

A2
b � l2

ba 1 r2
ba . (18)

The solutions to Eq. (16) are a series of points spaced p�2
apart in phase with the restriction that f0 corresponds to
a location somewhere between the a and b regions (cf.
Fig. 1). The magnitude of dk is the same for all solutions,
but the sign of dk for consecutive solutions is opposite.

To determine how well the calculation has fit the data,
a figure of merit can be defined as follows: Considering
the a region first, the variance sa between the data and the
fit is

s2
a �

1
Na

X
j[a

�dbj�data� 2 dbj�fit��2, (19)

where Na is the number of data points and the sum is over
all points in the a region. The uncertainty sla in la is
then given by [3]

s2
la � s2

a

X
j[a

µ
≠la

≠�dbj�

∂2

, (20)

with a similar equation for the uncertainty sra in ra. The
calculation of the goodness-of-fit for the b region is han-
dled in a similar fashion. The relative uncertainty in the
kick sdk�dk is obtained from Eqs. (17) and (18),
102801-2
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sdk

dk
�

q
l

2
bas

2
lba 1 r

2
bas

2
rba

A2
b

, (21)

where slba and srba are computed from Eq. (15):

s2
lba � s2

la 1 s2
lb and s2

rba � s2
ra 1 s2

rb . (22)

Similarly, the uncertainty sf in f0 is obtained from
Eq. (16) to be

sf �

q
r

2
bas

2
lba 1 l

2
bas

2
rba

2A2
b

. (23)

The necessary (but not sufficient) conditions that the cal-
culation is accurate are

sdk

dk
ø 1 and sf ø 1 . (24)

III. PHASE ANALYSIS

The betatron phase f is related to b by the standard
equation

df

ds
�

1
b

. (25)
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Taking the variation of both sides gives
ddf

df
�

2db

b
. (26)

The analysis of df is thus obtained from the db analysis
via a simple integration. In a region without quadrupole
errors, df is obtained by integrating Eq. (6),

df�s� � j sin2f�s� 1 h cos2f�s� 1 C , (27)

where j, h, and C are constants. A free phase wave looks
similar to a free beta wave but with an offset. For a region
where there is an isolated quadrupole error at s0 the general
solution is obtained from Eq. (27),

df�s� �

Ω
ja sin2f�s� 1 ha cos2f�s� 1 Ca, s , s0 ,
jb sin2f�s� 1 hb cos2f�s� 1 Cb, s . s0 .

(28)

Integrating Eq. (13) gives the inhomogeneous part of the
solution with the boundary condition dfi�s� � 0 for
s , s0,

dfi�s� �

Ω
0, s , s0 ,
b0dkl

2 �cos2���f�s� 2 f0��� 2 1�, s . s0 .

(29)

This is to be compared to the inhomogeneous part of
Eq. (28),
dfi�s� �

Ω
0, s , s0 ,
jba sin2f�s� 1 hba cos2f�s� 1 Cba, s . s0 , (30)
where

jba � jb 2 ja, hba � hb 2 ha, Cba � Cb 2 Ca .
(31)

Like the beta analysis, regions a and b are chosen to
bracket a possible quadrupole error (cf. Fig. 1). ja, ha,
and Ca along with jb , hb , and Cb are computed via a linear
least squares fit of Eq. (28) to the data in the two regions.
Comparing Eq. (29) with Eq. (30), the fitted parameters
should obey the relationship

jCbaj � Af , (32)

where

A2
f � j2

ba 1 h2
ba . (33)

Equation (32) is the condition needed so that df�s� is
continuous and has a continuous derivative at s0, as shown
in Fig. 2(a). In actuality, measurement errors and/or the
presence of additional quadrupole errors in the region will
typically lead to the situations shown in Figs. 2(b) or 2(c),
where the fits do not intersect or they intersect with a
discontinuous derivative. The best solution is to choose,
for s0, the point(s) where the derivatives match and any
discontinuity is smaller than Af�2, as shown in Fig. 2.
Using this criterion with Eqs. (29) and (30) gives for f0
sin2f0 �
2jba sgnCba

Af

, cos2f0 �
2hba sgnCba

Af

,

(34)

where

sgnCba �
Ω

1, Cba . 0 ,
21, Cba , 0 . (35)

Comparing Eq. (29) with Eq. (30) gives two equations for
the magnitude of the error

b0dkl � 22Cba , (36)

and

b0dkl � 2�jba sin2f0 1 hba cos2f0� . (37)

Since Eq. (32) is not obeyed in practice, the right-hand side
of Eqs. (36) and (37) will not give the same result. A good
compromise is to take the average of the two equations and
compute dk via

b0dkl � jba sin2f0 1 hba cos2f0 2 Cba . (38)

As opposed to the beta analysis, Eqs. (34) have solutions
spaced p apart, and all solutions have the same sign for
the strength of the error.

The calculation of the uncertainty in the strength and
location of the perturbation is analogous to that of the
102801-3
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FIG. 2. In theory, the a and b region fits of df�s� are continu-
ous and have a continuous derivative at s0, as shown in (a). (For
simplicity, the a region fit is taken here to be a straight line.) In
practice the fits to the a and b regions may (b) fail to intersect
or (c) intersect with a discontinuous derivative. The best guess
for the location of the error (labeled s0) is where the deriva-
tives match and where any discontinuity is smaller than Af�2
(so that the point labeled s1 is rejected as a possible location for
the error).

previous section. The relative uncertainty of the strength
is

sdk

dk
�

q
j

2
bas

2
jba 1 h

2
bas

2
hba 1 C2

bas
2
Cba

jjba sin2f0 1 hba cos2f0 2 Cbaj2
, (39)

where, from Eq. (31),

s2
jba � s2

jb 1 s2
ja, s2

hba � s2
hb 1 s2

ha ,
(40)

s2
Cba � s2

Cb 1 s2
Ca ,

with

sja � s2
a

X
j[a

√
≠ja

≠�dfj�

!
2, (41)

and similar equations for sjb, etc. Finally sa and sb are
computed in analogy to Eq. (19),

s2
a �

1
Na

X
j[a

�dfj�data� 2 dfj�fit��2, (42)

with a similar equation for sb . The uncertainty sf in f0

is analogous to Eq. (23),
102801-4
sf �

q
j

2
bas

2
hba 1 h

2
bas

2
jba

2Af

. (43)

The conditions needed for an accurate calculation are given
by Eqs. (24).

An additional figure of merit can be obtained by not-
ing that even if sdk�dk and sf are small, the results of
the calculation may not mean much if there are multiple
quadrupole errors between the fitted regions. Since mul-
tiple errors will tend to make jCbaj and Af different [cf.
Eq. (32)], a figure of merit xC may be defined by

xC �
jCbaj 2 Af

jCbaj 1 Af

. (44)

A necessary (but not sufficient) condition necessary for the
analysis to be valid is

jxCj ø 1 . (45)

Figure 3 shows an example of the phase analysis. The
data shown in the figure were obtained after conditions
in the CESR ring suddenly deteriorated and a phase mea-
surement was taken in order to try to diagnose the problem.
Here df is the difference between the measured phase and
the theoretical design phase. Figure 3(a) shows the mea-
sured df for the vertical mode along with the chosen a
and b fit regions. Figure 3(b) shows the df data with the
a region fit subtracted off. By subtracting off the a region
fit, Fig. 3(b) is displaying the inhomogeneous part of df
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FIG. 3. Analysis of vertical phase data. df is the difference
between the measured and theoretical design phase. (a) df
as obtained from a measurement, (b) df with the fit from the
a region subtracted off, (c) df with the fit from the b region
subtracted off. The boxes shown in the figures correspond to
the fit regions.
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[cf. Eq. (30)]. Figure 3(c) shows the df data with the b
region fit subtracted off; that is, Fig. 3(c) shows the inho-
mogeneous part of df but with a boundary condition of
df�s� � 0 for s . s0. Figures 3(b) and 3(c) clearly show
the general location of the quadrupole error which is indi-
cated by where the flat and oscillatory parts of the curves
meet. The boundaries of the fit regions were adjusted by
hand in an iterative process so that the region between the
fit regions was small enough so that there was only one
unambiguous solution. As a help in adjusting the bound-
ary regions, figures of merit xa and xb for the individual
fits may be defined. For the a region,

xa �
sap

j2
a 1 h2

a

, (46)

with a similar definition for the b region. The fits are
good if xa ø 1 and xb ø 1. The region boundaries are
adjusted with an eye to maintain xa and xb small. In the
present example, xa and xb were 0.07 and 0.09, respec-
tively, indicating a good fit. xC was calculated to be 0.006,
so the measured data was well fit with the single error
model. sf was calculated from Eq. (43) to be 0.035 rad
(2±) which, using Eq. (25), and with a by in the region
of 30 m, translated to an uncertainty in the location of the
error of about 61 m. In this particular case the calculated
location of the error was at a particular quadrupole mag-
net. The controller circuit board for this quadrupole was
replaced and the problem was fixed. A subsequent phase
measurement showed no significant phase errors.

The horizontal axis in Fig. 3 is the detector index. In
CESR, the beam detectors are labeled, starting at the in-
teraction point, from 0 to 99. Since a quadrupole error
may be near the interaction point, in order to ensure that
it is always possible to choose fit regions on both sides of
any location, the plots are extended past detector 99 to in-
clude an additional 1�2 of the ring; that is, for example,
the detector labeled 132 in the figure is actually detector
32 (�132 2 100). The formula needed to extend the data
past the interaction point to detector j 1 100 is

df�j 1 100� � df�j� 1 dfring , (47)

where dfring in this case is the difference in tune between
the measured data and the tune as calculated from the
theoretical design lattice.

IV. COUPLING ANALYSIS

Horizontal-vertical coupling may be parametrized using
the 2 3 2 C matrix [4]. The C matrix is obtained via
a similarity transformation of the one-turn 4 3 4 transfer
matrix T into normal mode form

T � VUV21, (48)

where the normal mode matrix U is of the form

U �

µ
A 0
0 B

∂
, (49)
102801-5
and V is of the form

V �

µ
gI C

2C1 gI

∂
, (50)

with “1” denoting the symplectic conjugate. Since V is
required to be symplectic, g and C are related by

g2 1 jjCjj � 1 . (51)

C�s� is a measure of the local coupling; if C � 0, then
V � 1 and using this in Eqs. (48) and (49) shows that T
is decoupled. Instead of working with C, though, it is
convenient to remove factors of b and work with the nor-
malized matrix C given by

C � GaCG21
b , (52)

where Ga and Gb are normalization matrices for the a and
b normal modes respectively given by

Ga �

0
B@ 1p

ba
0

aap
ba

p
ba

1
CA , (53)

with a similar equation for Gb . The Twiss parameters ba,
etc., are obtained from the eigenmode A and B matrices
which can be written in the standard form

A �

µ
cosua 1 aa sinua ba sinua

2ga sinua cosua 2 aa sinua

∂
, (54)

with a similar equation for B. The physical interpretation
of the C matrix is that for excitation of the horizontal-like
normal mode the C22 component is a measure of the verti-
cal motion that is in phase with the horizontal motion while
the C12 component is a measure of the out-of-phase part of
the vertical motion. For the excitation of the vertical-like
normal mode, C11 gives the in-phase component and C12
gives the out-of-phase component of the horizontal motion
with respect to the vertical motion [1].

As in the beta and phase analysis, we need to know how
the C matrix behaves in a coupler free region and how C
changes across a coupler. It is shown in the Appendix that,
in a coupler free region, C behaves as

C�s� � sS���fc 2 f1�s���� 1 r R���uc 1 f2�s���� , (55)

where s, fc, r, and uc are constants, R and S are rotation
and antirotation matrices given by Eqs. (A7) and (A9), and
the sum and difference phases f1 and f2 are given by
Eq. (A11). It is assumed that any coupling is small so first
order perturbation theory can be used. To first order in the
coupling (that is, to first order in the components of C or
C), Eq. (51) gives

g � 1 . (56)

Using this and Eqs. (48), (49), and (50) gives

T �

µ
A CB 2 AC

BC1 2 C1A B

∂
. (57)
102801-5
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Equation (57) shows that, to first order, the on-diagonal
2 3 2 submatrices of T are unaffected by the coupling.
Thus, the eigenmode Twiss parameters are unaffected [cf.
Eq. (54)] so that ba � bx , fa � fx, etc., where bx, fx,
etc., are the Twiss parameters as calculated without any
coupling.

For the present analysis, coupling errors are modeled as
thin skew quadrupoles. The 4 3 4 transfer matrix Tc for
a coupler is then

Tc �

µ
1 2q

2q 1

∂
, (58)

where

q �

µ
0 0

dq 0

∂
, (59)

with dq being the strength of the coupler. The sign has
been chosen here so that an upright quadrupole with a
positive k (horizontally focusing) that is rotated by 145±

will have a transfer matrix like Eq. (58) with a positive
dq. The one-turn matrix T2, located at a point just after a
coupler, is related to the one-turn matrix T1, located at a
point just before the coupler, via
102801-6
T2 � TcT1T21
c . (60)

Using Eqs. (57) and (58) in Eq. (60), and comparing with
Eq. (57), gives, to first order, and with the help of Eq. (52),

C2 � C1 2 q , (61)

where

q �

µ
0 0

dq 0

∂
, (62)

with

dq �
p

babb dq . (63)

The coupling measurement at CESR can measure the
C11, C12, and C22 components of C. For various tech-
nical reasons, the errors in the C12 data are less than the
errors present in the measurement of the other components
[1]. Therefore, the following analysis will consider only
the C12 component. Extending the analysis to the other
components is a trivial matter. From Eqs. (55), (A7), and
(A9), the general solution for C12 in a region with a single
coupler at s0 is
C12�s� �

Ω
ta sinf2�s� 1 ma cosf2�s� 1 la sinf1�s� 1 ra cosf1�s�, s , s0 ,
tb sinf2�s� 1 mb cosf2�s� 1 lb sinf1�s� 1 rb cosf1�s�, s . s0 , (64)

where t, m, l, and r are constants. The inhomogeneous part of the solution will be chosen with a boundary condition
such that Ci�s� � 0. From Eqs. (55) and (61), the inhomogeneous solution is

Ci�s� �

Ω
0, s , s0 ,
dq
2 �R� p

2 1 f2�s� 2 f2�s0�� 2 S� p

2 2 f1�s� 1 f1�s0���, s . s0 . (65)

For the C12 component, Eq. (65) becomes

Ci,12�s� �

Ω
0, s , s0 ,
dq
2 �cos�f2�s� 2 f2�s0�� 2 cos�f1�s� 2 f1�s0���, s . s0 . (66)

This is to be compared to the inhomogeneous part of Eq. (64), which is

Ci,12�s� �

Ω
0, s , s0 ,
tba sinf2�s� 1 mba cosf2�s� 1 lba sinf1�s� 1 rba cosf1�s�, s . s0 , (67)
where

tba � tb 2 ta, mba � mb 2 ma ,

lba � lb 2 la, rba � rb 2 ra .
(68)

As with the beta and phase analysis, given a putative
coupler location s0, two regions labeled a and b are chosen
on either side. Using the data from the a region, a least
squares fit can be used to determine ta, ma, la, and ra.
Similarly, tb, mb , lb , and rb are obtained from a least
squares fit using the data from the b region. The phase at
the coupler is found by comparing Eq. (66) with Eq. (67),

tanf1�s0� �
lba

rba
, (69)

and
tan f2�s0� �
tba

mba
. (70)

There are multiple solutions to Eqs. (69) and (70) spaced
p apart in f1 and f2, respectively. Since both f1 and
f2 are known functions of s, they will individually give
values for s0. A valid solution must have these two values
for s0 agree within the experimental error.

The strength of the coupler is given by comparing
Eq. (66) to Eq. (67),

dq
2

� 2lba sinf1�s0� 2 rba cos f1�s0� , (71)

and

dq
2

� tba sinf2�s0� 1 mba cosf2�s0� . (72)
102801-6
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Amplitudes A1 and A2 may be defined by

A2
1 � l2

ba 1 r2
ba and A2

2 � t2
ba 1 m2

ba . (73)

Using this, Eqs. (71) may be put in a more transparent
form,

jdqj � 2A1 � 2A2 . (74)

The disadvantage of Eqs. (74) is that the sign of dq is lost.
The relative uncertainty of the strength of the coupler is

computed from Eqs. (71) and (72),

sdq1

dq
�

q
l

2
bas

2
lba 1 r

2
bas

2
rba

A1

,

sdq2

dq
�

q
t

2
bas

2
tba 1 m

2
bas

2
mba

A2

,

(75)

where sdq1 is the uncertainty in dq from using Eq. (71),
and sdq2 is the uncertainty in dq from using Eq. (72).
The uncertainty in the phase at the kick is computed from
Eqs. (69) and (70),

sf1 �

q
r

2
bas

2
lba 1 l

2
bas

2
rba

A1

,

sf2 �

q
m

2
bas

2
tba 1 t

2
bas

2
mba

A2

,

(76)

where sf1 and sf2 are the uncertainties in f1�s0� and
f2�s0�, respectively. slba, srba, etc., are computed in
an analogous fashion to the computations in the previous
sections [cf. Eq. (22)].

It is possible for the data to be such that there is a poor
fit to t and m while the fit for l and r is quite good.
This is true since the variation of f2�s� as a function of s
can be small compared to the variation of f1�s�, and a fit
will tend to be poor if the phase advance across the fitting
region is small. Fortunately, since l and r alone will give
the strength and location of a coupler, this is not a serious
drawback.

Figure 4 shows an analysis of C12 data. Figure 4(a)
shows the C12 data along with the chosen a and b fit
regions. Analogous to Fig. 3, Figs. 4( b) and 4(c) show the
C12 data with the a and b fits subtracted off, respectively.
The fit regions were adjusted by hand with the purpose of
identifying the coupling source near detector 63. As a help
in adjusting the boundary regions, figures of merit x1 and
x2 for the fits to t and m, and for l and r, may be defined.
For the a region

xa1 �

vuuts
2
la 1 s2

ra

l2
a 1 r2

a
, xa2 �

vuuts2
ta 1 s2

ma

t2
a 1 m2

a
,

(77)

with xb1 and xb2 defined for the b region fit in an analo-
gous manner. In this particular case, xa1 � 0.08, xa2 �
0.17, xb1 � 0.05, and xb2 � 0.06. These values show
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FIG. 4. Analysis of C12 data. (a) C12 data, (b) C12 data with
the a region fit subtracted off, (c) C12 data with the b region
fit subtracted off. The boxes shown in the figures correspond to
the fit regions.

that there is a good match between the data and the fit. The
phase errors were sf1 � 0.12 rad and sf2 � 0.08 rad
which, given bx 	 20 m and by 	 20 m in the vicin-
ity, locates the error to within a few meters. The calcu-
lated location for the coupler was at a dipole bend. Upon
inspection it was found that the bend had an integrated
horizontal steering within it and that the backleg winding
of the steering coil had been misinstalled and was next to
the beam pipe. That the backleg winding was the source
of the coupling was verified by turning off the corrector.
No coupling source was seen in the vicinity on a subse-
quent measurement. The problem was solved by moving
the backleg winding away from the beam pipe.

As can be noted from Fig. 4, there are other sources of
coupling that can be spotted. For example, from Fig. 4(c)
there is an indication of a coupler around detector 94, and
Fig. 4(b) shows a coupling source around detector 40. By
moving the fit regions around it is possible to locate these
additional couplers. Again, like Fig. 3, the plot has been
extended by 1�2 turn to accommodate the analysis when a
coupler is near the interaction point (see the discussion in
the previous section). In this case, to extend the plot, the
necessary equation analogous to Eq. (47) is

C12�j 1 100� � C12�j� . (78)
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APPENDIX: PROPAGATION OF C IN A COUPLER
FREE REGION

In a coupler free region the 4 3 4 transfer matrix T12
[not to be confused with the 2 3 2 transfer matrix in
Eq. (1)] between points s1 and s2 is block diagonal,

T12 �

µ
M12 0

0 N12

∂
, (A1)

where M12 and N12 are 2 3 2 matrices. With this, the
relationship between C at point s1 and C at point s2 is
given by Sagan and Rubin (SR) (Ref. [4], Eq. [35]):

C2 � M12C1N21
12 . (A2)

Note that we do not have to worry about “mode flips” here
since mode flips will be forced only if there is a coupler
present. The absence of any local couplers also implies
that (Ref. [4], Eq. [34])

T12 � W12 , (A3)

where W12 is defined by SR (Ref. [4], Eq. [23]):

U2 � W12U1W21
12 , (A4)

with U being defined in Eq. (48). Using Eqs. (49), (A1),
and (A3) in Eq. (A4) gives

A2 � M12A1M21
12 and B2 � N12B1N21

12 . (A5)

Equations (A5) show that M12 and N12 connect the normal
mode matrices A and B between points s1 and s2. As such,
they can be written in the form given by Eqs. (2). Using
this and Eq. (52) in (A2) gives
102801-8
C2 � R�fa12�C1R21�fb12� , (A6)

where R is a rotation matrix

R�u� �
µ

cosu sinu
2 sinu cosu

∂
, (A7)

and fa12 and fb12 are the phase advances for the a and b
modes, respectively. As shown in SR, Appendix A, given
any 2 3 2 matrix z there exist numbers l, k, f, and u

such that z can be written in the form

z � lS�f� 1 kR�u� , (A8)

where S is an “antirotation” matrix of the form

S�f� �
µ

cosf sinf

sinf 2 cosf

∂
. (A9)

Using this form for C�s1� in Eq. (A6), along with the mul-
tiplication rules of SR (Ref. [4], Eq. [A11]), shows that in
a coupler free region C behaves as

C�s� � sS���fc 2 f1�s���� 1 rR���uc 1 f2�s���� ,
(A10)

where s, fc, r, and uc are constants, and the sum and
difference phase advances are

f1�s� � fa�s� 1 fb�s�, f2�s� � fa�s� 2 fb�s� .
(A11)
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