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High energy laser-wakefield collider with synchronous acceleration
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A recent study on a high energy accelerator system which involves multistage laser wakefield accel-
eration shows that the system is very sensitive to jitters due to misalignment between the beam and the
wakefield. In particular, the effect of jitters in the presence of a strong focusing wakefield and initial
phase space spread of the beam leads to severe emittance degradation of the beam. One way to improve
the emittance control is to mitigate the wakefield by working with a plasma channel. However, there
are limitations in this approach. Our present investigation does not involve a plasma channel. Instead
of averaging over the full phase range of the quarter-wave acceleration, we treat the phase range as a
variable. We have found that, for a fixed final acceleration energy and a small phase slip, the final
emittance is inversely proportional to the total number of stages. This leads us to consider an accelerator
system which consists of superunits, where each superunit consists of closely spaced short tubes, or
chips, with the wakefield of each chip being created by an independent laser pulse. There is a relatively
large gap between adjacent superunits. With this arrangement the beam electrons are accelerated with a
small phase slip; i.e., the phase of the beam is approximately synchronous with respect to the wakefield.
This system is designed to have resilience against jitters. It has its practical limitations. We also consider
a “horn model” with an exact synchronous acceleration based on a scheme suggested by Katsouleas.
Computer simulation of both the chip model and the horn model confirms an expected �sinc�3�2 law for
emittance degradation in the small phase angle region. Thus the choice of a small loading phase together
with a small phase slip provides another important ingredient in controlling emittance degradation.

PACS numbers: 52.40.Nk, 52.65.Cc, 52.75.Di, 05.40.–a
I. INTRODUCTION

The concept of laser wakefield acceleration was origi-
nally proposed by Tajima and Dawson [1]. Since then there
has been much research in this area. For a recent review,
see Esarey et al. [2]. It is well known that the phase of
laser-wakefield waves which is suitable for particle beam
acceleration occurs within one-quarter of a wavelength,
where there is a positive longitudinal force and, at the same
time, the focusing force in the transverse direction. Dur-
ing the course of acceleration, the beam particles are slip-
ping forward and eventually move out of the quarter-wave
region. This ends a given acceleration stage.

In pursuit of the next energy front, a laser-based
wakefield linear collider at high energies (such as 5 TeV)
has been considered for which many wakefield units are
needed to reach the desired energy. Also, the collider
demands an extremely small emittance and thus extremely
precise beam handling. In order to evaluate the potential
of this approach to identify the crucial physical and
technological problems associated with this, a systems
approach through a dynamical map has been introduced
[3–5]. There was also an earlier study on a 5 TeV laser-
wakefield collider [6]. Emittance degradation in TeV
accelerators for the case of a full fragmentation in the
transverse phase space was considered in Ref. [7].

In Ref. [5], the study of emittance degradation in the
presence of jitters, which may be associated with stochas-
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tic misalignment between the beam and the wakefields,
was carried out where the plasma medium is uniform and
the beam is accelerated over a full quarter-wave region.
One finds that the system is relatively sensitive to jit-
ters. This is due to the fact that the wakefield averaging
over the entire accelerating phase has a strong focusing
property.

A possible way to decrease the strong focusing wake-
field is to work with a hollow channel design [8]. A draw-
back is that, due to the finite density gradient near the wall
of the cavity, there is local plasma frequency which would
match the wakefield frequency. This could lead to reso-
nance absorption [9]. In Ref. [5], numerical models where
beam acceleration was over a full quarter-wave region were
considered. These models are for both without involving
the plasma channel and with the plasma channel ignoring
the resonance absorption effect. The former will be re-
ferred to as the CTHY model and the latter the CTHY1
model.

From a general consideration, one expects that the
emittance degradation should depend on the phase range
through which the acceleration occurs. In this work we
will confine our attention to only the nonchannel case. In
this context the present work is a sequel of the CTHY
model. Using two different approaches we will explore
ways to improve the resilience against jitters through
variations over the loading phase and also over the phase
interval of acceleration.
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Our starting point is to fix the loading phase at some
specific value and vary the spatial interval of accelera-
tion. Since the total acceleration energy interval is fixed,
a variation of the acceleration interval leads to the cor-
responding variation in the number of total acceleration
units. Computer simulation indicates that, when the ac-
celeration phase is approximately fixed, this occurs when
the phase slip is small, so there is an inverse power be-
havior. In particular, the emittance degradation decreases
as 1�N , where N is the total number of acceleration units
[10]. This confirms the theoretical expectation of CTHY
deduced from a statistical theory [5]. The inverse power
law suggested that through the use of small acceleration in-
tervals one may be able to achieve high resilience against
jitters. The spatial interval considered presently is of the
order of 1 cm. It can be even much smaller. We conjec-
ture that the active [11,12] photonic-crystal or photon-cell
technology [13,14] may someday be used as basic units in
a high energy laser-wakefield accelerator.

The second approach is to work with a synchronous
acceleration model, where there is no phase slip at all. It
was pointed out by Katsouleas [15] over a decade ago that
synchronous acceleration can be achieved by varying the
plasma density. More specifically, consider the case where
the local density along the beam direction is gradually
increasing. Then the wavelength of the plasma waves, on
which the beam electrons are riding, becomes shorter and
shorter. If the rate of the phase slip of the beam electrons
exactly matches the rate of the phase advance due to the
shrinkage of the plasma waves, a continuous acceleration
without any phase slip may be achieved.

From a study on the hydrodynamics of nozzle flow [16],
we find that, if there is a steady flow opposite to the direc-
tion of the beam, by fine tuning the increase of the nozzle
cross section along the beam one can control the corre-
sponding increase of the plasma density and in turn achieve
a synchronous acceleration. Here the acceleration unit has
a horn shape. We refer to this model as the “horn model,”
although in practice the increase of the radius of the cross
section in some instances may be small.

Based on the Katsouleas matching condition, we have
derived a set of analytic expressions which have been in-
corporated in the dynamical map. Our work here also
takes into account the conservation of energy in the con-
text of the pump-depletion effect [17] and the adiabatic in-
variance property throughout the acceleration process [18].
Our computer simulation for the horn model with a small
loading phase shows a definite improvement over CTHY
model.

The outline of the remainder of the present paper is
as follows. In Sec. II, we review the basic formalism in
laser-wakefield acceleration which establishes the conven-
tion and the notations used in the present work. Magnets
will also be included in the system. In Sec. III, we present
numerical results for a simple multistage model which con-
firms the approximate 1�N behavior. In the same section,
101301-2
we review the stochastic theory on the emittance degra-
dation, which serves as the basic framework in our emit-
tance degradation analysis. In Sec. IV, we present basic
setup and the numerical results on the approximately syn-
chronous model, i.e., a system with superunits and chips.
In Sec. V, we consider a synchronous model, where horns
are basic units. Here, both the analytic expressions for the
model and our numerical results will be presented. We
conclude with a summary and discussion in Sec. VI.

II. MOTION OF BEAM PARTICLES

In this section we will review the basic formalism of
laser-plasma acceleration [19] and the dynamical map in-
troduced by CTHY [5]. For brevity we will simply state the
essential points and leave out the nuances of the assump-
tions and justifications to these references. The CTHY
map provides a convenient frame for the inclusion of mag-
nets. In later sections, we will incorporate superunits with
chips and also incorporate the exact synchronous system
with horns into the map.

A. Laser pulse and wakefield

Laser pulse. Consider a laser pulse with a group velocity
yg traversing through a uniform plasma medium along,
say, the z direction. In terms of the longitudinal coordinate
variable defined in the frame comoving with the laser pulse
z � z 2 ygt, the normalized vector potential is assumed
to take on the form,

a�r, z � �
eA
mc2

�

Ω
a0f�z �g�r�, for 0 # z # L ,
0, otherwise.

(1)

Here m is the electronic mass and L is the pulse length.
The pulse longitudinal profile function f�z � may take on
the form of a Gaussian shape (see, e.g., Ref. [5]). For the
present theoretical discussion we will work with the sine
form; i.e.,

f�z � � sin
pz

L
.

The transverse cutoff function is assumed to be

g�r� � exp

µ
2
r2

r2s

∂
,

with r the transverse radius, i.e., r2 � x2 1 y2, and rs
the laser spot size. We assume x and y to be indepen-
dent variables. For definiteness we will work with the x
component.

Ponderomotive potential. It can be shown that the laser
pulse generates a trailing Ponderomotive potential

f � fmaxg
2�r� sinkpz ,

fmax �
F0Ebk
kp

, F0 �
pa20
4
, Ebk � kp

mc2

e
.

(2)
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The traveling speed of the plasma waves is the same as
the group velocity of the laser pulse; i.e., yp � yg. Here
Ebk is referred to as the Tajima-Dawson wakefield [1].
Consider the oscillation of a plasma medium. Poisson’s
equation implies that the amplitude of the wakefield is
proportional to the amplitude of the plasma density varia-
tion. Ebk is the field strength where this relation breaks
down in the nonrelativistic case. This occurs at the point
where the amplitude of density variation in the waves
equals the quiescent density. The specific form of F0 is
sensitive to the pulse shape f�z � assumed.1 Denote the
phase of the plasma waves by cp � kpz , the traveling
wakefield in the longitudinal and the transverse directions
are respectively given by

Ez � 2
≠f

≠z
� 2Ez0g

2�r� cosc with Ez0 � F0Ebk ,

(3)

Ex � 2
≠f

≠x
� Ex0g

2�r� sinc with Ex0 �
4x
r2s

F0Ebk
kp

.

(4)

We proceed to consider the acceleration of a beam electron
by the wakefield.

B. Longitudinal iterative map

Longitudinal variables. The longitudinal motion of a
beam electron is specified by two variables (a) the longi-
tudinal Lorentz factor g associated with a speed y � bc
and (b) the longitudinal phase given by

c � cs 1 kp�z 2 ygt� . (5)

At t � 0, the center of the beam is loaded at z � 0
where the plasma wave has a phase cp � cs. In the
frame comoving with the plasma waves, the location
where the phase is cs will remain fixed. The beam is
moving with a speed y � bc, which is close to the speed
of light. The corresponding particle phase is given by
c�z, t� � cs 1 kp�bct 2 ypt�. Thus, as an electron is
riding on the wakefield waves, at time t the corresponding
phase slip is given by kp�b 2 bp�ct.

Longitudinal equations of motion. In the z direction, the
Lorentz force Fz � mc

dg

dt � 2eEz . This Lorentz force
and the corresponding x component force are shown in
Fig. 1(a). Taking cs � 0 and neglecting the longitudinal

1For the sine form assumed, the coefficient of a20 is
p

p�4 �
0.89. For a Gaussian shape, if there is no restriction on its spatial
extent, the corresponding numerical value is

p
p�2e � 0.76.
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b. Multi-stage Acceleration
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a. Plasma-Wakefield Acceleration
ψ= k  (z - v t)gp

FIG. 1. Schematic illustrations of laser-wakefield acceleration.
(a) Lorentz force Fz and Fx on a beam particle as a function of
wakefield phase, (b) the layout of multistage acceleration, and
(c) the layout of a quadrupole doublet in the gap.

spread of the beam, the appropriate quarter-wave region
for beam acceleration is 0 # c # p�2. Near the beam
line, which is at r � 0,

dg

dz
�

dg

cdt
� F0kp cosc ,

and

dc

dz
� kp

µ
1 2

bp

b

∂
�

kp
2g2p

with gp �
v

vp
. (6)

In a plasma medium, the laser pulse satisfies the dispersion
relation

v2 � v2
p 1 �kpc�2,

and the traveling speed of the plasma waves induced by
the laser pulse is identical to its group velocity. One may
identify gp to be the Lorentz factor for a dressed photon
with a rest mass energy hvp�2p (h being the Planck
constant) and with a speed yp, the plasma wave speed.

Iterative map. Consider the multistage setup shown
in Fig. 1(b). Here the iterative map for the longitudinal
101301-3
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Lorentz factor from the nth stage to the n 1 1th stage for
a typical particle2 is given by

gn11 � gn 1 Dg 1
≠Dg

≠c
dc , (7)

where the increase in the Lorentz factor over an accelera-
tion stage is given by

Dg � Dgmax�sin�cs 1 D� 2 sincs� ,

with

Dgmax � 2g2pF0 ,

≠Dg

≠c
� Dgmax�cos�cs 1 D� 2 cos cs�.

To the extent that one neglects the order of 1
2g2

p
, for a typical

particle, the deviation of its longitudinal phase from the
center of the beam in going from one stage to the next
remains fixed; i.e.,

dcn11 � dcn � dc . (8)

C. Transverse iterative map

Transverse equation of motion. For the transverse mo-
tion of the beam particles in the x direction, we work with
the two variables px and x. The equations of motion for
these two variables are given by the Lorentz force equation
and the definition of momentum,

dpx
dz

�
dpx
cdt

� 2
eEx
c

and
dx
dz

�
px
mgc

. (9)

It is shown in Ref. [5] that, in terms of the variable u �
p

gx, the transverse force is approximately harmonic. The
two equations of motion lead to

2Comments on a typical beam particle: Technically we could
have introduced beam particle labels, i.e., i � 1, 2, . . . ,N0. Then
the ith particle would have a Lorentz factor of gi � g0 1 dgi.
Here g0 is the Lorentz factor at the “center” of the beam. To
be precise, dgi � sgx1�i� with x1�i� being a random number
generated by a Gaussian distribution having a unit width. By
the construction here, sg is the Gaussian width, or simply the
width, of the variable dg. For brevity throughout the text we
will suppress the beam particle label and refer to, for example,
g � g0 1 dg as the Lorentz factor for a typical particle which
has a width sg . Similarly, the same typical particle will have
a longitudinal phase c , with a width sc and a random variable
x2 from �x2�i�� . We will also apply the same convention to
its transverse coordinates x and x0. They have their widths and
the corresponding random variables from the set of �x3�i�� and
�x4�i��.
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d2u

dz2
�

1
mc

p
g

dpx
dz

� 2
1

mc
p

g

eEx
c

	 2V2u ,

(10)

where

V2 �
1

mc
p

g

4e
c
p

gr2s

F0Ebk
kp

sinc �
pa20
r2sg

sinc .

(11)

Jitters and the transverse map. So far the system is
Hamiltonian and thus the emittance of the electron beam
is preserved. Now consider jitters in the transverse direc-
tions, which, as mentioned earlier, may be due to the mis-
alignment at each stage between the wakefield with respect
to the beam line. We follow a procedure similar to those for
the generation of random phase space variables. At each
acceleration stage a random number x is generated based
on a normalized Gaussian distribution with a width unity.
Denote the modified jitter displacement in the x direction
by D �

p
g sDx. This leads to a following recurrence

relation in going from the nth stage to the n 1 1th stage:µ
un11
u0n11

∂
� MgapMwk

µ
un 2 D
u0n

∂
1

µ
D
0

∂
. (12)

The wakefield acceleration matrix is given by

Mwk �

∑
cosu 1

V sinu
2V sinu cosu

∏
, u � VL1 . (13)

Here L1 is the spatial interval of acceleration, which
is the tube length; see Fig. 1(b). From Eq. (6), L1 �
2g2pD1�kp, where D1 is the phase slip over the corre-
sponding spatial interval. For a gap with a free space
interval L0, the corresponding transport matrix is given by

Mgap � S�L� �

∑
1 L
0 1

∏
. (14)

Magnets. It is well known that the presence of magnets
increases the stability of electron orbits. Figure 1(c) shows
the layout with magnets. Within the gap there is a pair of
quadrupoles separated by a distance sL0, and the distance
between each of the magnets to the corresponding end of
the tube is given by aL0. So 2a 1 s � 1. With magnets,
the matrix Mgap is to take on the following form:

Mgap ! S�aL0�M�f�S�sL0�M�2f�S�aL0�

�

"
1 1

s
b 2

as
b2 �1 2

a2s
b2 �L0

2
s

b2L0 1 2
s
b 2

as
b2

#
, (15)

where b � f�L0 and f is the magnitude of the focal length
which is assumed to be the same for both the convergent
and the divergent quadrupoles. The magnet matrix in the
thin lens approximation, for focal length f, is given by

M�f� �

"
1 0

2
1
f 1

#
. (16)
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D. Normalized invariant emittance

Emittance is a measure of the phase space area. A
normalized phase space area element is given by

DxDpx
mc

� gDxDx0 � DuDu0, (17)

where we have used u �
p

g x, dx�dt � cx0, and px �
gm

dx
dt � gmcx0. The normalized invariant emittance in

the x direction is defined to be the rms value of the phase
space area,

ex �
q

�susu0 �2 2 c2uu0 with cuu0 � 
uu0� 2 
u� 
u0� ,
(18)

su �
q


u2� 2 
u�2 and s0
u �

q

u02� 2 
u0�2 .

The emittance of all results shown in this work is for the
x phase space.

III. EMITTANCE DEGRADATION AND NUMBER
OF STAGES

In this section we will first recall the CTHY model. We
will then present our numerical analysis for acceleration
with a variable range. Finally, we will consider a simplified
version of the CTHY formula based on a stochastic theory
consideration, which will serve as a tool for the present
emittance degradation analysis.

A. The CTHY model

Plasma. The plasma density n � 1017 cm23. This
gives the plasma frequency vp � �4pne2�m�1�2 �
1.8 3 1013 sec21, the wave number of the plasma waves
kp � vp�yp � vp�c � 6 3 104 m21, and the corre-
sponding wavelength lp � 100 mm.

Laser. For the laser pulse, the normalized vector po-
tential a0 � 0.5, which gives F0 � 0.2. The laser pulse
length is taken to be L � lp � 100 mmm, or 330 fs. We
take gp � 100. From Eq. (6), the corresponding laser fre-
quency v � gpvp � 1.8 3 1015 Hz and a wavelength
l �

2pc
v � 1 mm.

Beam. The initial beam energy is taken to be at 0.5 TeV
or g � 106. The percentage energy spread of the initial
beam is taken to be 0.01. Longitudinal phase spread
sc � 0.01 rad.3 The initial emittance in the x direction at
e0 � 2.2 nm. There is no simple way to determine the av-
erage value of the

p
sinc factor in the betatron frequency,

which accounts for the whole quarter-wave region. This
average value should be between 0 and 1. Two typi-
cal cases were considered by CTHY. For case (a) (see
Ref. [3]) this average was taken to be 1�2, and for case (b)
(see Ref. [5])

p
2�p. As we will see later, since in the

present work we will be concerned with mainly the small
c region, we will be comparing our results only with
101301-5
case (a) of the CTHY model. For this case, the average be-
tatron frequency V �

p
F0�g �2�rs�

p
sinc � 0.9 m21.

The corresponding rms radius of the initial beam may be
related to the mean betatron frequency in the following
way:

e0 � V
u20� � Vg
x20 � or x0 �
r

e0

gV
. (19)

This leads to x0 � 0.05 mm.
In the CTHY model, the loading phase is fixed at cs �

0 rad and the maximum of phase slippage is considered,
i.e., Dmax � c 2 cp � p�2. From Eq. (6), the corre-
sponding tube length is given by

L1 �
2g2pDmax

kp
�

pg2p

kp
� 0.5 m . (20)

From Eq. (6) the corresponding energy gain by an electron
is given by

Dgmaxmc
2 � 2g2pF0mc

2 � 2 GeV . (21)

From initial energy 500 GeV to the final energy of 2.5 TeV,
there are 1000 stages. For the case of the jitter parameter
sD � 0.1 mm and the initial emittance e0 � 2.2 nm, the
final emittance4 is e � 300 nm � 140e0.

For numerical results in the remainder of this work, all
parameters, except those stated otherwise, are the same as
those in the CTHY model.

B. Emittance versus total number of stages in a simple
multistage model

We are interested in the effect on the emittance degrada-
tion due to a reduction in the phase range of acceleration.
Since the total acceleration energy is fixed, as the accelera-
tion interval per stage decreases, the number of accelera-
tion stages will accordingly increase. We use the layout of
Fig. 1(b) and refer to the system as a “simple multistage
model.” This is the same as the CTHY model, except that

3The longitudinal phase spread used in the CTHY model was
based on the following considerations. The plasma wavelength
is 100 mm. To have a proper acceleration, the longitudinal half-
width of the beam sz should be less than 10% of the quarter-
wavelength acceleration interval. This gives an upper limit, i.e.,
sz # 2.5 mm. In Ref. [6], it is shown that, for such an upper
limit, a collider must be operating in the regime where the beam-
strahlung parameter Y is high, and a systematic study of the
collider performance in this regime is examined. Based on the
criteria of optimizing collider luminosity and to maintain proper
longitudinal and transverse beam profiles, it was concluded that
sz � 0.3 mm, or sc � 0.02 rad is a reasonable value. Notice
the CTHY model value here is a factor of 2 smaller than this
quoted value. The CTHY value further helps to keep most of all
the beam particles to within the quarter-wave region throughout
the entire system.

4The value quoted here is for case (a) of the CTHY model. For
completeness we also mention that for case (b) of the CTHY
model the final emittance is �700 nm � 320e0.
101301-5
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here we allow the variations of both the tube length and
the gap width. Figure 2 shows emittance versus the total
number of stages for two sets of gap widths and various
jitter parameters at the loading phase cs � 0.15 rad. They
are given in log-log plots.

There is a general trend that, as the number of stages
N increases, the average behavior of emittance decreases
persistently. This behavior is to be compared with an
inverse-law parametrization

e �
bs

2
D

N
. (22)

There will be two different b values, one for the gap �
10 tubes cases and one for the gap � tube cases. This
parametrization is based on a stochastic theory considered
by CTHY and will be discussed in the following subsec-
tion. For now it suffices to mention that, to derive this
form, among other things one needs to assign a mean be-
tatron frequency, or a mean acceleration phase cm. The
approximation which we will be using is given by

c � cm � cs 1 0.5D .

10 100 1000
Total stages (units of 1K stages)

10
0

10
2

10
4

ε x(
nm

)

10
0

10
2

10
4

ε x(
nm

)

10
0

10
2

10
4

10
6

ε x(
nm

)

(a)

(b)

(c)

FIG. 2. (Color) Emittance degradation as a function of the total
number of stages for two types of gap widths and different jitter
parameters: sD � 1 mm (solid circles), 0.5 mm (triangles), and
0.1 mm (open circles). Lines are fits to data points based on a
stochastic theory in zero-correlation length approximation. The
solid lines are for sD � 1 mm and 0.5 mm, and the dashed lines
are for sD � 0.1 mm. (a) gap � 10 tubes, (b),(c) gap � tube.
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This approximation is good if D is small or the number of
stages N is large. We will confine our attention mainly to
the region where D # 0.05 rad or N $ 20.

Figure 2 shows that, for the jitter parameters sD �
1 mm and 0.5 mm, the average rate of fall of data points
(solid circles and solid triangles) follows the respective
lines reasonably well. There are more pronounced oscilla-
tions in the sD � 0.5 mm case as compared to that in the
sD � 1.0 mm case.

We now turn to the sD � 0.1 mm cases, where points
with open circles are to be compared to the respective
dashed lines.

(i) The gap � 10 tubes case is shown in Fig. 2(a). No-
tice that, in the large N region, e.g., N $ 60 K, the rate of
fall of the points is slightly less than that indicated by the
dashed line.

(ii) The situation for the gap � tube case is shown in
Fig. 2(c). In the large N region the departures of the open
circles from the dashed curve in both normalization and
slope are very noticeable.

The overall pattern in Fig. 2 suggests the following
systematics. The inverse-law parametrization works ap-
proximately for large N for those cases where there is a
substantial difference (at least 1 order of magnitude) be-
tween the relevant emittance and the initial emittance.

C. A stochastic theory for emittance degradation

Using present notations, we proceed to paraphrase some
of the stochastic theoretical argument given by CTHY.
Here we will mainly confine our attention to the case ne-
glecting the effect of gaps. Toward the end of our dis-
cussion we will comment briefly on the situation with the
inclusion of gaps. When the cumulative phase of the be-
tatron oscillation per tube u defined in Eq. (13) is small
compared to unity, the transverse equation of motion may
be written as follows:

u00 1 V2u � V2D � V2sDx�z�
p

g 	 F�z� . (23)

Here we explicitly display the stochastic variable x which
is a random number generated by a Gaussian distribution.
Averaging over jitters and in a narrow width approxima-
tion, one finds that


x�z1�x�z1�� � lcd�z1 2 z2� , (24)

where lc is the correlation length. The solution of this
equation is well known (see, for example, [20]). We de-
fine the cumulative betatron frequency Q � NVz, where
z � ltube, which measures the distance traversed in the
harmonic field within one tube. The second moments are
given by

s2
u � 
u2 2 
u�2� �

C
V3

µ
Q 1

1
2

sin2Q

∂
, (25)

s2
u0 � 
u02 2 
u0�2� �

C

V

µ
Q 2

1
2

sin2Q

∂
, (26)
101301-6
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cuu0 � 
�u 2 
u�� �u0 2 
u0��� �
C
V2

sin2Q . (27)

Here C is defined through the relationship


F�z1�F�z2�� � 2Cd�z1 2 z2� . (28)

Using Eqs. (23), (24), and (28), one obtains

C �
1
2

V4s2
Dlcg . (29)

For the final emittance of N multiple stages, the nonoscil-
latory part of the terms leads to

e � susu0 �
CQ

V2 !
1
2

�gNltubelc�V3s2
D . (30)

For a fixed total acceleration energy, Nltube is constant.
Motivated by the data we assume that the correlation length
is proportional to the tube length. We denote the propor-
tionality constant by h, which is assumed to depend on the
ratio R � gap�tube length. So we obtain

e ~ h�R�
s
2
DV3

N
~ h�R�

s
2
D sin3�2c
N

. (31)

For the last step we recall the definition of V given in
Eq. (11). The �sin3�2c� behavior will play an important
role in our discussion.

Now we come to the case with gaps. It turns out that
in a small phase angle approximation, i.e., the angles of
rotation in the transverse phase space associated with the
travel within a tube and within a gap are assumed to be
small, one finds that Eq. (31) can be generalized to5:

e !
p
ltube 1 L

s
2
DV3

N
, thus h�R� �

s
ltube 1 L

ltube
.

Let us come back to Fig. 2. Working with the conven-
tional units of expressing sD in units of mm and e in units
of nm, from fits shown in Fig. 2 the coefficient of Eq. (22)
for the gap � 10 tubes case is given by b � 4 3 104 and
that for the gap � 1 tube case by b � 1.3 3 104. This
leads to the ratio h�10��h�1� � 3. The CTHY stochastic
model gives h�10�

h�1� �
p
11�2 � 2.3, which is in the same

ballpark.

5Denote the resultant transfer matrix from the nth state to the
n 1 1th state by M , which transports beam particles through
one tube and one gap. It can be shown that the inverse of
the effective betatron frequency can be written as 1

Veff
� M12

sins ,

where coss �
TrM
2 . In the small phase angle approximation

assumed, i.e., Vltube and VL ø 1, after some algebra one
obtains Veff � V

p
ltube��ltube 1 L�. Taking into account that

the effective rotating phase associated with the passage of one
tube and one gap is given by Veff�ltube 1 L�, one finds e !
1
2 �gN�ltube 1 L�2�V3

effs
2
D ~

p
ltube 1 L �s2

DV3�N�.
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IV. APPROXIMATELY SYNCHRONOUS
ACCELERATION

In this section we consider an approximately syn-
chronous acceleration model with superunits and chips, or
the chip model. We will begin with the general layout of
the model and then turn to numerical results.

A. Accelerator with superunits, chips, and magnets

With the scenario of having a very large number of
stages, each stage becoming very short (e.g., of the order
of 1 cm), we are led to consider a superunit which is made
out of many short tubes, or chips, as depicted in Fig. 3(a).
Here wakefield within each chip is created by an indepen-
dent laser pulse. The stochastic jitters are contributed by,
among other things, the misalignment between each pulse
and the beam line characterized by a Gaussian width sD ,
referred to as the jitter parameter or the offset parameter
[see comments leading to Eq. (12)]. We allow for the or-
der of 1 m between adjacent superunits to allow the ex-
perimental set up needed to maintain superunits including
magnets placed over a certain period of length to maintain
the quality of the beam. We consider a mixed configura-
tion, where there are superunits. Within each superunit,
there are many short tubes closely spaced and interspersed
by large gaps [see Fig. 3(b)]. We have considered an illus-
trative system: the total energy is 2.5 TeV, which is used
as each of the two arms of the 5 TeV collider, and the
acceleration is from 0.5 to 2.5 TeV; the total number of
superunits (SU) is 500; within one superunit there are 100
stages per SU and gap � tube � 0.83 cm; there is a large
(1 m) gap between two adjacent superunits; the length of
the accelerator is about 1300 m.

B. Emittance degradation as a function of loading
phase

We proceed to look at how emittance degradation varies
as a function of the loading phase for the system of su-
perunits with chips. From Eq. (31), one expects in some
average sense

e ~ 
V3� ~ �sincm�3�2, (32)

Beam

a. Super Unit with chips

b. Accelerator Layout

Beam

chips

s.u. s.u. s.u. s.u.

FIG. 3. Chip model. (a) A superunit with chips and (b) the
chip model accelerator layout.
101301-7
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FIG. 4. A comparison between data points based on the chip
model with sD � 0.1 mm and the sin3�2c law as indicated by
the dashed line.

where cm is the mean phase of the beam; as mentioned
earlier we take it to be cm � cs 1 0.5D. Here cs is
the loading phase and D is the total phase slip. Figure 4
shows the final emittance as a function of �sincm�3�2 at
the default value sD � 0.1 mm. In the small cm region
up to �sincm�3�2 � 0.1 the emittance degradation has an
approximately linear behavior superposed by a small oscil-
lation. Beyond this point, the oscillatory behavior becomes
violent.

This implies that the resilience of the present system
against jitters can be further improved, at least in the
small loading phase region, by lowering the loading phase
value. With this in mind, we will also consider two load-
ing phases, i.e., cs � 0.15 and 0.05 rad.

C. Different loading phases and magnets

Figure 5 shows the interim emittance degradation for
three cases. They are all at the final energy 2.5 TeV.

Case (a), 50 K stages, cs � 0.15 rad. The final emit-
tance e � 7.3 nm � 3.3e0. (As mentioned in Sec. III A,
throughout this work the initial emittance is assumed to be
e0 � 2.2 nm.)

Case (b), 50 K stages, cs � 0.05 rad. The final emit-
tance e � 2.85 nm � 1.3e0. One sees that the qualitative
expectation of the �sinc�3�2 law is satisfied here.

Case (c), 20 K stages, cs � 0.15 rad. The final emit-
tance e � 10.3 nm � 4.7e0

Notice that case (a) is for 50 K and case (c) is for
20 K. Both are at the final energy 2.5 TeV. As expected,
the final emittance for the 20 K case is greater than that
for the 50 K case.

The stochastic theory, if applicable, implies that the in-
termediate emittance should grow approximately6 linearly
with the number of stages; see Eq. (30). Approximate

6It is shown in Ref. [5] that if the tube length is fixed and total
energy is allowed to vary, for very large N , the emittance grows
as

p
N lnN .
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FIG. 5. (Color) The interim emittance degradation behavior as
the beam particles traverse through the system of a chip model
for sD � 0.1 mm. For each case, a solid line of a linear behav-
ior is included to guide the eye. Curve a, total stages 50 K,
cs � 0.15 rad. Curve b, total stages 50 K, cs � 0.05 rad.
Curve c, total stages 20 K, cs � 0.15 rad.

mean linear behavior is observed for curves (a) and (b).
For curve (c), there is a rapid rise up to about 20% of the
total stages, which is followed by an approximately linear
mean behavior.

In our previous investigation in Ref. [10], the effect of
magnets was considered. The setup for the simple multi-
stage system and that for the system with the superunits
with chips are identical to those cases considered in the
present work, except for one difference. The final energy
there is at 3 TeV, which is to be compared to 2.5 TeV for
the present case.7

We mention several points on this 3 TeV work. For the
simple multistage model the inverse-power law worked in
a similar manner as that presented in this work. For the
chip model, with the jitter parameter sD � 0.01 mm, and
the loading phase 0.15 rad, the final emittance is 10.4 nm.
(This is to be compared to 7.3 nm for the present case.)

7There is a misprint in the energy label of our previous work
given in [10]. The final energy of each of the accelerators should
be 3 TeV, not 2.5 TeV.
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FIG. 6. Traverse phase space: normalized px versus normalized x, for cs � 0.15 rad. The final average beam energy is at 3 TeV
(see text). (a) Without magnets and (b) with magnets.
When the magnets were included, the final emittance was
lowered from 10.4 to 6.6 nm. The effect of magnets can
be seen visually in the transverse phase space plot. This is
shown in Fig. 6.

We return to the present 2.5 TeV model. Figures 4
and 5 are for the jitter parameter, sD � 0.1 mm. We
digress here to show in Fig. 7 the emittance degradation

10
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FIG. 7. (Color) Emittance degradation versus s
2
D . A fit to the

linear behavior is given to guide the eye [see Eq. (31)].
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as a function of s
2
D for the case where the loading phase is

at 0.15 rad. It is a log-log plot. It shows that the emittance
is, as expected from Eq. (31), to grow asymptotically with
s
2
D . It also illustrates that the jitter parameter used for the

three cases considered here, s
2
D � �0.1 mm�2, is below

the threshold of the linear region. The onset of the s
2
D

behavior occurs near s
2
D � �0.2 mm�2.

To conclude, within the present chip model the final
emittance has been reduced to, say, less than 2e0, this is to
be compared to the situation in the CTHY model, where
the final emittance is beyond 100e0. This, however, is
at the expense of introducing 50 times more laser pulses;
in turn the power consumption is also increased by many
fold. Thus it has severe practical limitations. These limi-
tations might be ameliorated by adopting a technique to
flip a phase by p by introducing two counterpropagating
lasers with slightly different colors (Shvets’ method [21]).

V. SYNCHRONOUS ACCELERATION

A. Horn model

As mentioned earlier, synchronous acceleration may be
achieved through a specific variation of the plasma density.
In this section we will first demonstrate that, in general, a
smoothly varying density profile may be achieved through
the appropriate variation of the local cross section area
of the tube. We will then derive the analytic expressions for
the longitudinal and transverse maps for the synchronous
acceleration. Last, we will present our numerical results

A steady flow picture and the horn model. Consider a
steady adiabatic flow of a fluid from a reservoir through a
nozzle, say, in the z direction. Let the static fluid density
of the fluid in the reservoir be r0, which will be referred
to as the quiescent density. Denote the fluid density at z
along the nozzle as r�z�. In the Appendix we will show
that, based on fluid dynamics [16], the following relation
is valid:
101301-9
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A�z� � const 3

√
r�z�
r0

! s
1 2

µ
r�z�
r0

∂g21

, (33)

where g is the usual ratio of the specific heat at a constant
pressure to that at a constant volume. For a monotonic
gas g � 5�2, and for a diatomic gas g � 7�2. Figure 8
shows the plot of A�Amin versus r�z��r0 for g � 5�2
(solid circles) and also that for g � 7�2 (solid line). Here
Amin is the minimum cross sectional area of the nozzle,
which takes on a different value for each case. For each
curve, the appropriate domain of present interest is to the
right of the minimum point. In this region, the density
increases with the cross section, which corresponds to the
subsonic region of the fluid flow. There is a one-to-one
relationship between the cross sectional area A and the
plasma density r. By increasing the cross section along
the beam direction in a specified way, one may achieve
the required density function. Looking down the stream of
the beam, the accelerator consists of a system of aligned
horns, although in some cases the increase in radius may
be slight. This is why we refer to the present model as the
“horn model.” Figure 9(a) is a schematic illustration of the
layout of this model.

Density function and z �z�. Now we come to Kat-
souleas’s [15] matching condition. Consider the wakefield
acceleration of a beam electron which is located at the cen-
ter of the beam. Let the “loading number” Nload be the
number of wave crests where the electron is lagging be-
hind the laser pulse. If the initial electron phase relative to
the local wakefield, as defined earlier, is cs, then the elec-
tron phase relative to the laser pulse defined by the local
plasma wave number kp is

kps1 � 2pNload 2 cs ,

0.3 0.5 0.7 0.9
ρ/ρο

0.8

1.0

1.2

1.4

A
/A

m
in

FIG. 8. (Color) Relationship between the normalized cross sec-
tion and the normalized density function in a nozzle flow. The
solid circles are for the monoatomic plasma and the curve is for
the diatomic plasma.
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where s1 is the distance from the electron to the pulse
measured in the rest frame of the pulse.

To motivate for the matching condition, for the time
being imagine the horn has been divided into many seg-
ments. For now we work with a finite number of seg-
ments. We will assume the density is constant within each
segment. For the ith and the i 1 1th segments, the wave
numbers are kpi and kpi11 respectively. Here the approxi-
mate synchronous condition is to have the electron phase
relative to the laser pulse be the same at the start of each
segment. We will derive this approximate synchronous
condition through an inductive reasoning. Assume this
condition is already satisfied up to the beginning of the ith
segment. The ith segment has a width Dz and has a phase
slip of Dc. Let the distance between the laser pulse and
the electron at the of end of the ith segment be s1. Here
its phase measured by the wave number of the ith segment
is kpis1 � 2pNload 2 cs 2 Dc. The synchronous con-
dition requires the recovery of the initial phase at the start
of the i 1 1th segment, i.e., kpi11s1 � 2pNload 2 cs. In
other words, the matching condition is given by

2pNload 2 cs 2 Dc

kpi
�
2pNload 2 cs

kpi11
. (34)

Figure 9(b) shows the situation for the case where cs � 0.
We write kpi11 � kpi 1

dk
dz Dz, where Dz is the width of

the ith segment. In the continuum limit, after some algebra
it leads to

1
kp

dkp
dz

�
1

2pNload 2 cs

dc

dz

�
1

2�2pNload 2 cs�c
v3
p

v
2
0
. (35)

λi

ki ki+1

2πN     - ∆φ 2πN
S1 = _____________ = _______

S1

a. Horn Model

Beam

b. Synchronous Condition

λi+1

∆φ
⇒

⇒

pulse

pulse

load load

FIG. 9. The horn model. (a) Matching condition for syn-
chronous acceleration for the case where cs � 0. (b) A sche-
matic layout of the horn model.
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Here v0 is the frequency of the laser pulse. In the last step,
Eq. (6) and kp � vp�c were used. The first equality is the
Katsouleas condition for synchronous acceleration.

To proceed to evaluate the number density variation
within the horn, we first recall that the frequency of plasma
waves is proportional to the square root of the number den-
sity. Thus the z dependence of all three quantities, the
number density of the plasma medium, the frequency, and
the wave number of plasma waves, may be specified by a
single z-dependent function z �z�. In particular, one may
write

n�z� � n0z �z�2, vp�z� � vp0z �z� ,

kp�z� � kp0z �z� .
(36)

Substituting Eq. (36) into Eq. (35) gives

1
k

dk

dz
�

1
z

dz

dz
�

1
2�2pNload 2 cs�c

v
3
p0

v
2
0

z3 , (37)

To the extent one neglects the pump-depletion effect [17],
i.e., the loss of laser pulse energy as it traverses through the
horn, the intensity and the frequency of the laser pulse is
assumed to be a constant. Integrating over Eq. (37) leads
to

z �z� �
1

�1 2 z�z0�1�3 ,

z0 �
2�2pNload 2 cs�c

3
v
2
0

v
3
p0
.

(38)

Constraint due to conservation of energy. We turn
to the correction due to the pump-depletion effect. Dur-
ing the acceleration process, there is an energy transfer
from the laser pulse to the wakefield created. Again we
will first consider the situation with finite segments then
take the continuum limit.

From the relationship between E and the vector potential
A, E � 2≠A�≠ct, and Eq. (1), the electric field amplitude
of the laser pulse with a frequency v is given by

El � va

µ
mc
e

∂
, (39)

where a is the normalized vector potential. From Eq. (3),
the wakefield created by the pulse is given by

Ew �
pvp

4
a2

µ
mc
e

∂
. (40)

Denote the length of the laser pulse by Ll . Assume the
cross section of the laser pulse and that of the wakefield
are the same. Both are labeled as A. Some portion of
the energy of the laser pulse goes into the creation of the
wakefield in the ith segment and the remainder enters into
the i 1 1th segment. So there is the relation

ALlE
2
li11 � ALlE

2
li 2 ADzE2wi , (41)

where Dz is the width of the ith segment. Denote the
normalized vector potential of the laser pulse at the ith
101301-11
element by ai. Making use of the above equations, it leads
to the recursion relation

�va�2i11 � �va�2i 2
Dz
Ll

µ
p

4
vpi

∂2
a4i . (42)

Here vpi is related to the plasma density ni , which will be
determined by a matching condition to be given below.

Constraint due to adiabatic invariance. We assume that
the wakefield creation is an adiabatically invariant process.
As the energy of the laser pulse decreases, the average fre-
quency of a laser pulse should also be decreasing according
to the relation (see, for example, [18])

vi � v0

µ
ai
a0

∂2
. (43)

Substituting this relation into the above recursion relation
and after some algebra, one arrives atµ

v
2
0

a40

∂
a6i11 �

µ
v
2
0

a40

∂
a6i 2

Dz
Ll

µ
p

4
vp

∂2
a4i . (44)

Writing Da6 � a6i11 2 a6i , in the continuum limit, the
recursion relation Eq. (44) now becomes

1
a4

da6

dz
� 2

∑
a40
v
2
0

µ
p

4
vp

∂2∏ 1
Ll

� 2
a20z

2�z�
D

,

D �

µ
4

pa0

v0

vp0

∂2
Ll .

(45)

Integrating both sides, one obtains

j�z� 	
µ
a
a0

∂2
� 1 2

z0
D

�1 2 �1 2 z�z0�1�3� . (46)

Acceleration energy and the h�z� function. From
Eq. (38), kp � kp0z�z� and F0 � F0�0�j�z�, the accel-
eration energy is given by

Dg�z� �
Z g�z�

g
dg �

Z z

0
kpF0 cosc dz

� cosc
Z z

0
kp0F0�0�j�z�z �z� dz

� Dgmax cosch�z� . (47)

Taking z1 to be the length of the horn, we obtain

Dgmax � kp0F0�0�z1,

h�z� �
3z0
z1

Ωµ
1 2

z0
D

∂
�1 2 �1 2 z�z0�2�3� 1

2z
3D

æ
.

(48)

Cumulative phase and 
j1�2�. The cumulative phase in
the transverse direction for a typical particle8 is given by

8We remind the reader that our “typical particle” convention
was discussed in Footnote 2. For brevity we will continue to
suppress particle labels for g and c and in turn also for those
quantities which are expressed in terms of them.
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u �
Z

V�z0� dz0 �
Z z

0

∑
p sinca2�z0�
r2sg�z�

∏1�2
dz0

� Vmz1
j1�2� . (49)

Here we have approximated the z-dependent g factor in
the integrand by the midpoint value gm and write

Vm �

∑
p sinca20
r2sgm

∏1�2
. (50)

The average value


j1�2� �
1
z1

Z z1

0
j1�2�z� �

3
b3

µ
z0
z1

∂ r
1 2

z0
D
F�b,x� ,

b �
z0

D 2 z0
and x � b

µ
1 2

z1
z0

∂1�3
,

(51)

and

F�b, x� � �f1�b� 2 f1�x�� 2 �f2�b� 2 f2�x��
1 �f3�b� 2 f3�x�� , (52)

where

f1 �
2
3
x�1 1 x�3�2, f2 �

23

3 3 5
x�1 1 x�5�2,

f3 �
24

3 3 5 3 7
x�1 1 x�7�2.

(53)

Iterative maps. To sum up, the longitudinal map from
the nth stage to the n 1 1th stage for a typical particle is
given by

gn11 � gn 1 Dg�z1� 1
≠Dg

≠c
,

≠Dg

≠c
� 2 tancsDg�z1�dc .

(54)

The spread of the phase of a typical particle dc is again
assumed to be approximately constant throughout the en-
tire acceleration stages. The transverse map has the same
form as that given in Eqs. (12) and (13), with u defined
by Eq. (49) and the corresponding betatron frequency Vm

evaluated at the midpoint of the horn, which is given by
Eq. (50).

B. Numerical results

For the present synchronous acceleration case, there is
no quarter-wavelength restriction, so the tube length can
a priori vary over a range of values.

Figure 10 shows the emittance degradation for the tube
length ranging from 0.2 to 1.4 m, keeping the gap width
at the nominal value of 1 m. We recall that, in the CTHY
model, there is a full-quarter-wavelength acceleration, the
tube length is 0.5 m. For the present model, Fig. 10 in-
dicates that the tube length less than 0.4 m is preferred.
For our calculation below, we fix the tube length to be at
0.35 m.
101301-12
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FIG. 10. Emittance degradation as a function of the tube
length, where the gap is kept fixed at 1 m.

Table I gives the normalized final densities and the ac-
celeration energies and other items for loading numbers
Nload ranging from 1 to 5. One sees that both the final den-
sity (normalized to r0) and the acceleration energy are not
sensitive to the loading number. We have also verified that
the emittance degradation is also not too sensitive to the
loading number. For all figures presented in this section,
the loading number has been set to 5. For these cases, from
Table I we see that the density variation per horn is 7%,
with the acceleration energy per stage 2.08 GeV, which is
comparable to that of the CTHY model.

The value of the betatron frequency depends on the
beam energy. As the beam being accelerated, the beta-
tron frequency will decrease. So the betatron frequency
has its largest value initially. For the present case, using
the expression in Sec. III A the initial betatron value for
the loading phase of 0.04 rad is given by V � 0.35 m21.
With the tube length of 0.35 m, the cumulative betatron
oscillation phase per horn is 0.12 rad, which is small com-
pared to p�2 � 1.6 rad. The total cumulative phase over
the entire accelerator system, which consists of about 960
stages, is Q � 120 rad. The spread in Q is given by

dQ � NdVltube �
1
2

∑µ
dc

c

∂2
1

µ
dg

g

∂2∏1�2
Q ,

(55)

with dc and dg being the spread in c and that in the
Lorentz factor, respectively. For a fixed dc, the smaller

TABLE I. Horn model: tube length � 0.35 m.

Normalized Acc. energy
Nload final density (GeV) z0�m� j h

1 1.60 2.26 0.70 0.92 1.10
2 1.21 2.14 1.39 0.85 1.04
3 1.13 2.10 2.09 0.78 1.02
4 1.09 2.08 2.79 0.71 1.01
5 1.07 2.08 3.49 0.64 1.01
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FIG. 11. A comparison between the sin3�2c law, indicated by
the line, and the data for the horn model.

the acceleration phase, the larger the value of dQ. Us-
ing dg�g � 0.01 and dc � 0.01, for case (a) where the
loading phase is 0.04 rad, the cumulative spread dQ is
about 15 rad. Thus the phase space has already reached
a full mixing state. For the loading phase 0.15 rad, the
corresponding spread dQ is about 4, the phase space is
about two-thirds of the way toward a full mixing state.
For case (a) where cs � 0.04, the full mixing stage has
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FIG. 12. (Color) The emittance degradation for three cases of
the horn model. Curve (a), c � 0.15 rad. Curve (b), c �
0.04 rad. Curve (c), c � 0.04 rad and dc � 0.0001 rad.
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FIG. 13. Gap width dependence of the emittance degradation.

already occurred, and, for the case where cs � 0.15, the
phase space is about to reach a full mixing state.

Figure 11 shows the plot of emittance degradation versus
�sinc�3�2. Here it is a log-log plot. The line has a unit
slope. It illustrates that the �sinc�3�2 law is operative here.

In Fig. 12, curve (a) corresponds to the case where
cs � 0.15 rad. Here the final emittance is e � 237 nm �
108e0, which is in the same ballpark as that of the CTHY
model, which is �140e0. So far we have not gained
much ground. The important case is curve (b), which is
the case where cs � 0.04 rad. It has a final emittance
e � 31.7 nm � 14.5e0, which is about 1 order of magni-
tude reduction as compared to that of the CTHY model.
The interim emittance for this case is shown in Fig. 12(a)
and with an amplified scale in Fig. 12(b).

The emittance degradation is sensitive to the longitu-
dinal phase spread of the beam which for all cases con-
sidered up to now has been taken to be sc � 0.01 rad.
Curve (c) illustrates the case for a negligibly small value
of the spread, i.e., sc � 0.0001 rad. Here the final emit-
tance is given by e � 8.4 nm � 3.8e0.

So far the gap width is fixed at 1 m. Figure 13 shows
the situation where the tube length is kept at 0.35 m but
the gap width is allowed to vary. Notice as long as the gap
width is of the order of 1 m , ranging, say, from 0.8 to
2 m, the emittance degradation is not sensitive to variation
of the gap width.

VI. SUMMARY AND DISCUSSION

We have been looking for ways to suppress emittance
degradation in multistage wakefield accelerator systems at
a fixed final energy, 2.5 TeV. In the course of our analysis,
we have paid special attention to three quantities: the total
number of stages N , the phase angle of acceleration c, and
the jitter parameters sD. The values of all other parameters
are kept fixed as those given in the CTHY model. From a
101301-13
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TABLE II. Laser-wakefield accelerator models: 2.5 TeV, sD � 0.1 mm.

Index Model cm N e epred Rij

CTHY CTHY 0.25 rad 1 K 140e0 231e0 R03 � 2.15
1 chip 0.16 rad 50 K 3.3e0 3.2e0 R13 � 0.021
2 chip 0.06 rad 50 K 1.3e0 1.5e0 R21 � 0.23
3 horn 0.15 rad 0.96 K 108e0 108e0 R33 � 1.0
4 horn 0.04 rad 0.96 K 14.5e0 16.0e0 R43 � 0.14
stochastic theory considered by CTHY, emittance growth
in terms of these parameters is given by

De � ef 2 e0 ~
�sincm�3�2s

2
D

N
. (56)

Figure 7 is an example which illustrates that the quadratic
power dependence of the jitter parameter is well satisfied
for large (asymptotic) values of the parameter. This asymp-
totic behavior turns out to be universal for all cases consid-
ered, although the locations for the onset of the asymptotic
behavior do vary from case to case.

How general is Eq. (56)? To our pleasant surprise we
have found that at least within restricted parameter ranges
it works reasonably well. It works not only “internally,”
i.e., within a given model, e.g., within the chip model
and within the horn model. It also works “externally,”
i.e., among all three models: the chip, the horn, and the
CTHY models. In Table II we list the final emittance for
five relevant cases, where the jitter parameter is fixed at
sD � 0.01 mm. What we would like to show is how well,
based on a given reference emittance of, say, case j, ej , one

can predict the final emittance of case i, e
pred
i , for various

values of i. One can make such prediction through the
relationship

e
pred
i � Rij�ej 2 e0� 1 e0 , (57)

where

Rij �

µ
sincmi

sincmj

∂3�2µNj
Ni

∂
.

To minimize uncertainties we will begin with case (c),
which has the largest emittance among the chip and the
horn models. Case (c) is for the horn model with 960
stages and c � 0.15 rad. By tautology, R33 � 1, and the
“predicted” final emittance for this case is e

pred
3 � e3 �

108e0. It is listed as the fourth entry in the epred column.
The 1�N dependence. The coefficient R13 together with

e3 leads to predict the emittance of case (a). This case
is for a chip model with 50 K stages and has a com-
parable phase, i.e., 0.16 rad. Based on the 1�N be-
havior of Eq. (56), the predicted emittance growth for
case (a) should be roughly 1�50 times of e3 � 100e0,
i.e., De1 � 2e0. In turn, the estimated final emittance for
case (a) is e

est
1 � De1 1 e0 � 3e0. A more careful study

gives the predicted value e
pred
1 � 3.2e0. This is the second

entry under the epred column. This predicted value is to be
compared to e1 � 3.3e0, which is adjacent to it under the
e column. The latter is obtained through direct model cal-
culation. The approximate agreement in this comparison
demonstrates that the 1�N factor is operative here.

The �sinc� law. Following the same approach, the
quantities e3 and R43 lead to the predicted value e

pred
4 �

16.0e0. This is compatible to the entry e4 � 14.5e0, which
is adjacent to it under the e column. The approximate
agreement is expected since the validity of �sinc�3�2 law
for the horn model has already been established in Fig. 11.
We recall that the same demonstration for the chip model
has been given in Fig. 4. In other words, we also expect
for case (b) e

pred
2 � e2. From Table II, one sees that this

is indeed the case.
From horn back to CTHY. The use of e3 and the coef-

ficient R03 leads to the prediction e
pred
CTHY � 231e0. This

is to be compared with the corresponding value of CTHY
model, eCTHY � 140e0. So the agreement is within a fac-
tor of 2. Notice that here the predicted value based on
Eq. (57) is higher than the corresponding CTHY value.
The same trend is also seen Fig. 11. Notice that at the ab-
scissa coordinate of the CTHY case, the line which is based
on the sinc3�2 law is higher than the point computed by the
horn model. These examples demonstrate a general over-
all consistency in the numerical analysis among the chip
model, the horn model, and the CTHY model.

As mentioned earlier, for the chip model, its resilience
against jitters is at the expense of introducing more lasers.
Still, it is worthwhile to point out that the spatial interval
of one acceleration stage of the chip model considered is
on the order of 1 cm. This space can be further reduced
either with a higher field gradient or with the increase of
the number of chips.

Based on Katsouleas’s matching condition, we have pre-
sented the analytic results of the horn model with syn-
chronous acceleration. Also, the conservation of energy
and the adiabatic invariance constraints have been included
in the model. Here the number of laser pulses involved is
much less than the chip model, and it is comparable to that
of the CTHY model. Thus the horn model is more promis-
ing for experimental implementation.

Assmann and Yokoya [7] have given a qualitative esti-
mate on the emittance degradation per acceleration stage
in the case where there is a full filamentation in the trans-
verse phase space, which is given by

Deunit

e0
�

µ
sD

x0

∂2
, (58)
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where e0 is the initial emittance, sD is the jitter parameter,
or the offset parameter, and x0 is the initial transverse ra-
dius of the beam which is determined based on the initial
emittance and the betatron frequency of the system; see
Eq. (19). For several cases of the horn model presented,
sD � 0.1 mm and x0 ranges from 0.05 to 0.08 mm. So
the maximum percentage degradation per stage is at least
several times greater than unity. On the other hand, for all
cases considered in the present work including the CTHY
model, this ratio is small compared to unity. This implies
that at least there is a significant portion of the system
where the transverse phase space is not in the full fila-
mentation region. So the behavior of the emittance of the
system is more complex. This justifies, a posteriori, why
it is necessary to carry out the numerical simulation work.

In this work for the longitudinal phase spread we have
used the CTHY value, i.e., sc � 0.01 rad. This gives
a narrow longitudinal beam width, i.e., sz � kpsc �
0.2 mm, where lp � 100 mm was used. There are pros
and cons for this choice. On the one hand, the smallness
of the bunch length helps to optimize the collider luminos-
ity, maintain the quality of the beam profile, and keep all
the beam particles within the acceleration region. On the
other hand, from an experimental point of view, it is hard
to prepare such a short electron bunch.9

We have also run a case with sc � 0.02 rad. Here,
due to the additional beam spread, about 2% of the beam
particles are found to be outside of the quarter-wave region.
As the longitudinal beam spread is increased from 0.01
to 0.02 rad, the corresponding final emittance is found to
increase from 14e0 to 16.8e0. The change is relatively
small. It does not alter the main conclusion of the present
paper. We will leave the investigation of using larger sz

values and the effect of the beam loss to the future.
There is another important factor which we have not

considered, i.e., the emittance growth due to multiple scat-
tering. While the inclusion of the multiple scattering effect
is outside of the scope of the present work, it is important
to take it into account in a more realistic study of emittance
degradation work. Based on the estimate of Montague and
Schnell [22], emittance degradation due to multiple scatter-
ing increases with the decrease of the acceleration phase.
They found that for a TeV laser-wakefield accelerator, the
multiple scattering effect is several times greater than the
initial emittance of 2.2 nm used in the present work. This
aspect is left to future investigation.
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APPENDIX: A STEADY FLOW THROUGH A
NOZZLE

The following setup is discussed by Landau and Liftshitz
[16]. Consider a steady isentropic (adiabatic) fluid flow
from a reservoir through a nozzle, which may be defined as
a tube with a variable cross section along its axis. Assume
the gas flow is uniform over the transverse cross section of
the tube, and the velocity is essentially parallel to the axis
of the tube. For this to be the case, the tube must not be too
wide and the cross sectional area A must vary fairly slowly
along its length. Denote r and y to be, respectively, the
local fluid density and the flow velocity along the nozzle
and r0 is the fluid density within the reservoir. It can
be shown that the normalized density function along the
nozzle is given by

x 	
r

r0
�

∑
1 2

1
2

�g 2 1�
y2

c20

∏1��g21�
, (A1)

where g is the ratio of the specific heat at a constant
pressure to that at a constant volume. For a monotonic gas
g � 5�2, and for a diatomic gas g � 7�2. The velocity
of sound within the reservoir is c0 � p0�r0. For a steady
flow, the rate of flow is constant, i.e.,

Q � rAy � xr0Ay . (A2)

Using the relation y � Q��xr0A�, one obtains

1 2 xg21 �
g 2 1
2

µ
Q

xr0Ac0

∂2
. (A3)

This shows that, for fixed Q, between x and A there is
only one independent variable. Next, evaluate the expres-
sion at x � x1, where the corresponding cross section is
minimum, i.e., A � Amin. After some algebra, it leads to

Af�x� � Aminf�x1�, where f�x� �
1

x
p
1 2 xg21

.

(A4)

The plot of A versus x is given in Fig. 8 (flow) for both
the monoatomic and diatomic cases. Here the extreme oc-
curs where the local velocity equals the velocity of sound.
Euler’s equation implies

dr

dy
� 2

ry

c2
. (A5)

Thus, the negative sign implies that to the left of the
extremum as r decreases, y increases; i.e., it is in the
supersonic region. On the other hand, to the right of
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the extremum, as r increases, y decreases. This region
corresponds to the subsonic region. In this latter region,
as the cross section A increases, x (i.e., the density) in-
creases. Thus, one way to achieve a gradual increase of
the density within a tube along the beam direction is to
set up a steady flow of the fluid in the opposite direction.
The downstream side of the tube is connected to a reser-
voir which is at the density r0. Here there is a monotonic
relationship; i.e., as A�Amin increases x � r�r0 increases
also. Using the f�x� function, the desired density profile
along the beam may be achieved through variation of the
corresponding cross section value.
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